Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorPELANCONI, M.
dc.contributor.authorBARBATO, M.
dc.contributor.authorZAVATTONI, S.
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, Gerard
IDREF: 070191875
dc.contributor.authorORTONA, A.
dc.date.accessioned2021-09-06T14:46:45Z
dc.date.available2021-09-06T14:46:45Z
dc.date.issued2019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/112114
dc.description.abstractEnThe present study is focused on the application of a ceramic tubular high temperature heat exchanger with engineered cellular architectures. Thermal design and optimization to maximise the radiative heat transfer has been investigated both experimentally and computationally. Numerical models were designed involving various arrangements of cells and their different sizes (while the total heat transfer area remains constant). They were 3D-printed by Stereolithography (SLA) and subsequently sintered. Heat transfer tests were performed both with a high temperature pressure drop test and by CFD simulations on 2D and 3D models. The computational results agree with the experimental data. We found that radial heat transfer in a tube increases by 160% to 280%, if a ceramic lattice is inserted, in respect of an empty tube. Moreover, the arrangement of cells and their size significantly influences the radiative heat transfer showing (for a given array) its top performances above 773 K. Geometries with large cells outside and small cells inside in the radial direction allow radiation to penetrate better through the core of the porous body. With this engineered ceramic lattices it is possible to reduce the tube length by one third to obtain more compact heat exchangers than an empty tubular solution.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enPorous ceramic
dc.subject.enAlumina
dc.subject.enHeat exchange
dc.subject.enAdditive manufacturing
dc.title.enThermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.matdes.2018.107539en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalMaterials and Designen_US
bordeaux.volume163en_US
bordeaux.hal.laboratoriesLaboratoire des Composites Thermo Structuraux (LCTS) - UMR 5801en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionCEAen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03432758
hal.version1
hal.date.transferred2021-11-17T12:55:58Z
hal.exporttrue
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20and%20Design&rft.date=2019&rft.volume=163&rft.au=PELANCONI,%20M.&BARBATO,%20M.&ZAVATTONI,%20S.&VIGNOLES,%20Gerard&ORTONA,%20A.&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée