Show simple item record

hal.structure.identifierLaboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.contributor.authorATZORI, Matteo
hal.structure.identifierLaboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.contributor.authorTRAIN, Cyrille
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHILLARD, Elisabeth A.
hal.structure.identifierMOLTECH-Anjou
dc.contributor.authorAVARVARI, N.
hal.structure.identifierLaboratoire national des champs magnétiques intenses - Toulouse [LNCMI-T]
dc.contributor.authorG.L.J.A., Rikken
dc.date.issued2021
dc.identifier.issn0899-0042
dc.description.abstractEnThe interplay between chirality and magnetic fields gives rise to a cross effect referred to as magnetochiral anisotropy (MChA), which can manifest itself in different physical properties of chiral magnetized materials. The first experimental demonstration of MChA was by optical means with visible light. Further optical manifestations of MChA have been evidenced across most of the electromagnetic spectrum, from terahertz to X-rays. Moreover, exploiting the versatility of molecular chemistry towards chiral magnetic systems, many efforts have been made to identify the microscopic origins of optical MChA, necessary to advance the effect towards technological applications. In parallel, the replacement of light by electric current has allowed the observation of non-reciprocal electrical charge transport in both molecular and inorganic conductors as a result of electrical magneto-chiral anisotropy (eMChA). MChA in other domains such as sound propagation and photo-and electro-chemistry are still in their infancy, with only a few experimental demonstrations, and offer wide perspectives for further studies with potentially large impact, like the understanding of the homochirality of life. After a general introduction to magneto-chiral anisotropy, we give a complete review of all these phenomena, particularly during the last decade.
dc.description.sponsorshipConducteurs Moléculaires Chiraux - ANR-15-CE29-0006
dc.description.sponsorshipApproche Moléculaire de composés multiferroïques nanostructurés - ANR-18-CE09-0032
dc.description.sponsorshipConducteurs mono-composants pour des effts induits par la chiralité - ANR-20-CE06-0023
dc.description.sponsorshipNanocomposites hélicoïdaux pour l'induction de dichroïsme magnéto-chiral - ANR-19-CE09-0018
dc.language.isoen
dc.publisherWiley
dc.subject.enchirality
dc.subject.encoordination chemistry
dc.subject.enmagnetic fields
dc.subject.enoptical properties
dc.subject.endichroism
dc.subject.enelectrical conductivity
dc.title.enMagneto‐chiral anisotropy: From fundamentals to perspectives
dc.typeArticle de revue
dc.identifier.doi10.1002/chir.23361
dc.subject.halChimie/Matériaux
bordeaux.journalChirality
bordeaux.page844-857
bordeaux.volume33
bordeaux.issue12
bordeaux.peerReviewedoui
hal.identifierhal-03402567
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03402567v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chirality&rft.date=2021&rft.volume=33&rft.issue=12&rft.spage=844-857&rft.epage=844-857&rft.eissn=0899-0042&rft.issn=0899-0042&rft.au=ATZORI,%20Matteo&TRAIN,%20Cyrille&HILLARD,%20Elisabeth%20A.&AVARVARI,%20N.&G.L.J.A.,%20Rikken&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record