Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLEGREE, Manuel
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorBOBET, Jean-Louis
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMAUVY, Fabrice
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorSABATIER, Jocelyn
IDREF: 05934976X
dc.date.accessioned2022-07-08T09:46:02Z
dc.date.available2022-07-08T09:46:02Z
dc.date.issued2022-06
dc.identifier.issn0360-3199en_US
dc.identifier.urioai:crossref.org:10.1016/j.ijhydene.2022.05.001
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140407
dc.description.abstractEnThis work proposes a new modeling of hydrolysis reaction in simulated seawater solution (35 g/L NaCl) with alloys containing α-Mg and Long Period Stacking Ordered (LPSO) phases. Alloys with different chemical compositions or thermal treatments were synthesized, leading to different (i) microstructures, (ii) α-Mg over LPSO phase fractions or (iii) LPSO type (18R or 14H). Classical nucleation and growth equation is used as an indicator of the reaction mechanisms but a new model is proposed to describe the complex kinetics curves (Vol (H2) = f(t)) obtained. This new model has several advantages: (i) it allows to discriminate the contribution of each phase, (ii) it could be applied to any alloy with phases reacting and (iii) it applies to the whole kinetics curves (i.e. from 0 to 100% yield). It is supported by the comparisons between the different alloys and SEM observations of their microstructure before and after exposure to the seawater solution.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enMagnesium
dc.subject.enLPSO
dc.subject.enHydrolysis
dc.subject.enKinetics modeling
dc.title.enModeling hydrolysis kinetics of dual phase α-Mg/LPSO alloys
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ijhydene.2022.05.001en_US
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifsen_US
bordeaux.journalInternational Journal of Hydrogen Energyen_US
bordeaux.hal.laboratoriesLaboratoire d’Intégration du Matériau au Système (IMS) - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03716578
hal.version1
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Hydrogen%20Energy&rft.date=2022-06&rft.eissn=0360-3199&rft.issn=0360-3199&rft.au=LEGREE,%20Manuel&BOBET,%20Jean-Louis&MAUVY,%20Fabrice&SABATIER,%20Jocelyn&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée