Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorCHARPENTIER PONCELET, Alexandre
dc.contributor.authorLOUBET, Philippe
dc.contributor.authorHELBIG, Christoph
dc.contributor.authorBEYLOT, Antoine
dc.contributor.authorMULLER, Stéphanie
dc.contributor.authorVILLENEUVE, Jacques
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLARATTE, Bertrand
IDREF: 181621169
dc.contributor.authorTHORENZ, Andrea
dc.contributor.authorTUMA, Axel
dc.contributor.authorSONNEMANN, Guido
dc.date.accessioned2022-10-03T11:52:32Z
dc.date.available2022-10-03T11:52:32Z
dc.date.issued2022-09-08
dc.identifier.issn0948-3349en_US
dc.identifier.other10.17605/OSF.IO/CWU3Den_US
dc.identifier.otherhttps://static-content.springer.com/esm/art%3A10.1007%2Fs11367-022-02093-2/MediaObjects/11367_2022_2093_MOESM1_ESM.pdfen_US
dc.identifier.otherhttps://static-content.springer.com/esm/art%3A10.1007%2Fs11367-022-02093-2/MediaObjects/11367_2022_2093_MOESM2_ESM.xlsxen_US
dc.identifier.otherhttps://static-content.springer.com/esm/art%3A10.1007%2Fs11367-022-02093-2/MediaObjects/11367_2022_2093_MOESM3_ESM.xlsxen_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/148342
dc.description.abstractEnThe accessibility to most metals is crucial to modern societies. In order to move towards more sustainable use of metals, it is relevant to reduce losses along their anthropogenic cycle. To this end, quantifying dissipative flows of mineral resources and assessing their impacts in life cycle assessment (LCA) has been a challenge brought up by various stakeholders in the LCA community. We address this challenge with the extension of previously developed impact assessment methods and evaluating how these updated methods compare to widely used impact assessment methods for mineral resource use. Methods Building on previous works, we extend the coverage of the average dissipation rate (ADR) and lost potential service time (LPST) methods to 61 metals. Midpoint characterization factors are computed using dynamic material flow analysis results, and endpoint characterization factors, by applying the market price of metals as a proxy for their value. We apply these methods to metal resource flows from 6000 market data sets along with the abiotic depletion potential and ReCiPe 2016 methods to anticipate how the assessment of dissipation using the newly developed methods might compare to the latter two widely used ones. Results and discussion The updated midpoint methods enable distinguishing between 61 metals based on their global dissipation patterns once they have been extracted from the ground. The endpoint methods further allow differentiating between the value of metals based on their annual average market prices. Metals with a high price that dissipate quickly have the highest endpoint characterization factors. The application study shows that metals with the largest resource flows are expected to have the most impacts with the midpoint ADR and LPST methods, metals that are relatively more expensive have a greater relative contribution to the endpoint assessment. Conclusion The extended ADR and LPST methods provide new information on the global dissipation patterns of 61 metals and on the associated potentially lost value for humans. The methods are readily applicable to resource flows in current life cycle inventories. This new information may be complementary to that provided by other impact assessment methods addressing different impact pathways when used in LCA studies. Additional research is needed to improve the characterization of the value of metals for society and to extend the methods to more resources.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enDissipation
dc.subject.enLosses
dc.subject.enMetals
dc.subject.enMineral resources
dc.subject.enLife cycle impact assessment
dc.subject.enCircularity
dc.title.enMidpoint and endpoint characterization factors for mineral resource dissipation: methods and application to 6000 data sets
dc.typeArticle de revueen_US
dc.identifier.doi10.1007/s11367-022-02093-2en_US
dc.subject.halPlanète et Univers [physics]/Sciences de la Terreen_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalInternational Journal of Life Cycle Assessmenten_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03782790
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Life%20Cycle%20Assessment&rft.date=2022-09-08&rft.eissn=0948-3349&rft.issn=0948-3349&rft.au=CHARPENTIER%20PONCELET,%20Alexandre&LOUBET,%20Philippe&HELBIG,%20Christoph&BEYLOT,%20Antoine&MULLER,%20St%C3%A9phanie&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée