Speech Emotion Recognition using Time-frequency Random Circular Shift and Deep Neural Networks
Language
en
Communication dans un congrès avec actes
This item was published in
Speech Prosody 2022, 2022-05-23, Lisbonne.
English Abstract
This paper addresses the problem of emotion recognition from a speech signal. Thus, we investigate a data augmentation technique based on circular shift of the input time-frequency representation which significantly enhances ...Read more >
This paper addresses the problem of emotion recognition from a speech signal. Thus, we investigate a data augmentation technique based on circular shift of the input time-frequency representation which significantly enhances the emotion prediction results using a deep convolutional neural network method. After an investigation of the best combination of the method parameters, we comparatively assess several neural network architectures (Alexnet, Resnet and Inception) using our approach applied on two publicly available datasets: eNTERFACE05 and EMO-DB. Our results reveal an improvement of the prediction accuracy in comparison to a more complicated technique of the state of the art based on Discriminant Temporal Pyramid Matching (DCNN-DTPM).Read less <
English Keywords
Speech Emotion Recognition (SER)
Deep Convolutional Neural Networks
Time-frequency
Random Circular Shift (RCS)
Origin
Hal imported