Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorYAO, HUI
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorAZAIEZ, Mejdi
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorXU, Chuanju
dc.date.accessioned2021-12-14T15:31:26Z
dc.date.available2021-12-14T15:31:26Z
dc.date.issued2021-06-01
dc.identifier.issn1815-2406en_US
dc.identifier.urioai:crossref.org:10.4208/cicp.oa-2021-0004
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124169
dc.description.abstractEnIn this paper we propose some efficient schemes for the Navier-Stokes equa- tions. The proposed schemes are constructed based on an auxiliary variable reformu- lation of the underlying equations, recently introduced by Li et al. [20]. Our objective is to construct and analyze improved schemes, which overcome some of the shortcom- ings of the existing schemes. In particular, our new schemes have the capability to capture steady solutions for large Reynolds numbers and time step sizes, while keeping the error analysis available. The novelty of our method is twofold: i) Use the Uzawa algorithm to decouple the pressure and the velocity. This is to replace the pressure- correction method considered in [20]. ii) Inspired by the paper [21], we modify the algorithm using an ingredient to capture stationary solutions. In all cases we ana- lyze a first- and second-order schemes and prove the unconditionally energy stability. We also provide an error analysis for the first-order scheme. Finally we validate our schemes by performing simulations of the Kovasznay flow and double lid driven cav- ity flow. These flow simulations at high Reynolds numbers demonstrate the robustness and efficiency of the proposed schemes
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enNavier-Stokes equations
dc.subject.enauxiliary variable approach
dc.subject.enunconditional stability
dc.subject.enfinite element method.
dc.title.enNew Unconditionally Stable Schemes for the Navier-Stokes Equations
dc.typeArticle de revueen_US
dc.identifier.doi10.4208/cicp.oa-2021-0004en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalCommunications in Computational Physicsen_US
bordeaux.page1083-1117en_US
bordeaux.volume30en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03480422
hal.version1
hal.date.transferred2021-12-14T15:31:28Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Computational%20Physics&rft.date=2021-06-01&rft.volume=30&rft.issue=4&rft.spage=1083-1117&rft.epage=1083-1117&rft.eissn=1815-2406&rft.issn=1815-2406&rft.au=YAO,%20HUI&AZAIEZ,%20Mejdi&XU,%20Chuanju&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée