Show simple item record

hal.structure.identifierUniversité de Mons-Hainaut
dc.contributor.authorLECLÈRE, Philippe
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorDUBOURG, F.
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorMARSAUDON, Sophie
hal.structure.identifierUniversité de Mons-Hainaut
hal.structure.identifierUniversity of Arizona
dc.contributor.authorBREDAS, J. L.
hal.structure.identifierUniversité de Mons-Hainaut
dc.contributor.authorLAZZARONI, R.
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorAIMÉ, Jean-Pierre
dc.date.issued2001
dc.date.conference2001
dc.description.abstractEnDynamic force microscopy is known for its ability to image soft materials without inducing severe damage. For such materials, the determination of the relative contributions of the topography and the local mechanical properties to the recorded image is of primary importance. In this paper, we show that a systematic comparison between images and approach–retract curve data allows the origin of the contrast to be straightforwardly evaluated. The method provides an unambiguous quantitative measurement of the contribution of the local mechanical response to the image. To achieve this goal, experimental results are recorded on a model system, a symmetric triblock copolymer, which possesses a lamellar morphology due to nanophase separation between elastomer and glassy domains. In this particular case, we show that most of the contrast in the height and phase images is due to variations of the local mechanical properties. As a step further, the analysis of the variation of the phase is carried out as a function of the tip–surface distance. Local variations of the phase can be linked to dissipative processes between the tip and the soft sample. When the tip touches the surface, viscous forces acting against the tip motion contribute to the phase lag. Depending on the tip apex geometry and on the nature of the sample, the relationships between the phase variations and the tip–surface distance can be derived. On that basis, we propose an approach to evaluate the viscosity at the nanometer scale.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enScanning probe microscopy
dc.subject.enBlock copolymer
dc.subject.enPhase separation
dc.subject.enMechanical properties
dc.title.enDynamic force microscopy analysis of block copolymers: beyond imaging the morphology
dc.typeCommunication dans un congrès
dc.identifier.doi10.1016/S0169-4332(01)00966-7
dc.subject.halPhysique [physics]
bordeaux.page524-533
bordeaux.countryZZ
bordeaux.conference.cityUnknown
bordeaux.peerReviewedoui
hal.identifierhal-01550630
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01550630v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2001&rft.spage=524-533&rft.epage=524-533&rft.au=LECL%C3%88RE,%20Philippe&DUBOURG,%20F.&MARSAUDON,%20Sophie&BREDAS,%20J.%20L.&LAZZARONI,%20R.&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record