Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorGOODMAN, Sheila M.
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorCHE, Junjin
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorNERI, Wilfrid
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorYUAN, Jinkai
dc.contributor.authorDICHIARA, Anthony B.
dc.date.accessioned2022-06-09T15:58:06Z
dc.date.available2022-06-09T15:58:06Z
dc.date.issued2022
dc.identifier.issn24058297en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/140171
dc.description.abstractEnWith the depletion of fossil resources and the ever-increasing energy demand, it becomes crucial to address the global challenge of sustainable routes to renewable dielectric materials, which can store energy electrostatically for flexible electronics and pulsed power applications. Here, TEMPO-oxidized cellulose nanofibrils with tailored charge density are synthesized and mixed with colloidal poly(vinylidene fluoride) nanoparticles using nontoxic water as solvent to produce flexible and transparent dielectric films. The as-prepared nanomaterials and resulting composite films were extensively characterized. Compared to other biopolymer and ceramic dielectrics, the cellulose-based nanocomposites sandwiched between two thin polyvinyl alcohol layers achieve a high energy density of 7.22 J·cm−3 at breakdown strength of 388 MV·m−1. Furthermore, the stored energy in the laminated composite is released at a rate of 1.60 microseconds, yielding a stable power density of ∼3 MW·cm−3 under an applied field of 300 MW·m−1 over 1000 charge/discharge cycles, which is more than ten times greater than that of biaxially-oriented polypropylene. Significantly, these findings pave the way toward environmentally-benign processing of naturally-derived materials for applications in flexible and transparent energy storage devices.
dc.language.isoENen_US
dc.subject.enCellulose nanofibrils
dc.subject.enDielectric properties
dc.subject.enEnergy storage
dc.subject.enPVDF latex
dc.subject.enBreakdown strength
dc.title.enWater-processable cellulosic nanocomposites as green dielectric films for high-energy storage
dc.title.alternativeEnergy Stor. Mater.
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.ensm.2022.03.047en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalEnergy Storage Materialsen_US
bordeaux.page497-506en_US
bordeaux.volume48en_US
bordeaux.hal.laboratoriesCentre de Recherche Paul Pascal (CRPP) - UMR 5031en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamNanotubes de carbone et graphène (NTG)
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energy%20Storage%20Materials&rft.date=2022&rft.volume=48&rft.spage=497-506&rft.epage=497-506&rft.eissn=24058297&rft.issn=24058297&rft.au=GOODMAN,%20Sheila%20M.&CHE,%20Junjin&NERI,%20Wilfrid&YUAN,%20Jinkai&DICHIARA,%20Anthony%20B.&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée