Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorYAN, Xingyu
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBALLU, Alex
IDREF: 106013637
dc.date.accessioned2022-10-12T14:22:24Z
dc.date.available2022-10-12T14:22:24Z
dc.date.issued2018-07-01
dc.identifier.issn0278-6125en_US
dc.identifier.urioai:crossref.org:10.1016/j.jmsy.2018.07.005
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/158445
dc.description.abstractEnThe aim of tolerance analysis is to find a balance between manufacturing cost and product geometric quality. Earlier research usually considered ideal surface-based deviation models to conduct simulations, which ignore form defects. With the increasing demands on quality control, a skin model shape that includes form defects has its advantages. First, the effects of the chosen geometrical model on the assembly simulation are analyzed; the geometrical models considered are: nominal model, ideal surface-based deviation model, and skin model shape. The importance of form defects and assembly load conditions is highlighted. However, it is not easy to integrate all these factors into tolerance analysis. Difficulties in assembly simulation are discussed, such as the mating between non-ideal surfaces, model balance under external and internal loads, the consistency of simulation results, etc. Based on the analysis, a skin model shape-based tolerance analysis method, which also considers the load and displacement boundary conditions, is proposed. The assembly of the skin model shape is transformed into the objective function of a quadratic optimization problem, links between physical properties and optimization constraints are established. Corresponding simulation results are generated by conducting the optimization iteratively. To illustrate the method and validate its simulation result, various models are used as examples. Lastly, a simplified hand saw model is used as a case study.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enTolerance analysis
dc.subject.enGeometric dimensioning and tolerancing (GD&T)
dc.subject.enSkin model shape
dc.subject.enLinear complementarity condition
dc.title.enTolerance analysis using skin model shapes and linear complementarity conditions
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jmsy.2018.07.005en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
bordeaux.journalJournal of Manufacturing Systemsen_US
bordeaux.page140-156en_US
bordeaux.volume48en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03962972
hal.version1
hal.date.transferred2023-01-30T13:27:55Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Manufacturing%20Systems&rft.date=2018-07-01&rft.volume=48&rft.spage=140-156&rft.epage=140-156&rft.eissn=0278-6125&rft.issn=0278-6125&rft.au=YAN,%20Xingyu&BALLU,%20Alex&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée