Show simple item record

dc.contributor.authorZHAO, Dan
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorWÜRGER, Aloïs
dc.contributor.authorCRISPIN, Xavier
dc.date.issued2021
dc.identifier.issn2095-4956
dc.description.abstractEnThe tremendous amount of wasted heat from solar radiation and industry dissipation has motivated the development of thermoelectric concepts that directly convert heat into electricity. The main challenge in practical applications for thermoelectrics is the high cost from both materials and manufacturing. Recently, breakthrough progresses in ionic thermoelectrics open up new possibilities to charge energy storage devices when submitted to a temperature gradient. The charging voltage is internally from the ionic Seebeck effect of the electrolyte between two electrodes. Hence electrolytes with high thermoelectric figure of merit are classified as ionic thermoelectric materials. Most ionic thermoelectric materials are composed of abundant elements, and they can generate hundreds of times larger thermal voltage than that of electronic materials. This emerging thermoelectric category brings new hope to fabricate low cost and large area heat-to-energy conversion devices, and triggers a renewed interest for ionic thermodiffusion. In this review, we summarize the state of the art in the new field of ionic thermoelectrics, from the driving force of the ionic thermodiffusion to material and application developments. We present a general map of ionic thermoelectric materials, discuss the unique characters of each type of the reported electrolytes, and propose potential optimization and future topics of ionic thermoelectrics.
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enSeebeck effect
dc.subject.enIonic conductors
dc.subject.enThermodiffusion
dc.subject.enThermal energy conversion
dc.title.enIonic thermoelectric materials and devices
dc.typeArticle de revue
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]
dc.subject.halChimie
bordeaux.journalJournal of Energy Chemistry
bordeaux.page88
bordeaux.volume61
bordeaux.peerReviewedoui
hal.identifierhal-03154252
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03154252v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Energy%20Chemistry&rft.date=2021&rft.volume=61&rft.spage=88&rft.epage=88&rft.eissn=2095-4956&rft.issn=2095-4956&rft.au=ZHAO,%20Dan&W%C3%9CRGER,%20Alo%C3%AFs&CRISPIN,%20Xavier&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record