Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature
DUTTINE, Mathieu
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Leer más >
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
DUTTINE, Mathieu
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
< Leer menos
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX [PHENIX]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Materials Chemistry C. 2014, vol. 2, n° 44, p. 9512-9522
Royal Society of Chemistry
Resumen en inglés
Manganese-doped ZnAl2O4 phosphors were prepared by the Pechini synthesis route and treated at various temperatures from 600 to 1350 °C. The samples were characterized by TEM-EDX, XRD, EPR, and their diffuse reflectance and ...Leer más >
Manganese-doped ZnAl2O4 phosphors were prepared by the Pechini synthesis route and treated at various temperatures from 600 to 1350 °C. The samples were characterized by TEM-EDX, XRD, EPR, and their diffuse reflectance and luminescence properties were investigated. The structural analysis showed the high solubility limit of manganese in this spinel matrix and allowed the determination of the global inversion rate, which characterizes the cation distribution in the A and B sites of the spinel structure. As the annealing temperature increased, this factor decreased leading to a more direct matrix. EPR analysis showed that, besides Mn3+ to Mn2+ reduction, the local environment of Mn2+ cations changed with the annealing temperature, which was also reflected in the evolution of the optical properties. As the annealing temperature increased, the red luminescence related to the presence of divalent manganese in octahedral sites faded and was replaced by a new green emission due to Mn(II) ions located in tetrahedral sites within the spinel structure. For 0.5% Mn-doped ZnAl2O4, this red to green luminescence switch occurred for samples treated between 1200 and 1350 °C. Moreover, the Al-overstoichiometric samples (Mn:ZnAl2.2O4+δ) showed that it is possible to modify the temperature range and the kinetics of this variation in emission wavelength. These tuneable properties suggest that Mn-doped spinels are potential candidates for developing stable and highly sensitive thermal sensors.< Leer menos
Palabras clave en inglés
Luminescence
Solid solution
Inorganic compounds
Proyecto ANR
Matériaux avancés pour capteurs optiques. - ANR-10-BLAN-0820
Orígen
Importado de HalCentros de investigación