Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierDepartment of Mechanical and Materials Engineering
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorGUILLEMET, Thomas
hal.structure.identifierAxe 1 : procédés céramiques
dc.contributor.authorGEFFROY, Pierre-Marie
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorHEINTZ, Jean-Marc
hal.structure.identifierDepartment of Mechanical and Materials Engineering
dc.contributor.authorCHANDRA, Namas
hal.structure.identifierDepartment of Electrical Engineering
dc.contributor.authorLU YONG, Feng
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorSILVAIN, Jean-François
dc.date.issued2012
dc.identifier.issn1359-835X
dc.description.abstractEnDiamond dispersed copper matrix (Cu/D) composite films with strong interfacial bonding were produced by tape casting and hot pressing without carbide forming additives. The tape casting process offers an original solution to obtain laminated materials with accurate thickness control, smooth surface finish, material net-shaping, scalability, and low cost. This study presents an innovative process of copper submicronic particles deposition onto diamond reinforcements prior to densification by hot pressing. Copper particles act as chemical bonding agents between the copper matrix and the diamond reinforcements during hot pressing, thus offering an alternative solution to traditionnal carbide-forming materials in order to get efficient interfacial bonding and heat-transfer in Cu/D composites. It allows high thermal performances with low content of diamond, thus enhancing the cost-effectiveness of the materials. Microstructural study of composites by scanning electron microscopy (SEM) was correlated with thermal conductivity and thermal expansion coefficient measurements. The as-fabricated films exhibit a thermal conductivity of 455 W m−1 K−1 associated to a coefficient of thermal expansion of 12 × 10−6 °C−1 and a density of 6.6 g cm−3 with a diamond volume fraction of 40%, which represents a strong enhancement relative to pure copper properties (λCu = 400 W m−1 K−1, αCu = 17 × 10−6 °C−1, ρCu = 8.95 g cm−3). The as-fabricated composite films might be useful as heat-spreading layers for thermal management of power electronic modules.
dc.language.isoen
dc.publisherElsevier
dc.subject.enMetal-matrix composites (MMCs)
dc.subject.enInterface
dc.subject.enThermal properties
dc.subject.enPowder processing
dc.title.enAn innovative process to fabricate copper/diamond composite films for thermal management applications
dc.typeArticle de revue
dc.identifier.doi10.1016/j.compositesa.2012.04.015
dc.subject.halChimie/Matériaux
bordeaux.journalComposites Part A: Applied Science and Manufacturing
bordeaux.page1746-1753
bordeaux.volume43
bordeaux.issue10
bordeaux.peerReviewedoui
hal.identifierhal-00727639
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00727639v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composites%20Part%20A:%20Applied%20Science%20and%20Manufacturing&rft.date=2012&rft.volume=43&rft.issue=10&rft.spage=1746-1753&rft.epage=1746-1753&rft.eissn=1359-835X&rft.issn=1359-835X&rft.au=GUILLEMET,%20Thomas&GEFFROY,%20Pierre-Marie&HEINTZ,%20Jean-Marc&CHANDRA,%20Namas&LU%20YONG,%20Feng&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée