Show simple item record

hal.structure.identifierPhysics of Geological Processes [Oslo] [PGP]
hal.structure.identifierLaboratoire de Géodynamique des Chaines Alpines [LGCA]
dc.contributor.authorRENARD, François
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBERNARD, Dominique
hal.structure.identifierLaboratoire sols, solides, structures - risques [Grenoble] [3SR]
dc.contributor.authorDESRUES, Jacques
hal.structure.identifierLaboratoire de géologie de l'ENS [LGENS]
dc.contributor.authorOUGIER-SIMONIN, Audrey
dc.date.issued2009-08-30
dc.identifier.issn0012-821X
dc.description.abstractEnDuring its propagation in a rock a fracture may cross mechanical heterogeneities, which modify the stress field near the crack tip and therefore may affect the direction of propagation. Pre-existing strong (grains) and weak (pores, microcracks) defects control the final path of the fracture and the amplitude of its out-of-plane fluctuations; they may also control rupture arrest. In situ quantification of the role of heterogeneities on fracture propagation is challenging because of the technical difficulty to image the interior of a 3D medium at high spatial resolution. Here, hydraulic tension fractures were produced in 5% porosity limestone core samples, using a specially designed hydraulic cell. The 3D geometry of the centimeter-scale samples was imaged before and after fracturing, using X-ray computed synchrotron microtomography at a voxel resolution of 4.91×4.91×4.91 μm. The data show that hydraulic fractures propagated by linkage of pores, leading to a macroscopic fracture with well-developed roughness. Moreover, it was possible to estimate that the hydraulic fractures crossed up to 40% more heterogeneities (pores) than if they had propagated into the porous medium by randomly connecting these pores. This demonstrates and quantifies the strong control of local mechanical variations on rupture propagation. A statistical model of fracture propagation is proposed, involving linkage of nearest pores; this model quantitatively reproduces our experimental observation.
dc.language.isoen
dc.publisherElsevier
dc.subject.enX-ray computed microtomography
dc.subject.enhydraulic fracture
dc.subject.enrupture initiation
dc.subject.enfracture propagation
dc.title.en3D imaging of fracture propagation using synchrotron X-ray microtomography
dc.typeArticle de revue
dc.identifier.doi10.1016/j.epsl.2009.06.040
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre/Géophysique [physics.geo-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
dc.subject.halSciences de l'environnement/Milieux et Changements globaux
bordeaux.journalEarth and Planetary Science Letters
bordeaux.page285-291
bordeaux.volume282
bordeaux.issue1-2
bordeaux.peerReviewedoui
hal.identifierinsu-00420255
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-00420255v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth%20and%20Planetary%20Science%20Letters&rft.date=2009-08-30&rft.volume=282&rft.issue=1-2&rft.spage=285-291&rft.epage=285-291&rft.eissn=0012-821X&rft.issn=0012-821X&rft.au=RENARD,%20Fran%C3%A7ois&BERNARD,%20Dominique&DESRUES,%20Jacques&OUGIER-SIMONIN,%20Audrey&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record