Status of trivalent copper and charge-transfer excitons in high-Tc cuprates
Language
en
Article de revue
This item was published in
Inorganic Chemistry. 2008, vol. 47, n° 19, p. 8487-8497
American Chemical Society
English Abstract
A chemical bonding approach based on tight-binding cluster and band calculations, taking into account on-site Coulomb repulsion (Hubbard U parameter) to differentiate doubly and singly occupied states, was applied to high-TC ...Read more >
A chemical bonding approach based on tight-binding cluster and band calculations, taking into account on-site Coulomb repulsion (Hubbard U parameter) to differentiate doubly and singly occupied states, was applied to high-TC superconducting cuprates and related compounds. This work provides rational insight and explanations for issues such as (i) the actual oxidation number CuI+ for formally trivalent copper in oxides such as La2Li1/2Cu1/2O4, (ii) the dominant oxygen character of the doping holes in (CuO2)n− planes, (iii) the Mott−Hubbard character of the insulator-to-metal transition triggered by hole doping, leading to an oxygen-to-copper charge transfer of avalanche type, (iv) the occurrence of an excitonic phase with anisotropic Frenkel-type excitons, (v) the role of Coulomb interactions between excitons and between doping holes and their exciton surroundings, and (vi) the on-time pairing of doping holes by means of an “excitonic glue”.Read less <
English Keywords
Cuprates
High-Tc
Copper
Charge transfer
Origin
Hal imported