Mostrar el registro sencillo del ítem

hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorFERLUCCIO, Daniella
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorKENNEDY, Blair
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBARCZAK, Sonia
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorPOPURI, Srinivas
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorMURRAY, Claire
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorPOLLET, Michaël
hal.structure.identifierInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery
dc.contributor.authorBOS, Jan-Willem
dc.date.issued2021-04-27
dc.description.abstractEnHalf-Heusler (HH) alloys are an important class of thermoelectric materials that combine promising performance with good engineering properties. This manuscript reports a variable temperature synchrotron x-ray diffraction study of several TiNiSn- and VFeSb-based HH alloys. A Debye model was found to capture the main trends in thermal expansion and atomic displacement parameters. The linear thermal expansion coefficient α(T) of the TiNiSn-based samples was found to be independent of alloying or presence of Cu interstitials with αav = 10.1 × 10−6 K−1 between 400 and 848 K. The α(T) of VFeSb and TiNiSn are well-matched, but NbFeSb has a reduced αav = 8.9 × 10−6 K−1, caused by a stiffer lattice structure. This is confirmed by analysis of the Debye temperatures, which indicate significantly larger bond force constants for all atomic sites in NbFeSb. This work also reveals substantial amounts of Fe interstitials in VFeSb, whilst these are absent for NbFeSb. The Fe interstitials are linked to low thermal conductivities, but also reduce the bandgap and lower the onset of thermal bipolar transport.
dc.language.isoen
dc.subject.enhalf-Heusler
dc.subject.enthermoelectric
dc.subject.enthermal expansion
dc.subject.enthermal conductivity
dc.subject.enTiNiSn
dc.subject.enVFeSb
dc.title.enThermal properties of TiNiSn and VFeSb half-Heusler thermoelectrics from synchrotron x-ray powder diffraction
dc.typeArticle de revue
dc.identifier.doi10.1088/2515-7655/abf41a
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Physics: Energy
bordeaux.page035001 (12 p.)
bordeaux.volume3
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-03228444
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03228444v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physics:%20Energy&rft.date=2021-04-27&rft.volume=3&rft.issue=3&rft.spage=035001%20(12%20p.)&rft.epage=035001%20(12%20p.)&rft.au=FERLUCCIO,%20Daniella&KENNEDY,%20Blair&BARCZAK,%20Sonia&POPURI,%20Srinivas&MURRAY,%20Claire&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem