Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLE, Tien Dung
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorZHANG, L.
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorKUHN, Alexander
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorMANO, Nicolas
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, Gerard
IDREF: 070191875
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2021-09-06T15:38:42Z
dc.date.available2021-09-06T15:38:42Z
dc.date.issued2019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112123
dc.description.abstractEnMultiscale modelling of coupled diffusion and serial reduction reactions in porous micro-electrodes is developed in this work. The governing cou- pled equations at the pore scale in the case of two reduction reactions, as for instance, the serial reaction pathway for oxygen reduction to hydrogen peroxide and subsequently to water, are upscaled to obtain a macroscopic model describing the process in an effective medium at the electrode scale. This new macroscopic model, obtained from the volume averaging technique, is validated through comparisons with results of 3D Direct Numerical Sim- ulations of the pore-scale model. The excellent agreement between the two approaches proves the relevance of the macroscale model which reduces to a 1D problem in the configuration under concern, providing a drastic speedup in the computation of the solution. Numerical results obtained with the macroscopic model are successfully compared to experimental data obtained by voltammetry with porous gold electrodes of different thicknesses operating the serial pathway of oxygen reduction to water. Results highlight the ability of this new macroscopic model to predict the electrode behavior and show that the second reduction reaction of hydrogen peroxide plays an important role in the current production.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enPorous micro-electrode
dc.subject.enOxygen reduction reaction
dc.subject.enDiffusion reaction macroscopic model
dc.subject.enUpscaling
dc.subject.enVolume averaging method
dc.title.enUpscaled model for diffusion and serial reduction pathways in porous ​electrodes
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jelechem.2019.113325en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalJournal of Electroanalytical Chemistryen_US
bordeaux.volume855en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.institutionBordeaux INP
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-02368380
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Electroanalytical%20Chemistry&rft.date=2019&rft.volume=855&rft.au=LE,%20Tien%20Dung&ZHANG,%20L.&KUHN,%20Alexander&MANO,%20Nicolas&VIGNOLES,%20Gerard&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée