Afficher la notice abrégée

hal.structure.identifierMaterials Science and Engineering Program and Texas Materials Institute
dc.contributor.authorGRUNDISH, Nicholas
hal.structure.identifierDepartment of Chemistry and the Oden Institute for Computational Engineering and Sciences
dc.contributor.authorSEYMOUR, Ieuan
hal.structure.identifierMaterials Science and Engineering Program and Texas Materials Institute
dc.contributor.authorLI, Yutao
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSAND, Jean-Baptiste
hal.structure.identifierDepartment of Chemistry and the Oden Institute for Computational Engineering and Sciences
dc.contributor.authorHENKELMAN, Graeme
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDELMAS, Claude
hal.structure.identifierMaterials Science and Engineering Program and Texas Materials Institute
dc.contributor.authorGOODENOUGH, John B.
dc.date.issued2020
dc.identifier.issn0897-4756
dc.description.abstractEnSodium layered oxide cathodes for rechargeable batteries suffer from Na+ ordering and transition-metal layer gliding that lead to several plateaus in their voltage profile. This characteristic hinders their competitiveness as a viable option for commercial rechargeable batteries. In O′3-layered Na3Ni1.5TeO6 (Na5/6[Na1/6Ni3/6Te2/6]O2), Rietveld refinement and solid-state nuclear magnetic resonance spectroscopy show that there is sodium in the transition-metal layer. This sodium within the transition-metal layer provides cation disorder that suppresses Na+ ordering in the adjacent sodium layers upon electrochemical insertion/extraction of sodium. Although this material shows a reversible O′3 to P′3 phase transition, its voltage versus composition profile is typical of traditional lithium layered compounds that have found commercial success. A Ni2+/3+ redox couple of 3.45 V versus Na+/Na is observed with a specific capacity as high as 100 mAh g–1 on the first discharge at a C/20 rate. This material shows good retention of specific capacity, and its rate of sodium insertion/extraction can be as high as a 2C-rating with particle sizes on the order of several micrometers. The structural nuances of this material and their electrochemical implications will serve as guidelines for designing novel sodium layered oxide cathodes.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.title.enStructural and electrochemical consequences of sodium in the transition-metal layer of O'3-Na3Ni1.5TeO6
dc.typeArticle de revue
dc.identifier.doi10.1021/acs.chemmater.0c03248
dc.subject.halChimie/Matériaux
bordeaux.journalChemistry of Materials
bordeaux.page10035–10044
bordeaux.volume32
bordeaux.issue23
bordeaux.peerReviewedoui
hal.identifierhal-03048617
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03048617v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemistry%20of%20Materials&rft.date=2020&rft.volume=32&rft.issue=23&rft.spage=10035%E2%80%9310044&rft.epage=10035%E2%80%9310044&rft.eissn=0897-4756&rft.issn=0897-4756&rft.au=GRUNDISH,%20Nicholas&SEYMOUR,%20Ieuan&LI,%20Yutao&SAND,%20Jean-Baptiste&HENKELMAN,%20Graeme&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée