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Flow cytometry is a high-throughput technology used to quan-
tify multiple surface and intracellular markers at the level of a sin-
gle cell. This enables us to identify cell sub-types, and to determine
their relative proportions. Improvements of this technology allow us
to describe millions of individual cells from a blood sample using
multiple markers. This results in high-dimensional datasets, whose
manual analysis is highly time-consuming and poorly reproducible.
While several methods have been developed to perform automatic
recognition of cell populations, most of them treat and analyze each
sample independently. However, in practice, individual samples are
rarely independent, especially in longitudinal studies. Here we ana-
lyze new longitudinal flow-cytometry data from the DALIA-1 trial
which evaluates a therapeutic vaccine against HIV, by proposing a
new Bayesian nonparametric approach with Dirichlet process mix-
ture (DPM) of multivariate skew t-distributions to perform model
based clustering of flow-cytometry data. DPM models directly esti-
mate the number of cell populations from the data, avoiding model
selection issues, and skew t-distributions provides robustness to out-
liers and non-elliptical shape of cell populations. To accommodate
repeated measurements, we propose a sequential strategy relying on
a parametric approximation of the posterior. We illustrate the good
performance of our method on simulated data and on an experimen-
tal benchmark dataset. This sequential strategy outperforms all other
methods evaluated on the benchmark dataset, and leads to improved
performance on the DALIA-1 data.
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1. Introduction. Flow cytometry is a high-throughput technology used
to quantify multiple surface and intracellular markers at the level of single
cell. More specifically, cells are stained with multiple fluorescently-conjugated
monoclonal antibodies directed to cell surface receptors (such as CD4) or
intracellular markers (such as cytokines) to determine the type of cell, their
differentiation, and their functionality. With the improvement of this tech-
nology leading currently to the measurement of up to 18 markers at the same
time (using 18 colors for flow cytometry), multi-parametric description of
millions of individual cells can be generated.

Analysis of such data is generally performed manually. This results in
analyses that are: i) poorly reproducible (Aghaeepour et al., 2013), ii) ex-
pensive (highly time-consuming) and consequently iii) only focused on spe-
cific cell populations (i.e. specific combination of markers), ignoring other
cell populations. There has been an effort in the recent years to offer auto-
mated solutions to overcome these limitations (Lo, Brinkman and Gottardo,
2008; Aghaeepour et al., 2013; Gondois-Rey et al., 2016). Quite a lot of dif-
ferent methodological approaches have been proposed to perform automatic
recognition of cell populations from flow cytometry data. Clustering meth-
ods related to the k-means were proposed, including L2kmeans (Aghaeepour
et al., 2013), flowMeans (Aghaeepour et al., 2011). Model based cluster-
ing methods relying on finite mixture models such as flowCust/merge (Lo,
Brinkman and Gottardo, 2008; Finak et al., 2009), FLAME (Pyne et al.,
2009), SWIFT (Naim et al., 2014) were also proposed, as well as dimension
reduction methods such as MM and MMPCA (Sugár and Sealfon, 2010),
SamSPECTRAL (Zare et al., 2010), FLOCK (Qian et al., 2010). All those
approaches require the number of cell populations to be fixed in advance,
determining its optimal value according to various criteria. Finally, several
authors (Chan et al., 2008; Lin et al., 2013; Cron et al., 2013; Dundar et al.,
2014) proposed nonparametric Bayesian mixture models of Gaussian distri-
butions, that directly estimate this number of cell populations. All these
methods, except those of Lin et al. (2013), of Cron et al. (2013) and of
Dundar et al. (2014), were evaluated by Aghaeepour et al. (2013).

However, there is still room for improvement, especially in the estimation
of the suitable number of cell populations, as well as in the identification of
rare cell populations. In addition, most of those previous approaches have
been proposed for single sample analysis, except for Cron et al. (2013) who
proposed to use hierarchical Dirichlet process mixture (DPM) of Gaussian
distribution models to analyze multiple samples simultaneously. Yet in the
case of repeated measurements of flow cytometry data, it can be useful to
perform a sequential analysis as the samples are acquired (samples are often
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collected across several time points in a population of patients). In such a
case, one would want to use previously acquired samples as prior informa-
tion in the analysis of a new sample. In this paper, the proposed approach
includes a strategy of sequential approximations of the posterior distribu-
tion for multiple data samples, presented in Section 3.2. Our approach offers
three advantages: i) it quantifies the uncertainty of the posterior clustering,
ii) it can make use of prior knowledge to inform on the structure of the data,
potentially building up on previous analyses, and iii) it allows the analysis
of multiple samples without requiring to process all the data at once, alle-
viating both the computational burden and the necessity for all data to be
readily available before any analysis can be performed.

The automatic recognition of cell populations from flow cytometry data is
a difficult task which can be seen as an unsupervised clustering problem (Lo,
Brinkman and Gottardo, 2008). It is characterized by two big challenges.
First, the total number of cell populations to identify is unknown. Second,
the empirical distributions of the populations are heavily skewed, even when
optimal transformation of the data is applied (Lo, Brinkman and Gottardo,
2008; Pyne et al., 2009; Lo and Gottardo, 2012), and the data generally
present many outliers. To address all these points together, our approach
considers a Bayesian nonparametric model-based approach, where the flow
cytometry data are assumed to be drawn from a DPM of multivariate skew-
t distributions. First, this approach enables the number of cell populations
to be inferred from the data and avoids the challenging problem of model
selection. Second, it has been demonstrated that the Gaussian assumption
for the parametric shape of a cell population fits poorly flow cytometry
data (Mosmann et al., 2014). Indeed, even after state-of-the-art transfor-
mation of raw cytometry data, such as the biexponential transformation
(Finak et al., 2010), cell population distributions are typically skewed. Pyne
et al. (2009) have showed the advantages of the skew t-distribution (Azzalini
and Capitanio, 2003) for modeling cell populations in flow cytometry data.
Numerous parameterizations have been proposed for the multivariate skew
t-distribution (Lee and McLachlan, 2013; Murray, Browne and McNicholas,
2014; Azzalini et al., 2016; McLachlan and Lee, 2016), most notably the
restricted and the unrestricted multivariate skew t-distributions (denoted
rMST and uMST respectively) which are generalizations of the skew nor-
mal distribution (Azzalini and Valle, 1996) with a heavier tail (making it
more robust to outliers). Lee and McLachlan (2016) recently proposed the
canonical fundamental skew t-distribution (CFUST) as a generalization that
encompasses both the rMST and the uMST. To avoid identifiability issues
associated with the uMST and the CFUST (Lee and McLachlan, 2016), in
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this work we will adopt the rMST formulation, and in the remainder of this
article we will be referring to the rMST formulation when mentioning the
skew t-distribution. Frühwirth-Schnatter and Pyne (2010) proposed a finite
mixture model of rMST. We extend this model to the infinite mixture case
in a Bayesian nonparametric framework. Of interest, quantifying the un-
certainty around the estimated partition is straightforward in this Bayesian
paradigm, from the posterior distribution of the partition. While a skewed
distribution could be fitted either by a skew t or by a mixture of Gaussians,
using the latter requires to estimate separately the overall number of clusters
and the skewness. On the contrary, our proposed approach jointly estimates
the two thus taking into account the uncertainty associated with both. Fur-
thermore, the use of a Bayesian framework enables the use of informative
priors. In the case of repeated measurements for instance, we propose to se-
quentially estimate the posterior partition of flow cytometry using posterior
information from time point t as prior information for time point t` 1.

The proposed method is evaluated on simulated data and on a benchmark
clinical dataset from Aghaeepour et al. (2013), and is applied to analyze
an original experimental longitudinal dataset from a phase I HIV clinical
trial DALIA-1 (featuring depending time-course data where the sequential
approach is of particular interest). The method is implemented in the R
package NPflow, available on the CRAN at https://CRAN.R-project.org/
package=NPflow.

2. Statistical Model.

2.1. Motivation and problem set-up.

2.1.1. Motivating example. Our motivating example for developing a se-
quential model-based clustering approach for longitudinal flow cytometry
data comes from the DALIA-1 trial. DALIA-1 is a phase I trial for a thera-
peutic vaccine candidate against HIV (Lévy et al., 2014). This vaccine candi-
date was based on ex-vivo generated interferon-α dendritic cells loaded with
HIV-1 lipo-peptides, and activated with lipopolysaccharide. The primary ob-
jectives of this trial were to evaluate the safety of the vaccine strategy and to
evaluate the immune response. As part of this trial, 12 HIV positive patients
had their cellular populations quantified repeatedly by flow-cytometry, gen-
erating an important amount of data, for which comprehensive manual gat-
ing would take several months. Hence we aimed at developing an automatic
gating approach suitable for longitudinal measurements.

https://CRAN.R-project.org/package=NPflow
https://CRAN.R-project.org/package=NPflow
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2.1.2. Problem set-up and notations. We first consider a single sample
per subject, i.e. one data matrix where each row represents a cell and each
column contains the fluorescence intensities for one marker measured by the
flow cytometer. The case of the sequential estimation of multiple datasets
will be addressed in Section 3.2. We let yc P R

d denote the data, c “
1, . . . , C corresponding to the vector of fluorescence intensities measured
for the cell c. Typically, the observations yc have been transformed (to help
visualization and gating) from the raw measurements of fluorescence through
a biexponential or Box-Cox transformation (Finak et al., 2010). We assume
that these observations are independent and identically distributed (i.i.d.)
from some unknown distribution F :

(2.1) yc|G
i.i.d.
„ F for c “ 1 . . . , C

where F is a mixture of distributions:

(2.2) F pyq “

ż

Θ
fθpyqGpdθq

with fθpyq is a known probability density function, parameterized by θ P Θ
a set of parameters, and defining the shape of a cluster. G is the unknown
mixing distribution, which carries the weights and locations of the mixture
components. In a parametric approach, G “

řK
k“1 πkδθk where πk is the

weight of the kth mixture component. Maximum likelihood or Bayesian esti-
mates of F can be derived for such models (Biernacki, Celeux and Govaert,
2000). In a nonparametric perspective (where the number of clusters is un-
known) G is written as an infinite sum of atoms: G “

ř`8
k“1 πkδθk . The

Dirichlet process is a conjugate prior for the infinite atomic discrete distri-
bution, which makes it very useful for unsupervised clustering approaches.

2.2. Dirichlet process mixture of skew t-distributions.

2.2.1. Dirichlet process mixture. We assume that the random mixing dis-
tribution G is drawn from a Dirichlet process (Ferguson, 1973):

(2.3) G „ DPpα,G0q

where DPpα,G0q denotes the Dirichlet process of concentration parameter
α ą 0 and base probability distribution G0. A draw G „ DPpα,G0q is
almost surely discrete (Sethuraman, 1994) and gives a nonparametric mix-

ing distribution G “
ř`8
k“1 πkδθk with θk

i.i.d.
„ G0, and π “ pπkqk“1,2,...

drawn from a so-called “stick-breaking” distribution, written as the Griffiths-
Engen-McCloskey (GEM) distribution (Pitman, 2006). The model defined
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by Equations (2.1), (2.2) and (2.3) yields the following hierarchical model
known as a Dirichlet process mixture model (Lo, 1984; Escobar and West,
1995; Teh, 2010) with a Gamma hyperprior on α:

α|a, b „ Gammapa, bq(2.4a)

π
ˇ

ˇα „ GEMpαq(2.4b)

θk
ˇ

ˇG0 „ G0 for k “ 1, 2, . . .(2.4c)

`c
ˇ

ˇπ „ Multpπq for c “ 1, 2, . . . , C(2.4d)

yc
ˇ

ˇ `c, pθkq „ fθ`c for c “ 1, 2, . . . , C(2.4e)

where `c is the latent cluster-allocation for cell c. G0 tunes the prior infor-
mation about the cluster locations while α tunes the prior distribution on
the overall number of clusters K that will be uncovered within C cells. In
particular we have ErK|Cs “

řC´1
c“0

α
α`c .

2.2.2. The multivariate skew t-distribution. Frühwirth-Schnatter and Pyne
(2010) rely on Azzalini and Valle (1996)’s parametrization of the multivari-
ate skew normal (SN ) to propose a truncated normal random-effects model
representation of this distribution: Y “ ξ `ψZ ` ε with Z „ Nr0,`8rp0, 1q
and ε „ N p0,Σq. If X „ SN p0,Ω, ηq and W „ Gammapν2 ,

ν
2 q, (Azzalini

and Capitanio, 2003) show that Y “ ξ ` 1?
W
X then follows a multivariate

skew t-distribution: Y „ ST pξ,Ω,η, νq. Following Frühwirth-Schnatter and
Pyne (2010), we write the density of a multivariate skew t-distribution as:

fST py; ξ,Ω,η, νq “2fT py; ξ,Ω, νqTν`d

˜

η1ω´1py ´ ξq

d

ν ` d

ν `Qy

¸

(2.5)

with ω “
a

DiagpΩq, Qy “ py´ξq
1Ω´1py´ξq, fT the multivariate Student

t-distribution density, and Tν`d the cumulative distribution function of the
standard univariate Student’s t-distribution with ν ` d degrees of freedom.
This parametrization of the skew t is referred as the restricted multivariate
skew t distribution by Lee and McLachlan (2013), and it admits the following
random-effect model representation:

(2.6) Y “ ξ `ψ
Z
?
W
`

ε
?
W

2.2.3. Dirichlet process mixture of multivariate skew t-distributions. Com-
bining model (2.4) with a random-effects model representation (2.6) of the
skew t-distribution, we propose the following model:

α|a, b „ Gammapa, bq(2.7a)

π
ˇ

ˇα „ GEMpαq(2.7b)
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for k “ 1, 2, . . .

ξk,ψk,Σk, νk „ G0(2.7c)

for c “ 1, 2, . . . , C

`c
ˇ

ˇπ „ Multpπq(2.7d)

γc
ˇ

ˇ `c, tνku „ Gamma
´ν`c

2
,
ν`c
2

¯

(2.7e)

sc
ˇ

ˇ γc „ Nr0,`8r
ˆ

0,
1

γc

˙

(2.7f)

yc
ˇ

ˇ `c, γc, sc, pξk,ψk,Σkq „ N
ˆ

ξ`c `ψ`csc,
1

γc
Σ`c

˙

(2.7g)

where G0 is the product of a structured normal-inverse-Wishart (sNiW )
and of a prior on ν: G0 “ sNiW pξ0, ψ0, B0,Λ0, λ0qP0,ν .

2.3. Discussion on the model assumptions. In model (2.7), the base dis-
tribution parameter G0 conveys the prior information on the cluster para-
metric shape. For the parameters ξk, ψk and Σk, we have conditional conju-
gacy with the random-effects model representation using joint priors taking
the form of a structured normal-inverse-Wishart distribution. See Online
Supplement A for details (Hejblum et al., 2018). Frühwirth-Schnatter and
Pyne (2010) pointed out that the prior on Σk can have a big impact on
the posterior number of clusters. Indeed, setting the scale of the prior on
Σk too small will result in an inflated number of clusters in the posterior,
whereas too large values tend to cluster all the observations together. Adding
a Wishart hyperprior on Σk, that carries on conjugacy with the inverse-
Wishart, enables us to reduce this impact of the prior (Frühwirth-Schnatter
and Pyne, 2010; Huang and Wand, 2013). Assuming prior independence be-
tween each νk and also from the three parameters mentioned above, we can
use any of the three priors proposed in Juárez and Steel (2010) for instance
(such as an objective Jeffrey’s prior, see Online Supplement A (Hejblum
et al., 2018)).

3. Estimation.

3.1. Posterior Estimation via Gibbs sampling. For making inference on
the model (2.7), MCMC methods can be used to sample the partition t`1:Cu

and the corresponding cluster parameters tθ˚ku “ ttξ˚ku, tψ
˚
ku, tΣ

˚
ku, tν

˚
k uu

from the marginal posterior distribution. Extending results from Frühwirth-
Schnatter and Pyne (2010) and Caron, Teh and Murphy (2014), it is possible
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to implement an efficient and valid partially collapsed Gibbs sampler with
a Metropolis-Hastings step (van Dyk and Park, 2008; van Dyk and Jiao,
2015). The use of slice sampling (Neal, 2003; Kalli, Griffin and Walker, 2011)
enables the straightforward parallelization of the latent allocation sampling
(thanks to conditional conjugacy) in such an MCMC algorithm (even in the
skew normal and skew t cases), which can lead to substantial computation
speed up when the number of observations C (cells) per sample increases.
Each iteration of our Gibbs sampler proceeds in the following order (details
are provided in Online Supplement A (Hejblum et al., 2018)):

1. Update the concentration parameter α given the previous partition
t`1:Cu using the data augmentation technique from Escobar and West
(1995).

2. Update the mixing distribution G given α, tξku, tψku, tΣku and the
base distribution G0 via slice sampling.

3. For c “ 1, . . . , C update the individual skew parameter sc given tξku,
tψku, tΣku and the new `c.

4. Update tξku, tψku, tΣku given the base distribution G0, the updated
partition t`1:Cu and the updated individual skew parameters ts1:Cu.

5. Finally jointly update the degrees of freedom and the individual scale
factors ptνku, tγ1:Cuq in an Metropolis-Hastings (M-H) within Gibbs
step. First an M-H step is performed to update the tνku where the
tγ1:Cu are integrated out, immediately followed by a Gibbs step to
sample the tγ1:Cu from their full conditional distribution. This ensures
that the reduced conditioning performed in the M-H step does not
change the stationary distribution of the Markov chain (van Dyk and
Jiao, 2015) – see Online Supplement A (Hejblum et al., 2018).

3.2. Sequential Posterior Approximation. In flow cytometry experiments,
it is common to actually have multiple datasets ypiq (with i “ 1, . . . , I) cor-
responding to multiple individuals or repeated measurements of the same
individual. In such cases, it is of interest to use previous time points or
previous samples results as prior information, in order to leverage all the
information available to estimate the mixture. However, incorporating prior
information into Dirichlet process mixture models is not straightforward
(Kessler, Hoff and Dunson, 2015). Here we propose to use the posterior
MCMC draws obtained from previous dataset ypiq as prior information to
analyze the next dataset ypi`1q. To do so, first we consider the hierarchical
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model using all observations from both ypiq and ypi`1q at once :

α „ Gammapa, bq(3.1a)

G|α „ DP pα,G0q(3.1b)

ypiq,ypi`1q|G
i.i.d.
„

ż

Θ
fθp¨qdGpθq(3.1c)

We are interested in estimating ppG|ypiq,ypi`1qq9ppG|ypiqqppypi`1q|Gq. The
idea is to first approximate ppG|ypiqq by a Dirichlet process through MCMC
draws from the model described in 2.1:

(3.2) ppG|ypiqq »

ż

DP pG;α,G1qGammapα; a1, b1qdα

where G1, a1, b1 are parameters to be estimated from the MCMC approx-
imation of the true posterior: i) pa1 and pb1 can be taken as MLE estimates

from the MCMC samples αpjq ; ii) xG1 is a parametric approximation of the
posterior mixing distribution G1 (the true posterior is not suitable for being
directly plugged in as a base distribution parameter of another DP as it
is nonparametric). In the case of a skew t-distribution mixture model, we
approximate G1 with the following joint distribution: G1 » psNiW,P0,νq

where P0,ν is the chosen prior for the skew t-distribution degrees of free-
dom. To estimate G1, we estimate the maximum a posteriori (MAP) from
the posterior MCMC samples (see Online Supplement B (Hejblum et al.,
2018)).

Now using this posterior parametric approximation, we have the same
hierarchical model as before but conditional on ypiq:

α|ypiq „ Gammap pa1, pb1q(3.3a)

G|α,ypiq „ DP pα,xG1q(3.3b)

ypi`1q|G,ypiq
i.i.d.
„

ż

Θ
fθp¨qdGpθq(3.3c)

Note that under this approximate posterior model, the cluster parameters
θ˚k are i.i.d. according from G1. Such an approach can be iterated a number
of times, if for instance several time points are observed, iteratively approx-
imating the successive posteriors. This approach allows us to finally account
for all the previous information in the mixture model estimation. This model
hypothesizes that all the data are originating from the same mixture model
and as more data are acquired, the successive posteriors will concentrate:
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since the overall posterior is our target, this concentration effect is desired.
When the data are anticipated to be non stationary, which might be the
case in real life applications, we propose a forgetful factor by adding a vague
component in the base distribution of the prior.

3.3. Point estimate of the clustering. Getting a representation of the
partition posterior distribution is difficult (Medvedovic and Sivaganesan,
2002). One can use the maximum a posteriori, i.e. using the point estima-
tion from the MCMC sample that maximizes the posterior density. However
this ignores all the information about the uncertainty around the partition
provided by the Bayesian approach.

Another way is to rather consider a co-clustering posterior probability (or
similarity) matrix ζ on each pair pc, dq of observations. Such a matrix can
be estimated by averaging the co-clustering matrices from all the explored
partitions in the posterior MCMC draws:

(3.4) pζcd “
1

N

N
ÿ

i“1

δ
`
piq
c `

piq
d

where N is the number of MCMC draws from the posterior, i the MCMC
iteration, and δkl “ 1 if k “ l, 0 otherwise. An optimal partition point esti-
mate tp`1:Cu can then be derived in regard of this similarity matrix through
stochastic search with the explored partitions in the posterior MCMC draws
(Dahl, 2006), by using a pairwise coincidence loss function (Lau and Green,
2007) such as the one proposed by Binder (1978, 1981) which optimizes the
Rand index (Fritsch and Ickstadt, 2009):

(3.5) tp`1:Cu “ arg min
t`
piq
1:CuP

!

t`
p1q
1:Cu,...,t`

pNq
1:C u

)

C´1
ÿ

c“1

C
ÿ

d“c`1

2
´

δ
`
piq
c `

piq
d

´ pζcd

¯2

The computational complexity of this approach however is of the order
OpNC2q due to the necessity of computing all the similarity matrices.

A different optimal partition point estimate t˜̀1:Cu can also be derived
using the F-measure as our loss function. The F-measure is widely used as
a way to summarize the accordance between 2 methods, one being considered
as a reference (gold-standard). It is the harmonic mean of the precision and
recall:

(3.6) F “ 2PrRe

Pr `Re

In order to use the F-measure to evaluate our clustering method, we rely on
the definition proposed in the online methods from Aghaeepour et al. (2013).



SEQUENTIAL DPMMST FOR CYTOMETRY 11

In this unsupervised clustering setting, the precision Pr is the number of
cells correctly assigned to a given cluster divided by the total number of
cells assigned to that cluster (also called Positive Predictive Value). The
recall Re is the number of cells correctly assigned to a given cluster divided
by the number of cells that should be assigned to this cluster according to
the gold-standard. Since in our problem the labels of the different clusters
are exchangeable, the F-measure is computed for each combination of the
reference clusters and the predicted clusters. Let G “ tg1, . . . , gmu be a set
of m reference clusters and H “ th1, . . . , hnu be set of n predicted clusters.
For each combination pair of a reference cluster gq and a predicted cluster
hr, the F-measure is computed as follows:

(3.7) Prphr, gqq “
|gq X hr|

|hr|
and Rephr, gqq “

|gq X hr|

|gq|

(3.8) Fphr, gqq “
2Prpgq, hrqRepgq, hrq

Prpgq, hrq `Repgq, hrq

This F-measure is comprised in r0, 1s and the closer it is to 1 the better the
agreement is between the predicted cluster and the reference cluster. The
total F-measure for a predicted partition H given a gold-standard G is then
defined as the weighted sum of the best matched F-measure:

(3.9) FtotpH,Gq “
1

řm
q“1 |gq|

m
ÿ

q“1

|gq| max
rPt1,...,nu

Fphr, gqq

This total F-measure is again between 0 and 1, and the closer it is to 1
the better the predicted partition agrees with the gold-standard. The opti-
mal partition point estimate in respects of this F-measure is then obtained
with the partition that maximizes its average F-measure over all the other
explored partitions in the posterior MCMC draws:

(3.10) t˜̀1:Cu “ arg max
t`
piq
1:CuP

!

t`
p1q
1:Cu,...,t`

pNq
1:C u

)

1

N

N
ÿ

j“1
j‰i

Ftot
´

t`
piq
1:Cu, t`

pjq
1:Cu

¯

Note the F-measure is computed here only between sampled partitions, and
a gold-standard partition is unnecessary.

4. Simulation Study.
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4.1. Weakly informative prior. First, to assess the performance of the
Dirichlet process mixture of skew t distributions model in a simple clustering
case, 100 simulations in 2-dimensions were performed. In each simulation,
10,000 observations were drawn from 5 distinct clusters representing respec-
tively 50%, 29.9%, 15%, 5%, and 0.1% of the data. After 20,000 MCMC
iterations (18,000 iterations burnt and a thining of 20 gave 100 partitions
sampled from the posterior; the chain was initialized with 30 clusters), we
compared the partition point estimate obtained from our approach with the
true clustering of the simulated data through the resulting mean F-measure.
When the clustering problem is well characterized, i.e. when the true clus-
ters are well separated (Tibshirani, Walther and Hastie, 2001), the median
F-measure was 0.998. When considering overlapping clusters, i.e. when the
true clustering is not entirely recoverable, our approach was nevertheless
able to maintain good performance with a median F-measure of 0.895. Fig-
ure 1 shows an example of the partition point estimate obtained for one
of those simulation runs in both cases, where one can see that NPflow is
able to correctly recover the 5 clusters, including the extremely small one of
0.1% (green diamond). Of course, if this extremely small cluster was not well
separated from larger clusters in Figure 1B, the data would hardly contain
any evidence of its presence and the model would likely not recover it. As
a comparison, k-means only reached a F-measure of 0.920 and 0.823 in the
well-separated and overlapping scenarios respectively, in spite of having the
correct number (5) of true clusters specified.

Comparison between skew-t and Gaussian kernels. Figure 2 illustrates the
improvement due to the use of a skew t kernel over a Gaussian kernel in
a nonparametric mixture model. Figures 2A and 2C both show that the
F-measure is significantly better with a skew t kernel than with a Gaussian
kernel for well-separated and overlapping settings respectively, while Fig-
ures 2B and 2D both show that skew t kernels allow to accurately recover
the true number of clusters in a majority of cases for well-separated and
overlapping settings respectively. Both criteria also highlight the increased
difficulty in the overlapping setting as the clustering problem becomes less
well characterized.

4.2. Sequential posterior approximation plugged-in as informative prior.
To illustrate how the sequential posterior approximation strategy compares
to the standard weakly informative prior setting, we ran simulations where
we considered two samples derived from the same infinite mixture model.
The first sample is simulated for a time t, and the second sample at t`1. As
all observations originate from the exact same distribution, regardless of the
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Fig 1. Partition point estimate from one of the 100 2-dimensional simulations with
weakly informative prior (10,000 observations with 5 clusters representing respectively
50%, 29.9%, 15%, 5% and 0.1% of the data). A: well separated clusters ; B: overlapping
clusters

sample, the hypothesis of the sequential posterior approximation strategy is
satisfied. One of the major gain observed is the time to convergence for the
partition. Using an informative prior derived from the sample at time t to
estimate the partition of the sample from t ` 1 makes it more than three
time faster to converge according to the Gelman-Rubin statistics.

In further simulations, we also investigated the performance of this se-
quential posterior approximation strategy. As opposed to using the stan-
dard weakly informative prior strategy, it shows substantial gains when the
amount of information brought by the prior is substantial compared to the
amount available from the data at time t` 1 alone. As the amount of infor-
mation available at time t ` 1 increases, the gain from using this strategy
can become less noticeable, as shown using the F-measure in Figure 3. But
even when the number of observations available at time t` 1 is the same as
at time t, the accuracy for rare cell populations is still improved by using
an informative prior. This is not necessary visible at the scale of the total
F-measure, because it is masked by the larger clusters. However, when com-
puting a limited F-measure, that only takes into account smaller clusters,
the use of an informative prior in this sequential strategy seems to always im-
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Fig 2. Comparison of a Gaussian kernel versus a skew t kernel. A, B: well separated
clusters ; C,D: overlapping clusters

prove the clustering accuracy for smaller clusters (see Supplementary Figure
S1 in Online Supplement C (Hejblum et al., 2018)).

5. Application to real datasets.

5.1. Benchmark dataset. The Graft versus Host Disease (GvHD) dataset
is a public dataset that was first analyzed (manually gated) in Brinkman
et al. (2007), with the objective of identifying a cellular signature that cor-
relates or predicts the Graft versus Host disease. These GvHD data were
used as benchmark data in the FlowCAP challenge (Aghaeepour et al.,
2013). Flow cytometry data was collected for 12 samples, and original man-
ual gates are being regarded as the true cell clustering (actually a con-
sensus over eight different manual operators). In an attempt to mitigate
further the well known reproducibility issues with manual gating (Ge and
Sealfon, 2012; Aghaeepour et al., 2013), only the most concordant clusters
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Fig 3. Mean F-measure according to the number of observations available at time t ` 1,
while 1,000 observations are available at time t, over 300 simulations

between the eight gatings (i.e. with an F-measure above 0.8) were used
for comparison with the automated results, as was done in Aghaeepour
et al. (2013). The data were downloaded from the FlowCAP project web-
site [http://flowcap.flowsite.org/] as part of the FlowCAP-I challenge [http:
//flowcap.flowsite.org/codeanddata/FlowCAP-I.zip]. Table 1 shows the perfor-
mance of our proposed approach NPflow on this dataset, compared to the
other approaches reviewed by Aghaeepour et al. (2013). The F-measure is
computed for all samples available for a given dataset and the mean over all
samples is reported, as well as a bootstrap 95% confidence interval. No al-
gorithm is performing significantly better than NPflow thus placing NPflow
among the top methods for automatic gating. Additionally, we compared the
use of a skew t kernel by NPflow with the use of a Gaussian kernel (denoted
NPflowG in Table 1), the latter reaching a mere 0.61 F-measure on average
thus demonstrating the benefit of the skew t distributions for modeling real
flow-cytometry data.

Thanks to its use of sequential information, the sequential posterior model
would ideally improve results by analyzing each individual sample sequen-
tially. The GvHD benchmark data are not longitudinal but, as long as the
different samples are similar enough, one can expect an improvement. On
this benchmark, our sequential approach NPflow-seq reaches a mean F-
measure of 0.89 (0.85, 0.94) compared to a value of 0.85 (0.80, 0.90) with
the standard NPflow model (Table 1). Of note, the only other approach not
analyzing the samples independently, and that relies on a hierachical Dirich-
let process Gaussian mixture model (HDPGMM), only reaches a value of

http://flowcap.flowsite.org/
http://flowcap.flowsite.org/codeanddata/FlowCAP-I.zip
http://flowcap.flowsite.org/codeanddata/FlowCAP-I.zip
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Table 1
Mean F-measures across all the 12 samples from the GvHD benchmark dataset

Method F-measure˚

NPflow 0.85 (0.80, 0.90)
NPflow-seqM 0.89 (0.85, 0.94)
NPflowG 0.61 (0.57, 0.66)

ADICyt: 0.81 (0.72, 0.88)

CDP: 0.52 (0.46, 0.58)

FLAME: 0.85 (0.77, 0.91)

FLOCK: 0.84 (0.76, 0.90)

flowClust/Merge: 0.69 (0.55, 0.79)

flowMeans: 0.88 (0.82, 0.93)

FlowVB: 0.85 (0.79, 0.91)

L2kmeans: 0.64 (0.57, 0.72)

MM: 0.83 (0.74, 0.91)

MMPCA: 0.84 (0.74, 0.93)

SamSPECTRAL: 0.87 (0.81, 0.93)

SWIFT: 0.63 (0.56, 0.70)

HDPGMM;M 0.35 (0.30, 0.39)

˚95% Confidence Intervals are calculated on 10,000 bootstrap samples of the F-measures.
Mmethods that do not analyze the 12 samples independently.
:estimates from Aghaeepour et al. (2013).
;estimates are from Johnsson, Wallin and Fontes (2016).

0.35 (0.30, 0.39) Cron et al. (2013); Johnsson, Wallin and Fontes (2016).
This illustrates that integrating all samples in a simultaneous model does
not necessarily yield better results (e.g. if the global model across samples
is misspecified or not flexible enough). For the GvHD benchmark dataset,
our sequential strategy thus exhibits the highest F-measure compared to
standard NPflow and to HDPGMM, and also to competing unsupervised
automatic gating methods evaluated in Aghaeepour et al. (2013) that how-
ever analyze each sample independently. It is worth noting that since our
sequential strategy performs sequential approximations of the posterior and
provides intermediate results for each sample, the order in which observa-
tions are included can have an impact (especially for the first sample). Here
we analyzed the GvHD samples in their original order as provided by their
identifiers in FlowCAP-I (from 001 to 012).

5.2. Original DALIA-1 data: a longitudinal real data study. We applied
our method to analyze an original dataset from DALIA-1, a phase I trial
evaluating a therapeutic vaccine against HIV (Lévy et al., 2014). For our
purpose here, we are interested in the 12 HIV positive patients who had
their cellular populations quantified at 18 time points during the trial. More
specifically, we focused on two time points (at week 24 and week 26 of the
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trial) immediately following antiretroviral treatment (HAART) interruption
which took place at week 24. Following this interruption, the increase of
viral replication is associated with changes in cell populations (Thiébaut
et al., 2005; Lévy et al., 2012). Here we especially looked at the CD4+
effector T-cells, defined as CD45RA+CD27- among the CD3+CD4+ cells
(Larbi and Fulop, 2014), that are one of the first cell populations to be af-
fected during the viral rebound (Lévy et al., 2012). Since flow-cytometry
measurements were repeated at each time point for each patient, we used
the sequential strategy at week 26, in the hope to use the information from
week 24 to better identify the CD4+ effector T-cell population at the next
time point. Figure 4 illustrates the overall efficiency gain at week 26 from
using the sequential strategy. The average limited F-measure (considering
available manual gating as gold-standard) on those 12 samples is 0.58 for
NPflow with a non-informative prior, and increases to 0.63 with the se-
quential strategy. By comparison, flowMeans (the second best method on
the benchmark GvHD dataset) gives an average limited F-measure of 0.49
(see Online Supplement D for details). We also compared our approach to
the HDPGMM proposed by Cron et al. (2013) that is specifically focus-
ing on small cell populations (even if it had the lowest F-measure on the
benchmark dataset - see Table 1). In spite of this example representing its
ideal use-case, it performed slightly worse than our approach giving an av-
erage limited F-measure of 0.62 (see Online Supplement D for more details
(Hejblum et al., 2018)). Figure 5 gives an example of a patient for who the
sequential strategy was especially improving the identification of the CD4+
effector T-cells. In this case, the percentage of CD4+ effector T-cells was
estimated at 31.7 by the manual gating, at 7.6 by NPflow, and at 38.1 by
the sequential strategy. Figure 6 shows the slight increase (of about 2%) of
CD4+ effector T-cell proportions after treatment interruption (see Online
Supplement D for more details (Hejblum et al., 2018)).

In addition to providing a point estimate of the partition, our method also
quantifies the uncertainty around the posterior clustering through posterior
co-clustering probabilities. Figure 7 displays such a co-clustering posterior
probability matrix where we can clearly identify four core clusters, with
some uncertainty between two overlapping clusters that both belong to the
CD4 effector T-cell population (with moderate and high expression of the
CD45RA marker, respectively).

6. Discussion. We analyzed longitudinal flow cytometry data from the
DALIA-1 trial, focusing on the CD4+ effector T-cell population among 12
HIV positive patients. Compared to state-of-the-art automatic gating ap-
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proaches, our sequential strategy using Dirichlet process mixtures of multi-
variate skew t-distributions allowed a better recovery of the effector T-cell
population after a meaningful perturbation of this targeted population fol-
lowing HAART interruption, highlighting their expected increase.

