Fatty acid isoprenoid alcohol ester synthesis in fruits of the African Oil Palm (Elaeis guineensis)
Idioma
EN
Article de revue
Este ítem está publicado en
Phytochemistry. 2021, vol. 185
Resumen en inglés
The African Oil Palm (Elaeis guineensis; family Arecaceae) represents the most important oil crop for food and feed production and for biotechnological applications. Two types of oil can be extracted from palm fruits, the ...Leer más >
The African Oil Palm (Elaeis guineensis; family Arecaceae) represents the most important oil crop for food and feed production and for biotechnological applications. Two types of oil can be extracted from palm fruits, the mesocarp oil which is rich in palmitic acid and in carotenoids (provitamin A) and tocochromanols (vitamin E), and the kernel oil with high amounts of lauric and myristic acid. We identified fatty acid phytyl esters (FAPEs) in the mesocarp and kernel tissues of mature fruits, mostly esterified with oleic acid and very long chain fatty acids. In addition, fatty acid geranylgeranyl esters (FAGGEs) accumulated in mesocarp and kernels to even larger amounts. In contrast, FAPEs and FAGGEs amounts and fatty acid composition in leaves were very similar. Analysis of wild accessions of African Oil Palm from Cameroon revealed a considerable variation in the amounts and composition of FAPEs and FAGGEs in mesocarp and kernel tissues. Exogenous supplementation of phytol or geranylgeraniol to mesocarp slices resulted in the incorporation of these alcohols into FAPEs and FAGGEs, respectively, indicating that they are synthesized via enzymatic reactions. Three candidate genes of the esterase/lipase/thioesterase (ELT) family were identified in the Oil Palm genome. The genes are differentially expressed in mesocarp tissue with EgELT1 showing the highest expression. Geranylgeraniol from FAGGE might be recycled and used as a substrate for the synthesis of carotenoids and tocotrienols during fruit development. Thus, FAPEs and FAGGEs in the mesocarp and kernel of Oil Palm provide an additional metabolic source for fatty acids and phytol or geranylgeraniol, respectively.< Leer menos
Palabras clave en inglés
African oil palm; Arecaceae; Elaeis guineensis; Esterase/lipase/thioesterase-like acyltransferases; Fatty acid geranylgeranyl ester; Fatty acid phytyl ester; Mass spectrometry analysis
Proyecto europeo
European Union’s Horizon 2020 research and innovation programme under grant agreement
Centros de investigación