PEDOT:Tos electronic and thermoelectric properties: lessons from two polymerization processes
PERROT, Solène
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
PAWULA, Florent
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
See more >
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
PERROT, Solène
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
PAWULA, Florent
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
HADZIIOANNOU, Georges
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
FLEURY, Guillaume
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
< Reduce
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Language
en
Article de revue
This item was published in
Journal of Materials Chemistry C. 2021, vol. 9, n° 23, p. 7417-7425
Royal Society of Chemistry
English Abstract
In the landscape of π-conjugated polymers, poly(3,4-ethylenedioxythiophene) doped with iron(III) p-toluenesulfonate (PEDOT:Tos) has shown promise as a thermoelectric material for near room temperature applications. Such ...Read more >
In the landscape of π-conjugated polymers, poly(3,4-ethylenedioxythiophene) doped with iron(III) p-toluenesulfonate (PEDOT:Tos) has shown promise as a thermoelectric material for near room temperature applications. Such properties are inherent to its semi-metallic nature when optimally doped leading to high electrical conductivity and a relatively good Seebeck coefficient. Nevertheless, the final thermoelectric properties of PEDOT:Tos are highly influenced by the polymerization pathways and a thorough understanding of the interplay between polymerization processes and thermoelectric properties is needed. Here, PEDOT:Tos thin films with a doping level of 22 ± 2% were produced by in situ polymerization and vapor-phase polymerization and a comparative study was performed in order to investigate the subtle correlations between morphological features and electronic signatures for both types of samples. Accordingly, optimized in situ polymerized PEDOT:Tos films were demonstrated to exhibit higher electrical conductivities (up to 4398 ± 68 S cm−1) and power factors (up to 148 ± 37 μW m−1 K−2), highlighting the importance of the polymerization process on the final thermoelectric properties.Read less <
ANR Project
Advanced Materials by Design - ANR-10-LABX-0042
“Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation” - ANR-10-EQPX-0028
“Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation” - ANR-10-EQPX-0028
Origin
Hal imported