Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments
Idioma
en
Article de revue
Este ítem está publicado en
Materials Science and Engineering: A. 2018-01, vol. 710, p. 245-250
Elsevier
Resumen en inglés
Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant ...Leer más >
Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and chemical contributions are likely to affect its stability at room temperature and thus the resulting mechanical properties of the steel. The experiments carried out by High Energy X-Ray Diffraction (HEXRD) show unambiguously that internal stresses in austenite originate from martensitic transformation strain and from additional hydrostatic stresses induced during both reheating to partitioning temperature and final cooling. These eigenstrains are attributed to the difference in Coefficients of Thermal Expansion (CTE) between martensite and austenite and are predicted successfully with a purely elastic mean field approach. In the present study, retained austenite is shown to be in compression at room temperature. As a consequence, this state of stress contributes to stabilize retained austenite against a possible strain induced transformation at room temperature and affects the way to determine the carbon content in austenite.< Leer menos
Palabras clave en inglés
Steels
Q&P
Synchrotron
Internal stresses
Austenite
Martensite
Proyecto ANR
Partition du carbone dans les phases ferritiques nanostructurées: cinétiques et microstructures - ANR-14-CE07-0029
Design des Alliages Métalliques pour Allègement des Structures - ANR-11-LABX-0008
Design des Alliages Métalliques pour Allègement des Structures - ANR-11-LABX-0008
Orígen
Importado de HalCentros de investigación