Show simple item record

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorMAHEO, Laurent
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorVIOT, Philippe
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBERNARD, Dominique
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCHIRAZI, Ali
hal.structure.identifierCentre de recherches Paul Pascal [CRPP]
dc.contributor.authorCEGLIA, Gaétane
hal.structure.identifierCentre de recherches Paul Pascal [CRPP]
dc.contributor.authorSCHMITT, Véronique
hal.structure.identifierCentre de recherches Paul Pascal [CRPP]
dc.contributor.authorMONDAIN-MONVAL, Olivier
dc.date.issued2012
dc.identifier.issn1359-8368
dc.description.abstractEnThe mechanical properties of cellular materials are still subject to numerous theoretical and experimental investigations. In particular, the impact of cell size on the foam's elastic response has not been studied systematically mainly due to the lack of experimental techniques with which the cell size and relative density of materials can be varied independently. This paper presents the results of a study of the elastic behavior of open-cell foams as a function of relative density and the size of the interconnected, spherical pores. First, the chemical procedure allowed us to produce polystyrene open-cell foams in which the relative density and the average cell diameters were varied independently. The results of compression tests performed on these foams showed an unexpected influence of the cell diameter (at constant relative density) on the elastic response. The analysis of the microstructure of the foam revealed the presence of a complex nanostructure in the edge of the cells that appeared during the synthesis procedure. An analytical model (an extension of the Gibson-Ashby model) is presented, which takes into account the complex multi-scale structure of the foam and accurately describes the observed dependence of the measured Young's moduli on cell size. This approach was confirmed further by a finite element numerical simulation. We concluded that the observed dependence of elastic modulus on cell size was due to the heterogeneous nature of the material that constitutes the walls of the cells.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFoams
dc.subject.enElasticity
dc.subject.enMicrostructures
dc.subject.enComputational modeling
dc.subject.enImage analysis
dc.title.enElastic behavior of multi-scale, open-cell foams
dc.typeArticle de revue
dc.identifier.doi10.1016/j.compositesb.2012.06.006
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halPhysique [physics]/Mécanique [physics]/Matériaux et structures en mécanique [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Matériaux et structures en mécanique [physics.class-ph]
bordeaux.journalComposites Part B: Engineering
bordeaux.pagepp. 172-183
bordeaux.volume44
bordeaux.peerReviewedoui
hal.identifierhal-00746931
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00746931v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composites%20Part%20B:%20Engineering&rft.date=2012&rft.volume=44&rft.spage=pp.%20172-183&rft.epage=pp.%20172-183&rft.eissn=1359-8368&rft.issn=1359-8368&rft.au=MAHEO,%20Laurent&VIOT,%20Philippe&BERNARD,%20Dominique&CHIRAZI,%20Ali&CEGLIA,%20Ga%C3%A9tane&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record