Afficher la notice abrégée

hal.structure.identifierMatière et Systèmes Complexes [MSC]
dc.contributor.authorMOUSSEAU, Fanny
hal.structure.identifierUnité de Biologie Fonctionnelle et Adaptative [BFA (UMR_8251 / U1133)]
dc.contributor.authorPUISNEY, Chloé
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMORNET, Stéphane
hal.structure.identifierInstitut Jacques Monod [IJM (UMR_7592)]
dc.contributor.authorLE BORGNE, Rémi
dc.contributor.authorVACHER, Annie
dc.contributor.authorAIRIAU, Marc
hal.structure.identifierUnité de Biologie Fonctionnelle et Adaptative [BFA (UMR_8251 / U1133)]
dc.contributor.authorBAEZA-SQUIBAN, Armelle
hal.structure.identifierMatière et Systèmes Complexes [MSC]
dc.contributor.authorBERRET, Jean-Francois
dc.date.issued2017
dc.identifier.issn2040-3364
dc.description.abstractEnStudies have shown that following exposure to particulate matter, the ultrafine fraction (< 100 nm) may deposit along the respiratory tract down to the alveolar region. To assess the effects of nanoparticles in the lungs, it is essential to address the question of their biophysicochemical interaction with the different pulmonary environments, including the lung lining fluids and the epithelia. Here we examine one of these interactive scenarios and study the role of supported lipid bilayers (SLB) on the fate of 40 nm fluorescent silica particles towards living cells. We first study the particle phase behavior in presence of Curosurf ® , a pulmonary surfactant substitute used in replacement therapies. It is found that Curosurf ® vesicles interact strongly with the nanoparticles, but do not spontaneously form SLBs. To achieve this goal, we use sonication to reshape the vesicular membranes and induce the lipid fusion around the particles. Centrifugal sedimentation and electron microscopy are carried out to determine the optimum coating conditions and layer thickness. We then explore the impact of surfactant SLBs on the cytotoxic potential and interactions towards a malignant epithelial cell line. All in vitro assays indicate that SLBs mitigate the particle toxicity and internalization rates. In the cytoplasm, the particle localization is also strongly coating dependent. It is concluded that SLBs profoundly affect cellular interactions and functions in vitro and could represent an alternative strategy for particle coating. The current data also shed some light on potential mechanisms pertaining to the particle or pathogen transport through the air-blood barrier.
dc.description.sponsorshipDéveloppement d'une infrastructure française distribuée coordonnée
dc.description.sponsorshipAssemblage Macromoléculaire Hors-équilibre Compréhension, Contrôle & nouvelles structures
dc.description.sponsorshipInteractions des nanoparticules avec des surfaces mimétiques des poumons et du liquide pulmonaire
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.title.enSupported pulmonary surfactant bilayers on silica nanoparticles: formulation, stability and impact on lung epithelial cells
dc.typeArticle de revue
dc.identifier.doi10.1039/c7nr04574c
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
bordeaux.journalNanoscale
bordeaux.page14967-14978
bordeaux.volume9
bordeaux.issue39
bordeaux.peerReviewedoui
hal.identifierhal-02342489
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02342489v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Nanoscale&amp;rft.date=2017&amp;rft.volume=9&amp;rft.issue=39&amp;rft.spage=14967-14978&amp;rft.epage=14967-14978&amp;rft.eissn=2040-3364&amp;rft.issn=2040-3364&amp;rft.au=MOUSSEAU,%20Fanny&amp;PUISNEY,%20Chlo%C3%A9&amp;MORNET,%20St%C3%A9phane&amp;LE%20BORGNE,%20R%C3%A9mi&amp;VACHER,%20Annie&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée