Pressure-induced two-step spin transition with structural symmetry breaking: X-ray diffraction, magnetic, and Raman studies
SHEPHERD, Helena
Department of Chemistry
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de chimie de coordination [LCC]
Voir plus >
Department of Chemistry
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de chimie de coordination [LCC]
SHEPHERD, Helena
Department of Chemistry
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de chimie de coordination [LCC]
< Réduire
Department of Chemistry
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Laboratoire de chimie de coordination [LCC]
Langue
en
Article de revue
Ce document a été publié dans
Physical Review B: Condensed Matter and Materials Physics (1998-2015). 2011, vol. 84, n° 14, p. 144107
American Physical Society
Résumé en anglais
We have used single-crystal x-ray diffraction, Raman spectroscopy, and magnetometry to investigate the effect of hydrostatic pressures up to 16 kbar on the molecular spin crossover complex [Fe<sup>II</sup>(bapbpy)(NCS)<s ...Lire la suite >
We have used single-crystal x-ray diffraction, Raman spectroscopy, and magnetometry to investigate the effect of hydrostatic pressures up to 16 kbar on the molecular spin crossover complex [Fe<sup>II</sup>(bapbpy)(NCS)<sub>2</sub>]. A stepped first-order transition from the high-spin (HS) to low-spin (LS) phase was observed upon compression of single-crystal samples. The intermediate phase (IP) is stable between 4 and 11 kbar at room temperature. This phase is characterized by supercell reflections and tripling of the c-axis of the unit cell (C2/c) due to the formation of a periodic [HS-LS-LS] structural motif, as seen in the thermal stepped transition. The pressure-temperature phase diagram reveals an anomalous increase of the thermal hysteresis widths with increasing pressure and the stabilization of the IP across the investigated P-T space.< Réduire
Origine
Importé de halUnités de recherche