Afficher la notice abrégée

hal.structure.identifierHeilongjiang University [Harbin]
dc.contributor.authorLI, Huan
hal.structure.identifierHeilongjiang University [Harbin]
dc.contributor.authorSUN, Li-Ping
hal.structure.identifierHeilongjiang University [Harbin]
dc.contributor.authorFENG, Qingmao
hal.structure.identifierHeilongjiang University [Harbin]
dc.contributor.authorHUO, Li-Hua
hal.structure.identifierHeilongjiang University [Harbin]
dc.contributor.authorZHAO, Hui
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBASSAT, Jean-Marc.
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorROUGIER, Aline
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorFOURCADE, Sébastien
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGRENIER, Jean-Claude
dc.date.issued2017
dc.identifier.issn1432-8488
dc.description.abstractEnThe electrochemical performance of Pr2NiMnO6 (PNMO)-xCe0.9Gd0.1O1.95 (CGO) (x = 0–40 wt%) composite oxides as intermediate-temperature solid oxide fuel cell (IT-SOFC) cathode materials are evaluated. The electrochemical impedance spectroscopy (EIS) analysis results identify two consecutive electrode processes on the composite cathode. Among the various composites, PNMO-30CGO cathode exhibits the best electrochemical performance with the minimum polarization resistance of 0.23 Ω cm2 and the maximum exchange current density of 75 mA cm−2 at 700 °C in air. These values are almost constant even after 30-h operation. The oxygen reduction reaction (ORR) mechanism studies prove that the major rate-determining step is the charge-transfer process. Introducing CGO significantly improves the charge-transfer process, by increasing the triple phase boundary (TPB) length and oxygen vacancy concentration in the composite cathode.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enSolid oxide fuel cells
dc.subject.enDouble perovskite
dc.subject.enComposite cathode
dc.subject.enOxygen reduction reaction mechanism
dc.title.enInvestigation of Pr2NiMnO6‐Ce0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells
dc.typeArticle de revue
dc.identifier.doi10.1007/s10008-016-3364-7
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Solid State Electrochemistry
bordeaux.page273-280
bordeaux.volume21
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-01441478
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01441478v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Solid%20State%20Electrochemistry&rft.date=2017&rft.volume=21&rft.issue=1&rft.spage=273-280&rft.epage=273-280&rft.eissn=1432-8488&rft.issn=1432-8488&rft.au=LI,%20Huan&SUN,%20Li-Ping&FENG,%20Qingmao&HUO,%20Li-Hua&ZHAO,%20Hui&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée