Mostrar el registro sencillo del ítem

dc.contributor.authorCHAN, Tak Shing
dc.contributor.authorMCGRAW, Joshua
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorSALEZ, Thomas
dc.contributor.authorSEEMANN, Ralf
dc.contributor.authorBRINKMANN, Martin
dc.date.issued2017-10-10
dc.identifier.issn0022-1120
dc.description.abstractEnWe investigate the dewetting of a droplet on a smooth horizontal solid surface using the boundary element method. Specifically, we solve for the axisymmetric Stokes flow with i) the Navier-slip boundary condition at the solid/liquid boundary, and ii) a time-independent microscopic contact angle at the contact line. The profile evolution is computed for different slip lengths and equilibrium contact angles. When decreasing the slip length, the typical non-sphericity first increases, reaches a maximum at a characteristic slip length $\tilde{b}_m$, and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behavior for slip lengths larger or smaller than $\tilde{b}_m$. Around $\tilde{b}_m$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: viscous elongational flows for large slip lengths, friction at the substrate for intermediate slip lengths, and viscous shear flows for small slip lengths. Following the changes between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when the slip length is small compared to the droplet size. We also provide a phase diagram of the rescaled slip length and the equilibrium angle to demonstrate the appearance, or not, of a global transient bump.
dc.description.sponsorshipParis Sciences et Lettres - ANR-10-IDEX-0001
dc.description.sponsorshipENS- International Center for Fundamental Physics and its interfaces - ANR-10-LABX-0010
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.title.enMorphological evolution of microscopic dewetting droplets with slip
dc.typeArticle de revue
dc.identifier.doi10.1017/jfm.2017.515
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.identifier.arxiv1612.01346
bordeaux.journalJournal of Fluid Mechanics
bordeaux.page271-288
bordeaux.volume828
bordeaux.peerReviewedoui
hal.identifierhal-03134675
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03134675v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2017-10-10&rft.volume=828&rft.spage=271-288&rft.epage=271-288&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=CHAN,%20Tak%20Shing&MCGRAW,%20Joshua&SALEZ,%20Thomas&SEEMANN,%20Ralf&BRINKMANN,%20Martin&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem