Euler buckling instability and enhanced current blockade in suspended single-electron transistors
PISTOLESI, Fabio
Laboratoire de physique et modélisation des milieux condensés [LPM2C]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire de physique et modélisation des milieux condensés [LPM2C]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
PISTOLESI, Fabio
Laboratoire de physique et modélisation des milieux condensés [LPM2C]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
< Reduce
Laboratoire de physique et modélisation des milieux condensés [LPM2C]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Language
en
Article de revue
This item was published in
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2011-01-24, vol. 83, n° 3, p. 035420 (14)
American Physical Society
English Abstract
Single-electron transistors embedded in a suspended nanobeam or carbon nanotube may exhibit effects originating from the coupling of the electronic degrees of freedom to the mechanical oscillations of the suspended structure. ...Read more >
Single-electron transistors embedded in a suspended nanobeam or carbon nanotube may exhibit effects originating from the coupling of the electronic degrees of freedom to the mechanical oscillations of the suspended structure. Here, we investigate theoretically the consequences of a capacitive electromechanical interaction when the supporting beam is brought close to the Euler buckling instability by a lateral compressive strain. Our central result is that the low-bias current blockade, originating from the electromechanical coupling for the classical resonator, is strongly enhanced near the Euler instability. We predict that the bias voltage below which transport is blocked increases by orders of magnitude for typical parameters. This mechanism may make the otherwise elusive classical current blockade experimentally observable.Read less <
ANR Project
NanoElectroMEchanical transport and Shuttling In normal and superconducting Systems - ANR-06-JCJC-0036
Origin
Hal imported