About MX3 and MX2 (Mn+ = Mg2+, Al3+, Ti4+, Fe3+; Xp− = F−, O2−, OH−) nanofluorides
Language
en
Article de revue
This item was published in
Journal of Fluorine Chemistry. 2012, vol. 134, p. 35-43
Elsevier
English Abstract
Several nanosized fluoro-compounds have been prepared by microwave-assisted solvothermal routes: Al3+-, Fe3+- and Ti4+-based oxyfluorides with the hexagonal tungsten bronze (HTB) framework, Ti4+-based fluorinated anatase, ...Read more >
Several nanosized fluoro-compounds have been prepared by microwave-assisted solvothermal routes: Al3+-, Fe3+- and Ti4+-based oxyfluorides with the hexagonal tungsten bronze (HTB) framework, Ti4+-based fluorinated anatase, and rutile MgF2. The structural features have been determined using XRD and TEM analyses. The presence of OH− groups substituted for F− ions has been demonstrated for all of these nanofluorides. In Al- and Mg-based nanofluorides, the OH rate can be reduced by F2-direct fluorination. Furthermore, the higher the polarizing power of the cation, the higher the oxygen content. For cation with high formal charge, such as Ti4+ stabilized in a distorted octahedral site, the occurrence of O2−/OH−/F− anions in its vicinity as well as vacancies have to be mentioned. Finally coupling the microwave-assisted solvothermal route with the F2-direct fluorination allow preparing high surface area metal fluorides where the amount of oxygen is noticeable and contribute to create under-coordinated cationic species at the surface which can induce high Lewis acidity.Read less <
English Keywords
Inorganic fluorides
Nanomaterials
Mixed anions
Microwave synthesis
Structures
Powder XRD
Origin
Hal imported