Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGUENÉ-GIRARD, Simon
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorJUBERA, Veronique
hal.structure.identifierIRCER - Axe 4 : céramiques sous contraintes environnementales [IRCER-AXE4]
dc.contributor.authorVIERS, Lucas
hal.structure.identifierIRCER - Axe 4 : céramiques sous contraintes environnementales [IRCER-AXE4]
dc.contributor.authorBOULESTEIX, Rémy
hal.structure.identifierIRCER - Axe 4 : céramiques sous contraintes environnementales [IRCER-AXE4]
dc.contributor.authorMAITRE, Alexandre
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHEINTZ, Jean-Marc
dc.date.issued2020-02
dc.identifier.issn0272-8842
dc.description.abstractEnRare earth niobates (RE3NbO7) are materials that present interesting magnetic [[1], [2], [3]], dielectric [4,5], photocatalytic [6,7], electric or ionic conductivity [[8], [9], [10], [11], [12]] and optical properties [13,14]. Such properties could be related to the crystal structures of RE3NbO7 that exists in three different crystalline forms depending on the ionic radii of the rare earth atoms [3,[15], [16], [17], [18], [19]]. Orthorombic (Pnma) and cubic fluorite pyrochlore (Fdm) structures are found for the largest cations, while the smallest radii RE (Dy, Ho, Er, Tm, Eu, Yb …) crystallize into a defect cubic fluorite structure (Fmm) [15,17]. Rare earth and niobium atoms are statistically distributed on cationic sites, as well as oxygen vacancies on anionic sites. This relative disordered structure leads to peculiar optical properties with a significant broadening of the 4f-4f transitions observed in an Eu-doped Y3NbO7 compound...
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
dc.language.isoen
dc.publisherElsevier
dc.subject.enPhosphate glass
dc.subject.enGlass-ceramic
dc.subject.enYb3+
dc.subject.enLuminescence
dc.subject.enXRD
dc.subject.enY3NbO7
dc.subject.enCeramics
dc.subject.enSintering
dc.subject.enNiobate
dc.subject.enDensification
dc.subject.enCo-precipitation
dc.subject.enliquid route synthesis
dc.title.enLiquid phase synthesis and sintering of Y3NbO7
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ceramint.2020.02.190
dc.subject.halChimie/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
bordeaux.journalCeramics International
bordeaux.page26361-26367
bordeaux.volume46
bordeaux.issue16, Part B
bordeaux.peerReviewedoui
hal.identifierhal-02634762
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02634762v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ceramics%20International&rft.date=2020-02&rft.volume=46&rft.issue=16,%20Part%20B&rft.spage=26361-26367&rft.epage=26361-26367&rft.eissn=0272-8842&rft.issn=0272-8842&rft.au=GUEN%C3%89-GIRARD,%20Simon&JUBERA,%20Veronique&VIERS,%20Lucas&BOULESTEIX,%20R%C3%A9my&MAITRE,%20Alexandre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée