Afficher la notice abrégée

hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorXIONG, Wei
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorZHOU, Yun Shen
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorHOU, Wen Jia
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGUILLEMET, Thomas
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorGAO, Yang
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLAHAYE, Michel
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLEBRAUD, Eric
hal.structure.identifierDepartment of Mechanical Engineering
dc.contributor.authorXU, S.
hal.structure.identifierDepartment of Mechanical Engineering
dc.contributor.authorWANG, X.
hal.structure.identifierMaterials Science and Technology Division [Oak Ridge]
dc.contributor.authorCULLEN, David A.
hal.structure.identifierMaterials Science and Technology Division [Oak Ridge]
dc.contributor.authorMORE, Karren L.
hal.structure.identifierSchool of Mechanical Engineering
dc.contributor.authorJIANG, Lan
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yong Feng
dc.date.issued2015
dc.description.abstractEnDirect formation of graphene with a controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications but still challenging. Distinguished from the conventional chemical vapor deposition methods, a solid-state rapid thermal processing (RTP) method can achieve high-quality graphene formation on dielectric surfaces without transfer. However, little research is available to elucidate the graphene growth mechanism in the RTP method (heating rate ∼15 °C s−1). Here we show a solid-state transformation mechanism in which a metastable nickel carbide (Ni3C) intermediate phase plays a critical role in transforming amorphous carbon to two dimensional crystalline graphene and contributing to the autonomous Ni evaporation in the RTP process. The formation, migration and decomposition of Ni3C are confirmed to be responsible for graphene formation and Ni evaporation. The Ni3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.title.enSolid-state graphene formation via a nickel carbide intermediate phase
dc.typeArticle de revue
dc.identifier.doi10.1039/C5RA18682J
dc.subject.halChimie/Matériaux
bordeaux.journalRSC Advances
bordeaux.page99037-99043
bordeaux.volume5
bordeaux.issue120
bordeaux.peerReviewedoui
hal.identifierhal-01236172
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01236172v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=RSC%20Advances&rft.date=2015&rft.volume=5&rft.issue=120&rft.spage=99037-99043&rft.epage=99037-99043&rft.au=XIONG,%20Wei&ZHOU,%20Yun%20Shen&HOU,%20Wen%20Jia&GUILLEMET,%20Thomas&SILVAIN,%20Jean-Fran%C3%A7ois&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée