Show simple item record

hal.structure.identifierPhysique et mécanique des milieux hétérogenes (UMR 7636) [PMMH]
hal.structure.identifierService des Basses Températures [SBT ]
hal.structure.identifierESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014)
dc.contributor.authorBEYSENS, Daniel
hal.structure.identifierService de physique de l'état condensé [SPEC - UMR3680]
dc.contributor.authorFRÖHLICH, Thomas
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierESEME : Équipe du Supercritique pour l'Environnement, les Matériaux et l'Espace : Équipe commune CEA-CNRS (2000-2014)
dc.contributor.authorGARRABOS, Yves
dc.date.issued2011
dc.identifier.issn1539-3755
dc.description.abstractEnWe report experiments with very compressible fluids near the liquid-gas critical point. These experiments are performed (i) under microgravity in low Earth orbit by using SF<sub>6</sub> at liquidlike density and (ii) under Earth's gravity with CO<sub>2</sub> at gaslike density. The sample fluid is filled in an interferometer cell with its walls maintained at constant temperature. In situ thermistors measure the local fluid temperature. One of the thermistors is also used as a heat source to generate heat pulses. With no gravity-induced fluid convection, the evolution of fluid temperature is governed by the balance of heat flux between the thermal boundary layer of the heat source, which compresses the bulk fluid, and the thermal boundary layer at the wall, which expands it. When heat pulses are applied to the fluid under weak or Earth's gravity, a long thermal transient is observed at the end of the heat pulse where the bulk fluid temperature reaches significantly below the initial temperature. This unconventional cooling originates from the fast decompression of the fluid, which is induced by the rapid convectively disappearing hot boundary layer at the heat source, and the persistence of an anomalously thin cold boundary layer convectively induced at the cell wall. This striking phenomenon is observed in a large range of temperature, density, and various thermodynamic conditions. This anomalous cooling effect persists for an appreciable period of time corresponding to the diffusive destruction of the cold boundary layer. We found that the effect is also more pronounced when the free fall acceleration is large. We have analyzed the result by using a simple one-dimensional model with ad hoc convective heat losses.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.subject.enFluids
dc.subject.enLiquid-gas
dc.subject.enCritical point
dc.title.enHeat can cool near-critical fluids
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevE.84.051201
dc.subject.halPhysique [physics]/Mécanique [physics]/Thermique [physics.class-ph]
bordeaux.journalPhysical Review E : Statistical, Nonlinear, and Soft Matter Physics
bordeaux.page051201
bordeaux.volume84
bordeaux.issue5
bordeaux.peerReviewedoui
hal.identifierhal-00643606
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00643606v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Physical%20Review%20E%20:%20Statistical,%20Nonlinear,%20and%20Soft%20Matter%20Physics&amp;rft.date=2011&amp;rft.volume=84&amp;rft.issue=5&amp;rft.spage=051201&amp;rft.epage=051201&amp;rft.eissn=1539-3755&amp;rft.issn=1539-3755&amp;rft.au=BEYSENS,%20Daniel&amp;FR%C3%96HLICH,%20Thomas&amp;GARRABOS,%20Yves&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record