Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.contributor.authorVALDÉS-PARADA, Francisco J.
dc.contributor.authorBOTTARO, Alessandro
dc.date.accessioned2021-12-09T16:22:28Z
dc.date.available2021-12-09T16:22:28Z
dc.date.issued2021-08-02
dc.identifier.issn0022-1120en_US
dc.identifier.urioai:crossref.org:10.1017/jfm.2021.606
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/124093
dc.description.abstractEnThis work reports on modelling unsteady gas flow in porous media at the macroscopic scale in the slip regime, a topic of interest in a wide range of applications. The slip effect is modelled by means of a Navier-type boundary condition. A macroscopic model is derived from the initial-boundary-value problem governing unsteady, single-phase flow of a Newtonian fluid through homogeneous porous media in the creeping, isothermal and slightly compressible slip regime. For momentum transport, the macroscopic model involves two terms. The first consists of a convolution product between the macroscopic pressure gradient and the temporal derivative of an apparent dynamic permeability tensor; the second accounts for the memory of the initial condition. Both contributions are predicted from the solution of a unique closure problem that is independent of the initial flow configuration and of the macroscopic pressure gradient. The accuracy of the model is assessed by comparisons with direct numerical simulations performed at the pore-scale, which find excellent agreement. The simulations also show that a classical heuristic model, which is the consequence of assuming a separation of time scales between the pore-scale and the macroscale, is inadequate, in general, to correctly predict the macroscopic velocity. Results from this work provide a formal clear insight about unsteady flow in porous media in the slip regime, motivating further theoretical and experimental work.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enLow-Reynolds-number flows: Porous media
dc.subject.enLow-Reynolds-number flows: Stokesian dynamics
dc.subject.enMathematical Foundations: General fluid mechanics
dc.title.enUpscaled model for unsteady slip flow in porous media
dc.typeArticle de revueen_US
dc.identifier.doi10.1017/jfm.2021.606en_US
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifsen_US
bordeaux.journalJournal of Fluid Mechanicsen_US
bordeaux.volume923en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03319093
hal.version1
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2021-08-02&rft.volume=923&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=LASSEUX,%20Didier&VALD%C3%89S-PARADA,%20Francisco%20J.&BOTTARO,%20Alessandro&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée