Afficher la notice abrégée

hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorDANQUECHIN DORVAL, Antoine
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorMEREDIEU, Céline
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorDANJON, Frederic
dc.date.accessioned2022-10-12T12:59:48Z
dc.date.available2022-10-12T12:59:48Z
dc.date.issued2016
dc.identifier.issn0305-7364
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/157532
dc.description.abstractEn<strong>Background and Aims</strong> Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. <strong>Methods</strong> We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. <strong>Key Results</strong> Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass – stump excluded – than straight trees. <strong>Conclusions</strong> It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.subjectPinus pinaster
dc.subjectbiomechanics
dc.subjectmaximum tensile load
dc.subject.enwindthrow
dc.subject.en3D root architecture
dc.subject.enforest tree
dc.subject.entoppling
dc.subject.entree anchorage
dc.subject.enacclimation
dc.subject.ensoil depth
dc.subject.enflexural stiffness
dc.title.enAnchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs
dc.typeArticle de revue
dc.identifier.doi10.1093/aob/mcw098
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalAnnals of Botany
bordeaux.page747-762
bordeaux.volume118
bordeaux.hal.laboratoriesBioGeCo (Biodiversité Gènes & Communautés) - UMR 1202*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02641547
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02641547v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Annals%20of%20Botany&amp;rft.date=2016&amp;rft.volume=118&amp;rft.issue=4&amp;rft.spage=747-762&amp;rft.epage=747-762&amp;rft.eissn=0305-7364&amp;rft.issn=0305-7364&amp;rft.au=DANQUECHIN%20DORVAL,%20Antoine&amp;MEREDIEU,%20C%C3%A9line&amp;DANJON,%20Frederic&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée