Show simple item record

hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorDAMBOURNET, Damien
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorCHAPMAN, Karena W.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorDUTTINE, Mathieu
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorBORKIEWICZ, Olaf
hal.structure.identifierX-ray Science Division [XSD]
dc.contributor.authorCHUPAS, Peter J.
hal.structure.identifierPHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
dc.contributor.authorGROULT, Henri
dc.date.issued2015
dc.identifier.issn2191-1363
dc.description.abstractEnThe mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.
dc.language.isoen
dc.publisherWiley
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enpair distribution function
dc.subject.enferric fluoride
dc.subject.enanionic partitioning
dc.subject.encathode materials
dc.title.enLithium Insertion Mechanism in Iron-Based Oxyfluorides with Anionic Vacancies Probed by PDF Analysis
dc.typeArticle de revue
dc.identifier.doi10.1002/open.201500031
dc.subject.halChimie
dc.subject.halChimie/Matériaux
bordeaux.journalChemistryOpen
bordeaux.page443-447
bordeaux.volume4
bordeaux.issue4
bordeaux.peerReviewedoui
hal.identifierhal-01170416
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01170416v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ChemistryOpen&rft.date=2015&rft.volume=4&rft.issue=4&rft.spage=443-447&rft.epage=443-447&rft.eissn=2191-1363&rft.issn=2191-1363&rft.au=DAMBOURNET,%20Damien&CHAPMAN,%20Karena%20W.&DUTTINE,%20Mathieu&BORKIEWICZ,%20Olaf&CHUPAS,%20Peter%20J.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record