Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorCLAYTON, Kevin
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorDELPECH, Jean-Christophe
dc.contributor.authorHERRON, Shawn
dc.contributor.authorIWAHARA, Naotoshi
dc.contributor.authorERICSSON, Maria
dc.contributor.authorSAITO, Takashi
dc.contributor.authorSAIDO, Takaomi C.
dc.contributor.authorIKEZU, Seiko
dc.contributor.authorIKEZU, Tsuneya
dc.date.accessioned2021-09-09T12:06:19Z
dc.date.available2021-09-09T12:06:19Z
dc.date.issued2021-03-22
dc.identifier.issn1750-1326en_US
dc.identifier.urioai:crossref.org:10.1186/s13024-021-00440-9
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112191
dc.description.abstractEnAbstract Background Recent studies suggest that microglia contribute to tau pathology progression in Alzheimer’s disease. Amyloid plaque accumulation transforms microglia, the primary innate immune cells in the brain, into neurodegenerative microglia (MGnD), which exhibit enhanced phagocytosis of plaques, apoptotic neurons and dystrophic neurites containing aggregated and phosphorylated tau (p-tau). It remains unclear how microglia promote disease progression while actively phagocytosing pathological proteins, therefore ameliorating pathology. Methods Adeno-associated virus expressing P301L tau mutant (AAV-P301L-tau) was stereotaxically injected into the medial entorhinal cortex (MEC) in C57BL/6 (WT) and humanized APP mutant knock-in homozygote (AppNL-G-F) mice at 5 months of age. Mice were fed either chow containing a colony stimulating factor-1 receptor inhibitor (PLX5622) or control chow from 4 to 6 months of age to test the effect of microglia depletion. Animals were tested at 6 months of age for immunofluorescence, biochemistry, and FACS of microglia. In order to monitor microglial extracellular vesicle secretion in vivo, a novel lentiviral EV reporter system was engineered to express mEmerald-CD9 (mE-CD9) specifically in microglia, which was injected into the same region of MEC. Results Expressing P301L tau mutant in the MEC induced tau propagation to the granule cell layer of the hippocampal dentate gyrus, which was significantly exacerbated in AppNL-G-F mice compared to WT control mice. Administration of PLX5622 depleted nearly all microglia in mouse brains and dramatically reduced propagation of p-tau in WT and to a greater extent in AppNL-G-F mice, although it increased plaque burden and plaque-associated p-tau+ dystrophic neurites. Plaque-associated MGnD microglia strongly expressed an EV marker, tumor susceptibility gene 101, indicative of heightened synthesis of EVs. Intracortical injection of mE-CD9 lentivirus successfully induced microglia-specific expression of mE-CD9+ EV particles, which were significantly enhanced in Mac2+ MGnD microglia compared to Mac2− homeostatic microglia. Finally, consecutive intracortical injection of mE-CD9 lentivirus and AAV-P301L-tau into AppNL-G-F mice revealed encapsulation of p-tau in microglia-specific mE-CD9+ EVs as determined by super-resolution microscopy and immuno-electron microscopy. Discussion Our findings suggest that MGnD microglia hyper-secrete p-tau+ EVs while compacting Aβ plaques and clearing NP tau, which we propose as a novel mechanistic link between amyloid plaque deposition and exacerbation of tau propagation in AppNL-G-F mice.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enMicrotubule-associated protein tau
dc.subject.enNeuritic plaque
dc.subject.enTauopathy
dc.subject.enAdeno-associated virus
dc.subject.enAlzheimer’s disease
dc.subject.enAmyloid precursor protein
dc.subject.enAmyloid-beta peptide
dc.subject.enExtracellular vesicles
dc.subject.enHumanized mouse model
dc.subject.enLentivirus
dc.subject.enMicroglia
dc.title.enPlaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model
dc.typeArticle de revueen_US
dc.identifier.doi10.1186/s13024-021-00440-9en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed33752701en_US
bordeaux.journalMolecular Neurodegenerationen_US
bordeaux.volume16en_US
bordeaux.hal.laboratoriesNutriNeurO (Laboratoire de Nutrition et Neurobiologie Intégrée) - UMR 1286en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINRAEen_US
bordeaux.teamPsychoneuroimmunologie et Nutrition: Approches expérimentales et cliniquesen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDBrightFocus Foundationen_US
bordeaux.identifier.funderIDAlzheimer's Associationen_US
bordeaux.import.sourcedissemin
hal.identifierhal-03259493
hal.version1
hal.date.transferred2021-09-09T12:06:25Z
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecular%20Neurodegeneration&rft.date=2021-03-22&rft.volume=16&rft.issue=1&rft.eissn=1750-1326&rft.issn=1750-1326&rft.au=CLAYTON,%20Kevin&DELPECH,%20Jean-Christophe&HERRON,%20Shawn&IWAHARA,%20Naotoshi&ERICSSON,%20Maria&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée