Show simple item record

hal.structure.identifierInstitut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
dc.contributor.authorBOKAS, Georgios
hal.structure.identifierInstitut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
dc.contributor.authorCHEN, Wei
hal.structure.identifierInstitute of Mechanics, Materials and Civil Engineering [Louvain] [IMMC]
dc.contributor.authorHILHORST, Antoine
hal.structure.identifierInstitute of Mechanics, Materials and Civil Engineering [Louvain] [IMMC]
dc.contributor.authorJACQUES, Pascal
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGORSSE, Stéphane
hal.structure.identifierThayer School of Engineering
hal.structure.identifierInstitut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN]
dc.contributor.authorHAUTIER, Geoffroy
dc.date.issued2021-09
dc.identifier.issn1359-6462
dc.description.abstractEnThe fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys formed using 27 common elements. We statistically study how enthalpic and entropic contributions evolve with the number of elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given lattice with the absence of strongly competing intermetallics.
dc.language.isoen
dc.publisherElsevier
dc.title.enUnveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis
dc.typeArticle de revue
dc.identifier.doi10.1016/j.scriptamat.2021.114000
dc.subject.halChimie/Matériaux
bordeaux.journalScripta Materialia
bordeaux.page114000 (5 p.)
bordeaux.volume202
bordeaux.peerReviewedoui
hal.identifierhal-03263540
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03263540v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scripta%20Materialia&rft.date=2021-09&rft.volume=202&rft.spage=114000%20(5%20p.)&rft.epage=114000%20(5%20p.)&rft.eissn=1359-6462&rft.issn=1359-6462&rft.au=BOKAS,%20Georgios&CHEN,%20Wei&HILHORST,%20Antoine&JACQUES,%20Pascal&GORSSE,%20St%C3%A9phane&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record