Acoustic Vibration Modes and Electron–Lattice Coupling in Self-Assembled Silver Nanocolumns
ARBOUET, Arnaud
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
See more >
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
ARBOUET, Arnaud
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
MARGUERITAT, Jeremie
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Instituto de Optica [IO]
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Instituto de Optica [IO]
MLAYAH, Adnen
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
< Reduce
Laboratoire Physique des Solides de Toulouse
Centre d'élaboration de matériaux et d'études structurales [CEMES]
Language
en
Article de revue
This item was published in
Nano Letters. 2008-04-01, vol. 8, p. 1296
American Chemical Society
English Abstract
Using ultrafast spectroscopy, we investigated electron–lattice coupling and acoustic vibrations in self-assembled silver nanocolumns embedded in an amorphous Al2O3 matrix. The measured electron–lattice energy exchange time ...Read more >
Using ultrafast spectroscopy, we investigated electron–lattice coupling and acoustic vibrations in self-assembled silver nanocolumns embedded in an amorphous Al2O3 matrix. The measured electron–lattice energy exchange time is smaller in the nanocolumns than in bulk silver, with a value very close to that of isolated nanospheres with comparable surface to volume ratio. Two vibration modes were detected and ascribed to the breathing and extensional mode of the nanocolumns, in agreement with numerical simulationsRead less <
Origin
Hal imported