Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierDepartment of Material Science
dc.contributor.authorMALAKHO, Artem
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorFARGIN, Evelyne
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLAHAYE, Michel
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorLAZORYAK, Bogdan
hal.structure.identifierDepartment of Chemistry
dc.contributor.authorMOROZOV, Vladimir
hal.structure.identifierElectron Microscopy for Materials Science [EMAT]
dc.contributor.authorVAN TENDELOO, Gustaaf
hal.structure.identifierLaboratoire de Physico-Chimie Moléculaire [LPCM]
dc.contributor.authorRODRIGUEZ, Vincent
hal.structure.identifierLaboratoire de Physico-Chimie Moléculaire [LPCM]
dc.contributor.authorADAMIETZ, Frédéric
dc.date.issued2006
dc.identifier.issn0021-8979
dc.description.abstractEnGlass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with ~30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi(2) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi(2) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi(3) response of the nanocrystallites that enhances the electric field induced second harmonic generation process.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.subject.enGlass-based composites
dc.subject.envitroceramics
dc.subject.enFrequency conversion
dc.subject.enharmonic generation
dc.subject.enincluding higher-order harmonic generation
dc.subject.enGlasses
dc.subject.enquartz
dc.subject.enNonlinear optical materials
dc.subject.enPolarization and depolarization
dc.subject.enFerroelectricity and antiferroelectricity
dc.title.enEnhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals
dc.typeArticle de revue
dc.identifier.doi10.1063/1.2259816
dc.subject.halChimie/Matériaux
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
bordeaux.journalJournal of Applied Physics
bordeaux.page063103
bordeaux.volume100
bordeaux.issue6
bordeaux.peerReviewedoui
hal.identifierhal-00111077
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00111077v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Applied%20Physics&rft.date=2006&rft.volume=100&rft.issue=6&rft.spage=063103&rft.epage=063103&rft.eissn=0021-8979&rft.issn=0021-8979&rft.au=MALAKHO,%20Artem&FARGIN,%20Evelyne&LAHAYE,%20Michel&LAZORYAK,%20Bogdan&MOROZOV,%20Vladimir&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée