Mostrar el registro sencillo del ítem

hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLI, Da Wei
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorZOU, Qi Ming
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorHUANG, Xi
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorGOLGIR, Hossein Rabiee
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorKERAMATNEJAD, Kamran
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorSONG, Jingfeng
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorXIAO, Zhiyong
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorFAN, Li Sha
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNebraska Center for Materials and Nanoscience
dc.contributor.authorHONG, Xia
hal.structure.identifierSchool of Mechanical Engineering
dc.contributor.authorJIANG, Lijia
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
hal.structure.identifierNebraska Center for Materials and Nanoscience
hal.structure.identifierDepartment of Physics and Astronomy
hal.structure.identifierNational Laboratory for Infrared Physics
dc.contributor.authorSUN, Shuo
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU, Yongfeng
dc.date.issued2017
dc.identifier.issn2040-3364
dc.description.abstractEnIt is known that defects strongly influence the properties of two-dimensional (2D) materials. The controlled creation and removal of defects can be utilized to tailor the optical and electronic responses of these 2D materials for optoelectronic and nanoelectronic applications. In this study, we developed an efficient approach to reversibly control the defect states in mechanically exfoliated graphene and molybdenum disulfide (MoS2) monolayers. The defects were created by aluminium oxide (Al2O3) plasmas and removed by moderate thermal annealing at up to 300 °C. We employed Raman and photoluminescence (PL) as well as electrical characterization to monitor the variation of the defect level in graphene and MoS2. For graphene, Raman spectra indicate that the Al2O3 plasma induced sp3-type defects with a controlled concentration, which have been substantially removed after thermal annealing. A similar trend was also observed in monolayer MoS2, as revealed by the defect-related emission peak (Xb) in the PL spectra. We further showed that the defects induced by the Al2O3 plasma in both 2D materials can be restored to any intended level via annealing under well-controlled conditions. Our work presents a new route to the functional design of the optical and electronic properties of graphene and MoS2-based devices through defect engineering.
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.title.enControlled defect creation and removal in graphene and MoS2 monolayers
dc.typeArticle de revue
dc.identifier.doi10.1039/C7NR01712J
dc.subject.halChimie/Matériaux
bordeaux.journalNanoscale
bordeaux.page8997–9008
bordeaux.volume9
bordeaux.issue26
bordeaux.peerReviewedoui
hal.identifierhal-01686634
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01686634v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanoscale&rft.date=2017&rft.volume=9&rft.issue=26&rft.spage=8997%E2%80%939008&rft.epage=8997%E2%80%939008&rft.eissn=2040-3364&rft.issn=2040-3364&rft.au=LI,%20Da%20Wei&ZOU,%20Qi%20Ming&HUANG,%20Xi&GOLGIR,%20Hossein%20Rabiee&KERAMATNEJAD,%20Kamran&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem