Brownian Motion of Stiff Filaments in a Crowded Environment
hal.structure.identifier | Department of Chemical and Biomolecular Engineering | |
hal.structure.identifier | The Smalley Institute for Nanoscale Science and Technology | |
hal.structure.identifier | Department of Chemistry | |
dc.contributor.author | FAKHRI, Nikta | |
hal.structure.identifier | Department of Physics and Astronomy [Amsterdam] | |
dc.contributor.author | MACKINTOSH, F.C. | |
hal.structure.identifier | Centre de physique moléculaire optique et hertzienne [CPMOH] | |
dc.contributor.author | LOUNIS, Brahim | |
hal.structure.identifier | Centre de physique moléculaire optique et hertzienne [CPMOH] | |
dc.contributor.author | COGNET, Laurent | |
hal.structure.identifier | Department of Chemical and Biomolecular Engineering | |
hal.structure.identifier | The Smalley Institute for Nanoscale Science and Technology | |
hal.structure.identifier | Department of Chemistry | |
dc.contributor.author | PASQUALI, Matteo | |
dc.date.created | 2010-09-09 | |
dc.date.issued | 2010-12-24 | |
dc.identifier.issn | 0036-8075 | |
dc.description.abstractEn | The thermal motion of stiff filaments in a crowded environment is highly constrained and anisotropic; it underlies the behavior of such disparate systems as polymer materials, nanocomposites, and the cell cytoskeleton. Despite decades of theoretical study, the fundamental dynamics of such systems remains a mystery. Using near-infrared video microscopy, we studied the thermal diffusion of individual single-walled carbon nanotubes (SWNTs) confined in porous agarose networks. We found that even a small bending flexibility of SWNTs strongly enhances their motion: The rotational diffusion constant is proportional to the filament-bending compliance and is independent of the network pore size. The interplay between crowding and thermal bending implies that the notion of a filament's stiffness depends on its confinement. Moreover, the mobility of SWNTs and other inclusions can be controlled by tailoring their stiffness. | |
dc.language.iso | en | |
dc.publisher | American Association for the Advancement of Science (AAAS) | |
dc.title.en | Brownian Motion of Stiff Filaments in a Crowded Environment | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1126/science.1197321 | |
dc.description.sponsorshipEurope | Nano-Scale Organization Dynamics and Functions of Synapses: from single molecule tracking to the physiopathology of excitatory synaptic transmission | |
bordeaux.journal | Science | |
bordeaux.page | 1804-1807 | |
bordeaux.volume | 330 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00635202 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00635202v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Science&rft.date=2010-12-24&rft.volume=330&rft.spage=1804-1807&rft.epage=1804-1807&rft.eissn=0036-8075&rft.issn=0036-8075&rft.au=FAKHRI,%20Nikta&MACKINTOSH,%20F.C.&LOUNIS,%20Brahim&COGNET,%20Laurent&PASQUALI,%20Matteo&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |