Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.relation.isnodouble2cba1939-0178-42bb-af8f-a422ae5bf864*
dc.contributor.authorDESMOULINS, Lucie
dc.contributor.authorCHRETIEN, Chloe
dc.contributor.authorPACCOUD, Romain
dc.contributor.authorCOLLINS, Stephan
dc.contributor.authorCRUCIANI-GUGLIELMACCI, Celine
dc.contributor.authorGALINIER, Anne
dc.contributor.authorLIENARD, Fabienne
dc.contributor.authorQUINAULT, Aurore
dc.contributor.authorGRALL, Sylvie
dc.contributor.authorALLARD, Camille
dc.contributor.authorFENECH, Claire
dc.contributor.authorCARNEIRO, Lionel
dc.contributor.authorMOUILLOT, Thomas
dc.contributor.authorFOURNEL, Audren
dc.contributor.authorKNAUF, Claude
dc.contributor.authorMAGNAN, Christophe
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorFIORAMONTI, Xavier
dc.contributor.authorPENICAUD, Luc
dc.contributor.authorLELOUP, Corinne
dc.date.accessioned2021-09-24T14:25:03Z
dc.date.available2021-09-24T14:25:03Z
dc.date.issued2019-02
dc.identifier.issn2212-8778en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112390
dc.description.abstractEnOBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.
dc.description.sponsorshipRôle des connexines astrocytaires dans le mécanisme de détection hypothalamique du glucose : implication sur le contrôle nerveux du métabolisme énergétique - ANR-11-BSV1-0007en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enDRP1
dc.subject.enGlucose sensing
dc.subject.enHypothalamus
dc.subject.enMitochondria
dc.subject.enMitochondrial fission
dc.subject.enROS signaling
dc.title.enMitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.molmet.2018.11.007en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed30553770en_US
bordeaux.journalMolecular metabolismen_US
bordeaux.page166-177en_US
bordeaux.volume20en_US
bordeaux.hal.laboratoriesNutriNeurO (Laboratoire de Nutrition et Neurobiologie Intégrée) - UMR 1286en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINRAEen_US
bordeaux.teamPsychoneuroimmunologie et Nutrition: Approches expérimentales et cliniquesen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDMinistère de l'Enseignement supérieur, de la Recherche et de l'Innovationen_US
bordeaux.identifier.funderIDInstitut de Franceen_US
bordeaux.identifier.funderIDAgence Nationale de la Rechercheen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecular%20metabolism&rft.date=2019-02&rft.volume=20&rft.issue=1&rft.spage=166-177&rft.epage=166-177&rft.eissn=2212-8778&rft.issn=2212-8778&rft.au=DESMOULINS,%20Lucie&CHRETIEN,%20Chloe&PACCOUD,%20Romain&COLLINS,%20Stephan&CRUCIANI-GUGLIELMACCI,%20Celine&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée