Afficher la notice abrégée

hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLI, Dawei
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorXIAO, Zhiyong
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorGOLGIR, Hossein Rabiee
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorJIANG, Lijia
hal.structure.identifierDepartment of Physics
dc.contributor.authorRAJ SINGH, Vijay
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorKERAMATNEJAD, Kamran
hal.structure.identifierDepartment of Physics
hal.structure.identifierSchool of Chemical Sciences
dc.contributor.authorSMITH, Kevin E.
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorHONG, Xia
hal.structure.identifierSchool of Mechanical Engineering
dc.contributor.authorJIANG, Lan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yongfeng
dc.date.issued2017
dc.description.abstractEnTo date, scale-up fabrication of transition metal dichalcogenide (TMD-) based 2D/2D or 2D/3D heterostructures with specific functionalities is still a great challenge. This study, for the first time, reports on the controllable synthesis of large-area and continuous 2D/3D semiconductor/metal heterostructures consisting of monolayer MoS2 and bulk MoO2 with unique electrical and optical properties via one-step, vapor-transport-assisted rapid thermal processing. The temperature-dependent electrical transport measurements reveal that the 2D/3D MoS2–MoO2 heterostructure grown on SiO2/Si substrates exhibits metallic phase, while this heterostructure becomes a low-resistance semiconductor when it is grown on fused silica, which is attributed to the different degrees of sulfurization on different substrates, as being confirmed by surface potential analyses. Photoluminescence measurements taken on the MoS2–MoO2 heterostructures reveal the simultaneous presence of both negative trions and neutral excitons, while only neutral excitons are observed in the monolayer MoS2. The trion-binding energy is determined to be ≈27 meV, and the trion signal persists up to 330 K, indicating significant stability at room temperature. This work not only provides a new platform for understanding the intriguing physics in TMD-based heterostructures but also enables the design of more complicated devices with potential applications in nanoelectronics and nanophotonics.
dc.language.isoen
dc.publisherWiley
dc.subject.enrapid thermal processing
dc.subject.en2D/3D semiconductor/metal heterostructure
dc.subject.entransition metal dichalcogenides
dc.subject.enelectrical transport
dc.subject.enoptical transition
dc.title.enLarge-area 2D/3D MoS2-MoO2 heterostructures with thermally stable exciton and intriguing electrical transport behaviors
dc.typeArticle de revue
dc.identifier.doi10.1002/aelm.201600335
dc.subject.halChimie/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Electronique
bordeaux.journalAdvanced Electronic Materials
bordeaux.page1600335
bordeaux.volume3
bordeaux.issue7
bordeaux.peerReviewedoui
hal.identifierhal-01563568
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01563568v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Electronic%20Materials&rft.date=2017&rft.volume=3&rft.issue=7&rft.spage=1600335&rft.epage=1600335&rft.au=LI,%20Dawei&XIAO,%20Zhiyong&GOLGIR,%20Hossein%20Rabiee&JIANG,%20Lijia&RAJ%20SINGH,%20Vijay&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée