Show simple item record

hal.structure.identifierDepartment of Chemical and Biomolecular Engineering
hal.structure.identifierThe Smalley Institute for Nanoscale Science and Technology
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorFAKHRI, Nikta
hal.structure.identifierDepartment of Physics and Astronomy [Amsterdam]
dc.contributor.authorMACKINTOSH, F.C.
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorLOUNIS, Brahim
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorCOGNET, Laurent
hal.structure.identifierDepartment of Chemical and Biomolecular Engineering
hal.structure.identifierThe Smalley Institute for Nanoscale Science and Technology
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorPASQUALI, Matteo
dc.date.created2010-09-09
dc.date.issued2010-12-24
dc.identifier.issn0036-8075
dc.description.abstractEnThe thermal motion of stiff filaments in a crowded environment is highly constrained and anisotropic; it underlies the behavior of such disparate systems as polymer materials, nanocomposites, and the cell cytoskeleton. Despite decades of theoretical study, the fundamental dynamics of such systems remains a mystery. Using near-infrared video microscopy, we studied the thermal diffusion of individual single-walled carbon nanotubes (SWNTs) confined in porous agarose networks. We found that even a small bending flexibility of SWNTs strongly enhances their motion: The rotational diffusion constant is proportional to the filament-bending compliance and is independent of the network pore size. The interplay between crowding and thermal bending implies that the notion of a filament's stiffness depends on its confinement. Moreover, the mobility of SWNTs and other inclusions can be controlled by tailoring their stiffness.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.title.enBrownian Motion of Stiff Filaments in a Crowded Environment
dc.typeArticle de revue
dc.identifier.doi10.1126/science.1197321
dc.description.sponsorshipEuropeNano-Scale Organization Dynamics and Functions of Synapses: from single molecule tracking to the physiopathology of excitatory synaptic transmission
bordeaux.journalScience
bordeaux.page1804-1807
bordeaux.volume330
bordeaux.peerReviewedoui
hal.identifierhal-00635202
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00635202v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Science&rft.date=2010-12-24&rft.volume=330&rft.spage=1804-1807&rft.epage=1804-1807&rft.eissn=0036-8075&rft.issn=0036-8075&rft.au=FAKHRI,%20Nikta&MACKINTOSH,%20F.C.&LOUNIS,%20Brahim&COGNET,%20Laurent&PASQUALI,%20Matteo&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record