Our proposed method extends the classical multivariate Dirichlet process
Gaussian mixture model to multivariate skew t-distribution mixtures, based
on Frühwirth-Schnatter and Pyne (2010) parametrization of the restricted
multivariate skew t-distribution (Lee and McLachlan, 2013). Automatic gat-
ing of cell populations from flow cytometry data is an open research prob-
lem and the proposed approach features two important characteristics for
this task: i) it avoids the difficult issue of model selection by estimating
directly the number of components in the mixture ; ii) it uses skew and
heavy tailed distributions in the form of skew t-distributions, of which the
skew normal and the normal are particular cases. Further domain-knowledge
can be incorporated in the proposed model by specifying more informative
priors on the Dirichlet process parameters for instance. Thanks to the use
of the rMST formulation of the skew t, we avoid the identifiability issues
mentioned by Lee and McLachlan (2016). Estimation of the pairwise pos-
terior co-clustering probabilities allows to quantify the uncertainty about
the posterior partition, and an optimal point estimate of the clustering is
provided by minimizing a cost function in regards to the average posterior
co-clustering matrix. We have developed and implemented an efficient col-
lapsed Metropolis within Gibbs sampler for estimating such models. One of
the advantages of our proposed sampler is the absence of label switching
issue, as it uses directly the partition of the data without having to deal
with labels (Jasra, Holmes and Stephens, 2005). The computational cost of
fitting our model is linear in the number of observations as well as in the
number of clusters, whilst the computational cost of the partition point es-
timate depends of the optimal criterion chosen. The use of state-of-the-art
MCMC techniques along with inner parallelization allow us to mitigate the
computational cost that comes with such approaches on large data. As an
indication of runtime, around 3,000 MCMC iterations can be run on aver-
age for a real dataset of around 30,000 observations over 6 dimensions, using
one Intel R© Xeon R© x5675 processor for one hour. Besides, instead of using
a partially collapse Gibbs sampler algorithm, it could be of interest to also
investigate the use of sequential Monte-Carlo algorithms, especially for the
sequential modeling strategy or other possible dynamic extensions of the
model proposed here (Caron et al., 2008, 2017).

In case of repeated measurements of flow cytometry data, we propose to
use sequential parametric approximations of the posterior as refined infor-
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mative priors. The proposed sequential analysis strategy enables to analyze
each sample sequentially, as the data are acquired. It does not require to
wait for the last sample to perform the automatic gating nor to analyze all
data at once, but it still uses available prior knowledge. This contrasts with
hierarchical extensions of the Dirichlet Process Mixture Model such as those
proposed by Cron et al. (2013) or Dundar et al. (2014), where the complete
dataset must be analyzed at once. This sequential strategy allows one to
analyze the samples as they are acquired, which can be useful in clinical
trials where there are often intermediate analyses for instance. Moreover
in large studies the size of the data can make it challenging to analyze all
samples at once, and such a sequential approach then makes practical sense
(Huang and Gelman, 2005). Futhermore, this use of sequentially informed
priors does not face the usual complications of cluster matching arising when
an algorithm is run on each sample separately (Cron et al., 2013). In our
simulation study, this sequential posterior approximation strategy improves
the fit of the model. In addition, such a strategy exhibits accelerated con-
vergence and greater accuracy for small clusters, as long as the different
samples are similar enough. Besides, the parametric prior can also be spec-
ified to inform the model with expert knowledge, e.g. to favor a range for
the expected number of clusters. On real flow-cytometry, data we showed
that the sequential strategy also improves the clustering performances. On
the benchmark dataset, it outperformed all other methods investigated in
by Aghaeepour et al. (2013), and in the DALIA-1 trial, the sequential strat-
egy also improved the automatic gating results. It is worth noting however
that in other cases, for instance if the data distributions were too different
between samples, the sequential posterior model would not necessarily im-
prove the clustering results, and could even gave a diminished F -measure
compared to the non sequential strategy.

Manual gating is still considered the gold-standard when evaluating an
automatic gating strategy on real flow cytometry data. Yet one should keep
in mind that manual gating has reproducibility issues, often resulting in a
partial and subjective clustering (Ge and Sealfon, 2012; Welters et al., 2012;
Aghaeepour et al., 2013; Gondois-Rey et al., 2016). Therefore using manual
gating as the gold-standard might not be actually the best way to assess
the performance of automatic gating algorithms on real data, because of its
inherent flaws.

Mass cytometry is a technology very similar to flow cytometry. Using
ions in place of colors, CyTOF is able to measure up to 40 cell markers
at once, generating even more data than flow cytometry. Efficient auto-
mated gating method are therefore all the more needed in the context of
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CyTOF(Melchiotti et al., 2017). The approach proposed here could be di-
rectly applied to such data. More generally, we propose here a framework
for Dirichlet process mixtures of multivariate skew t-distributions modeling
that is suitable for any kind of data modeled as such a mixture, especially
when the number of mixture components is unknown. We provide an effi-
cient implementation of our method within the R package NPflow that is
available on CRAN at https://CRAN.R-project.org/package=NPflow.
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SUPPLEMENTARY MATERIAL

Online Supplement to “Sequential Dirichlet Process Mixtures
of Multivariate Skew t-distributions
for Model-based Clustering
of Flow Cytometry Data”
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide additional
mathematical details for the proposed Gibbs samplers and the parameter
estimations, as well as additional plots showing the good performance of the
sequential strategy.
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