Predicting Vegetation Stratum Occupancy from Airborne LiDAR Data with Deep Learning
KALINICHEVA, Ekaterina
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
See more >
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
KALINICHEVA, Ekaterina
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Biodiversité, Gènes & Communautés [BioGeCo]
CHEHATA, Nesrine
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Institut Polytechnique de Bordeaux [Bordeaux INP]
< Reduce
Laboratoire sciences et technologies de l'information géographique [LaSTIG]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Language
en
Article de revue
This item was published in
International Journal of Applied Earth Observation and Geoinformation. 2022-08, vol. 112, p. 102863
Elsevier
English Abstract
We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to ...Read more >
We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to lower, medium, and higher cover. Our weakly-supervised training scheme allows our network to only be supervised with vegetation occupancy values aggregated over cylindrical plots containing thousands of points which are typically easier to produce than pixel-wise or point-wise annotations. We propose to employ a deep neural network operating on 3D points, and whose prediction are projected onto rasters representing the different vegetation strata. Our method outperforms handcrafted, regression and deep learning baselines in terms of precision by up to 30%, while simultaneously providing visual and interpretable predictions. We provide an open-source implementation along with a dataset of 199 agricultural plots to train and evaluate weakly supervised occupancy regression algorithms.Read less <
Origin
Hal imported