Show simple item record

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorVEILLERE, Amélie
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHEINTZ, Jean-Marc
hal.structure.identifierDepartment of Mechanical and Materials Engineering
dc.contributor.authorCHANDRA, Namas
hal.structure.identifierCentre d'élaboration de matériaux et d'études structurales [CEMES]
dc.contributor.authorDOUIN, Joël
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLAHAYE, Michel
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLALET, Grégory
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorVINCENT, Cécile
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
dc.date.issued2012
dc.identifier.issn0025-5408
dc.description.abstractEnThis study focuses on the fabrication, for power electronics applications, of adaptive heat sink material using copper alloys/carbon fibers (CF) composites. In order to obtain composite material with good thermal conductivity and a coefficient of thermal expansion close to the ceramic substrate, it is necessary to have a strong matrix/reinforcement bond. Since there is no reaction between copper and carbon, a carbide element (chromium or boron) is added to the copper matrix to create a strong chemical bond. Composite materials (Cu-B/CF and Cu-Cr/CF) have been produced by a powder metallurgy process followed by an annealing treatment in order to create the carbide at the interphase. Chemical (Electron Probe Micro-Analysis, Auger Electron Spectroscopy) and microstructural (Scanning and Transmission Electron Microscopies) techniques were used to study the location of the alloying element and the carbide formation before and after diffusion. Finally, the thermo-mechanical properties have been measured and a promising composite material with a coefficient of thermal expansion 25% lower than a classic copper/carbon heat sink has been obtained.
dc.language.isoen
dc.publisherElsevier
dc.subject.enComposites
dc.subject.enInterfaces
dc.subject.enThermal conductivity
dc.subject.enThermal expansion
dc.subject.enMicrostructure
dc.title.enInfluence of the interface structure on the thermo-mechanical properties of Cu-X (X = Cr or B)/carbon fiber composites
dc.typeArticle de revue
dc.identifier.doi10.1016/j.materresbull.2011.11.004
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
bordeaux.journalMaterials Research Bulletin
bordeaux.page375-380
bordeaux.volume47
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00658593
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00658593v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20Research%20Bulletin&rft.date=2012&rft.volume=47&rft.issue=2&rft.spage=375-380&rft.epage=375-380&rft.eissn=0025-5408&rft.issn=0025-5408&rft.au=VEILLERE,%20Am%C3%A9lie&HEINTZ,%20Jean-Marc&CHANDRA,%20Namas&DOUIN,%20Jo%C3%ABl&LAHAYE,%20Michel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record