Métadonnées
Afficher la notice complètePartager cette publication !
Controlled Nanoscale Topographies for Osteogenic Differentiation of Mesenchymal Stem Cells
Langue
EN
Article de revue
Ce document a été publié dans
ACS Applied Materials & Interfaces. 2019, vol. 11, n° 9, p. 8858-8866
Résumé en anglais
Nanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by the ...Lire la suite >
Nanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by the inability to precisely control geometries, especially at high spatial resolutions and across practically large areas. In this paper, we demonstrate well-controlled and periodic nanopillar arrays of silicon and investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers, were realized using the self-assembly of block copolymer colloids. Immunofluorescence and quantitative polymerase chain reaction measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Further, the differentiation of hMSCs was found to be dependent on the age of the donor. While osteoblastic differentiation was found to be promoted by the pillars with larger diameters and heights independent of donor age, they were found to be different for different spacings. Pillar arrays with smaller pitch promoted differentiation from a young donor, while a larger spacing promoted those of an old donor. These findings can contribute for the development of personalized treatments of bone diseases, namely, novel implant nanostructuring depending on patient age.< Réduire
Mots clés en anglais
Osteogenic differentiation
Cells
Silicon
Genetics
Differentiation
Unités de recherche