Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitute of Industrial Science [IIS]
dc.contributor.authorANUFRIEV, Roman
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMAIRE, Jeremie
IDREF: 19427585X
hal.structure.identifierInstitute of Industrial Science [IIS]
dc.contributor.authorNOMURA, Masahiro
dc.date.accessioned2021-10-20T15:36:00Z
dc.date.available2021-10-20T15:36:00Z
dc.date.issued2021-07-07
dc.identifier.issn2166-532Xen_US
dc.identifier.urioai:crossref.org:10.1063/5.0052230
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112850
dc.description.abstractEnPhononic crystals are the acoustic analogs of photonic crystals and aim at manipulating phonon transport using phonon interference in periodic structures. While such periodic structures are typically two-dimensional, many applications require one-dimensional (1D) wire-like or bulk structures instead. In this Research Update, we summarize the past decade of theoretical and experimental studies of coherent control of phonon and heat transport in one-dimensional phononic crystals. At the hypersonic frequencies, phononic crystals successfully found applications in optomechanical devices at the microscale. However, at higher terahertz frequencies, experimentalists struggle to demonstrate that coherent thermal transport at room temperature is possible at length scales of hundreds of nanometers. Although many theoretical works predict a reduction in the thermal conductivity in 1D phononic crystals due to coherent effects, most observations conclude about the incoherent nature of heat conduction at least at room temperature. Nevertheless, experiments on superlattices and carbon nanotubes have demonstrated evidence of coherent heat conduction even at room temperature in structures with the periodicity of a few nanometers. Thus, further miniaturization and improving fabrication quality are currently the main challenges faced by 1D phononic nanostructures.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.title.enReview of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale
dc.typeArticle de revueen_US
dc.identifier.doi10.1063/5.0052230en_US
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]en_US
bordeaux.journalAPL Materialsen_US
bordeaux.page070701en_US
bordeaux.volume9en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issue7en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03388986
hal.version1
hal.date.transferred2021-10-20T15:36:48Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=APL%20Materials&rft.date=2021-07-07&rft.volume=9&rft.issue=7&rft.spage=070701&rft.epage=070701&rft.eissn=2166-532X&rft.issn=2166-532X&rft.au=ANUFRIEV,%20Roman&MAIRE,%20Jeremie&NOMURA,%20Masahiro&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée