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Abstract
Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, reality
is better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model has
emerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples of
multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain
of graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.
This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for
researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well
as those developing systems across application domains. We have explored the visualization literature to survey visualization
techniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within application
domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research
directions for addressing them.
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1. Introduction

Simple graphs are often used to model relationships between enti-
ties in real-world systems. This approach may, however, be an over-
simplification of a much more complex reality better embraced as
several interdependent subsystems (or layers), which motivated the
development of the complex networks field [GBSH12, KPB15]. The
concept of a multilayer network [KAB*14] builds on and encom-
passes many existing network definitions across many fields, some
of which are much older, e.g. from the domain of sociology [Mor53,
Ver79, BS85].

As an introductory illustrative example, consider a person’s social
networks. People frequently use more than one social network plat-
form, e.g. Facebook for their personal social network or LinkedIn
for their professional. Offline, ‘real life’, social networks could also
be considered, again with relations being either personal or profes-
sional. These networks can be considered independent; however,
they can also be considered as layers in a multilayer graph. The

networks overlap as some people may be present across layers. In
this case, layers are characterized by relationship type (either on-
line/offline and personal/professional). A significant change in one
network may implicitly correlate with or cause changes in another.
For example, a change of employer will cause changes in both of-
fline and online professional networks but in a different manner for
each, and may cause slower, more gradual, changes in the personal
offline/online social networks. To answer some questions, it may be
necessary to also include employers or companies as entities of the
network. This makes it possible to model explicitly person–company
relationships, as well as person–person and company–company re-
lationships. In this case, layers may be characterized by entity type
(either person or company). Other definitions of layers are also
possible as illustrated in Section 2.

Examples of multilayer networks can be found in the domains
of biology (the so-called ‘omics’ layers), epidemiology [WX12,
SMSB12, PSCVMV15], sociology (in a broad sense, including
fields such as criminology, for instance) [BS85, LP99, GB07,
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FPSG10, GKL*13, CMF*14, BGRM15, DMR16a], digital human-
ities [MDG16, DHRL*12, SGo16], civil infrastructure [CGGZ*13,
Duc17, Der17] and more. Multilayer networks have been explic-
itly recognized as promising for biological analysis [GMD*18]. We
give more details in Section 2.4.

In the area of network visualization, many systems visual-
ize data sets having many characteristics of multilayer networks,
albeit under a different title. Multi-label, multi-edge, multirela-
tional, multiplex [RMM15, CGGZ*13], heterogeneous [DHRL*12,
SKB*14], multimodal [GKL*13, HS09], multiple edge set networks
[CMF*14], interdependent networks [GBSH12], interconnected
networks [SMSB12] and networks of networks [KPB15] are among
the many names given to various types of data that are encapsulated
by the multilayer networks definition of Kivelä et al. [KAB*14].

Recently, initial steps have been made towards consolidating the
work on visualization of multilayer networks from domains out-
side of the information visualization field, see MuxVis [DDPA15]
from the domain of complex systems, or from the domain of so-
cial networks [DMR16b], based on the complex systems paper of
Rossi and Magnani [RM15]. However, to date, there has been no
survey quantifying and consolidating the state of the art of visual-
ization of multilayer networks, both within the field of information
visualization and across application domains.

The goal of this survey is to reconcile the many visualization
approaches from the information visualization field and the ap-
plication domains and group them together as a consistent set of
techniques to support the increasing demand for the visualization
of multilayer networks. The final contribution of this work con-
sists in identifying the key challenges outstanding in the field,
and providing a road map for future research developments on the
topic.

This report is structured as follows: Section 2 presents the defin-
ing concepts underlying multilayer graph models, and points out
the main differences they have with other related network models.
The rest of the section briefly describes the application domains
in which multilayer graphs are encountered. The description of
the methodology followed is presented in Section 3, followed in
Section 4 by the survey itself. It provides a structured account of
relevant tasks, visualization and interaction techniques pertaining
to multilayer network analysis. In Section 5, we reflect on the state
of the art in multilayer network visualization, and point out open
challenges and opportunities that lie ahead of the information vi-
sualization research community. We finish this paper in Section 6
with concluding remarks and a road map for future contributions to
the topic of multilayer networks visualization.

2. Multilayer Networks and Related Concepts

The notion of many relationships between individuals, often called
multiplex relationships, is seminal in sociology and one could ar-
gue that it already was present in the sociograms introduced by
Moreno [Mor53]. The notion is central in the work of Burt and
Schøtt [BS85] where the challenge is to somehow simplify mul-
tiplex relationships, consolidate and substitute them for relation-
ships involving a smaller number of relation types to ease the anal-
ysis of the network. More recently, the concept of a multilayer

network has emerged from the complex networks area, a sub-domain
of the field of complex systems, and is a fertile ground for novel
visualization research.

2.1. Defining concepts

It is important to emphasize that layers do not reduce to some
operational apparatus. The concept goes far beyond a simple intent
to capture data heterogeneity. While it is true, this notion is most
of the time embodied as nodes and edges of a network being of
different ‘types’, its roots lie deeply in sociology [BS85, LP99,
GB07]. This notion is used to form questions and hypotheses, where
layers can be considered as innermost, intermediate or outer [Lin08].
For instance, Dunbar et al. [DACP15] consider networks similar to
our introductory example, and examine to what extent online and
offline layers in personal networks overlap.

While innermost and outermost layers are well-established no-
tions in sociology, the modeller is free to be ‘creative’ when deciding
what constitutes a layer (dixit Kivelä et al. [KAB*14]). That is, the
notion of a layer in a network emerges from and belongs to the
domain under investigation. Consequently, when discussing the no-
tion of layer, it is important to distinguish the sociological network
from the mathematical network used to describe it. The mathemat-
ical network—a graph—is but an artefact through which we may
hope to observe and ultimately characterize a phenomenon occur-
ring on the sociological network. The definition of a layer is thus
a characteristic of the multilayer system as a whole, defined either
by a physical reality or the system being modelled. The notion of a
layer naturally occurs when describing tasks performed by analysts;
it can be mobilized to form exploration or browsing strategies (see
Section 4.1).

Formal definition. A standard graph is often described by a tuple
G = (V,E) where V defines a set of vertices and E defines a set of
edges (vertex pairs), such that E ⊆ V × V . An intuitive definition
of a multilayer network first consists in specifying which layers
nodes belong to. Because we allow a node v ∈ V to be part of
some layers and not to others, we may consider ‘multilayer graph’
nodes as pairs VM ⊆ V × L where L is the set of considered layers.
Edges EM ⊆ VM × VM then connect pairs (v, l), (v′, l′). An edge is
often said to be intra- or inter-layer depending on whether l = l′ or
l �= l′.

Going back to the example where people use different social net-
work platforms, we would have L = {l, l′, l′′, . . .} where l = Face-
book friends, l′ = LinkedIn connections, l′′ = ‘real life’ family–
friends–acquaintances, etc.

2.2. Aspects

Kivelä et al. also define what they call aspects as a way to char-
acterize a set of elementary layers relating to some concepts. An
example would be:

� aspect L1 capturing interaction between people in the context of
their participation to events (e.g. conferences [ADH*12]), with l1
for interaction during InfoVis, l2 for interaction during EuroVis,
etc.);
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Figure 1: Aspects can be seen as groups of layers of different types.
Nodes do not necessarily appear on all layers, but they necessarily
appear on at least one layer of each aspect.

� aspect L2 capturing co-authorship around themes (an example we
borrow from Renoust et al. [RMM15]), with li for co-authorship
associated with some keyword ki ;

� aspect L3 capturing project partnership, with layers li associated
with specific programs, for example [GKL*13];

� and so forth.

Aspects can also be used as an artefact to deal with time or geo-
graphical position. They can be captured by extending the previous
definition, as proposed Kivelä et al.: Given any number d of as-
pects, L = {L1, L2, . . . , Ld}, a multilayer network corresponds to
a quadruple M = (VM, EM, V, L), where each aspect La is a set of
elementary layers and VM ⊆ V × L1 × . . . Ld . That is, while nodes
do not necessarily appear on all elementary layers, they necessarily
appear on at least one layer of each aspect. The set of edges of M

simply is EM ⊆ VM × VM (see Figure 1).

Kivelä et al. chose the term carefully, to avoid using a term that
may be unclear depending on the reader’s domain. While the term
dimension, in its literal meaning, may lend itself to the concept of
defining a characteristic, aspect has been chosen due to the use of
the term dimension as jargon in different domains.

Another example lies in the domain of biology (described further
in Section 2.4). One aspect is the type of data, such as genomic,
metabolomic or proteomic. Another aspect might be the species, or
different biological pathways, as illustrated in Figure 2. If the bio-
logical data contains time information, that may also be considered
an aspect. While multiple aspects are a possibility for multilayer
network data sets, it is not a requirement. A multilayer data set may
be defined by a single aspect, which categorizes multiple layers. See
Table 1 for a sample list of aspects and layers extracted from the
literature surveyed as part of this report. Kivelä et al. [KAB*14]
provide further examples in their extensive list of multiplex data
sets and their associated layers.

Incidentally, Wehmuth et al. [WFZ16] propose an alternative
definition they call MultiAspect graphs where they formally define
what can be considered as an aspect. Unsurprisingly, they also form
a network where nodes are defined using Cartesian products col-
lecting multiple values into a single entity. The authors describe
MultiAspect graphs as forming a generalization of Kivelä et al.’s

Figure 2: A purely illustrative example of multilayer data in the
context of biology. The layer can be described by the type of data as
a first aspect (genomic, proteomic or metabolomic), and biological
pathway being represented as second aspect.

multilayer network. Reconciling these different approaches is be-
yond the scope of this paper. Well-developed examples are certainly
needed to uncover the full applicative potential of MultiAspect
graphs.

2.3. Related graph models

Below, we review related graph models (see also Figure 3) and their
differences or resemblances to multilayer networks.

2.3.1. N-partite graphs

Recall that a bipartite graph is made up of two disjoint sets of
vertices so that no two vertices belonging to the same set are con-
nected. Bipartite graphs can be considered as a case of multilayer
networks with two layers and only inter-layer edges. The two mode
(i.e. node type) nature of bipartite graphs result in analytics that are
different to those of single-mode graphs [BE97]. Bipartite graph
concepts are sometimes extended into n-partite graphs, as seen in
our example in Figure 3(a), although, in practice, many of the
tw-mode restrictions associated with bipartite graph are not fully
retained. In practice, systems which model bipartite cases and ex-
tensions of bipartite cases, such as the multimodal networks of
Ghani et al. [GKL*13] and the academic network analysed by Shi
et al. [SLT*14], can be considered instances of multilayer net-
works. In this case, the authors also make use of bipartite analytics
(e.g. adapted centrality metrics) to better understand their network
structure.

Bipartite networks can be reduced to single-mode networks via
projection on a mode. Such an operation may also be used to define
a layer in a multilayer network, if the projection results in a layer
that reflects the reality of the system being modelled.
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Table 1: Examples of aspects and layers, extracted from papers covered by this survey.

Aspect description Layer definition Source paper Source paper domain

Social entity type People, societies/
organizations

[RMM15] Information visualization

Social relationship type Friendship, aggression [CMF*14] Social networks
Word relationship Hyponym, homonym [HD12] Information visualization
Year of publication [1974 . . . 2004] [HD12] Information visualization
Infrastructure connection type Air connection, train

connection
[HMB14] Physics

Transport mode air, rail, ferry, coach [GB15] Scientific data
(transportation)

‘Omics’ Entity type Gene, protein, protein
structure

[POS*08] Biology

Historical correspondences Letter, letter sender, letter
receiver, cited book

[vV17] Historical network research

Building layout Arrangement of house spaces [SLP*17] Robot control algorithms

Figure 3: Illustrative examples of related graph models: Each of the three node types (indicated by colour) of the n-partite graph could define
a layer within a multilayer network, in this case, all edges would be between layers. For a multivariate graph, node attributes could be used
to divide the network into layers. Defining layers by node type in this example would result in three layers, although that may not make sense
for the system being modelled, as there would be no edges within the layers of nodes of types B and C. For a dynamic graph characterized
by time slices, each time slice can be intuitively understood as a layer. Further insight could be gained by the use of an additional aspect to
define layers.

2.3.2. Multivariate graphs

Multivariate graphs [KPW14] are those in which nodes or edges
carry attributes or properties. As described by Schreiber et al.
[SKB*14], there is a relationship between multivariate graphs
and multilayer graphs. Some variables or attributes in a multi-
variate data set often serve the purpose of distinguishing nodes
and edges that belong to different layers, e.g. the type of so-
cial network platform in our initial example. There are also mul-
tivariate visualization applications such as that of Pretorius and
van Wijk [PVW08], which define their graph as having dis-
crete sets, which can be considered analogous to defining lay-
ers. However, in the majority of cases, research into multivari-
ate visualization lacks the a priori definition of a layer defined
by a physical or conceptual reality related to the system being
modelled.

In faceted data sets, multivariate data items are grouped in multi-
ple orthogonal categories. Originally used as an approach to search
and browse large data stores and text corpora [SCM*06, CSL*10],
later work extended the faceted approach to include relationship vi-
sualization [LSR*09, ZCCB13]. Data sets can have many different
facets such as spatial and temporal frames of reference, or multiple
values per data item and as such can be considered multi-faceted.
Visualizations for multifaceted data are those which show more than
one of these facets simultaneously (see Hadlak et al. [HSS15] for
a survey of multifaceted graph visualization techniques). Hadlak
et al. discuss primarily four common facets of network structure
considered in network visualization, and their composition: parti-
tions, attributes, time and space. These facets may be considered
to be very similar to instances of Kivelä et al.’s aspects. How-
ever, they can be considered as different ways of exploring a sin-
gle data set (which is unsurprising given the origins of a faceted
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visualization). The techniques described are still very useful for de-
veloping approaches for visualizing layers, particularly where the
layer type matches the Hadlak et al.’s selected faceted categories.
However, faceted network visualization approaches do not meet all
the needs for multilayer network visualization. While multilayer
networks may use notions similar to these facets to characterize
layers, multilayer network visualization also focuses on the inter-
actions between layers and the role of layers in the network as
a whole.

2.3.3. Dynamic graphs

Dynamic graphs are graphs whose structure (nodes and edges)
and/or associated attributes may change over time. Analysts are
often interested in comparing the state of the network at different
points in time. Within the domain of complex networks, Boccaletti
et al. [BBC*14] consider the dynamics of multilayer networks, and
in many cases, time slices of a dynamic (or temporal) network are
simply mapped to layers. The notion of dynamic networks is also
mentioned by Kivelä et al., who note that they can be considered
as a type of multilayer network. A set of dynamic time slices can
be considered layers in an aspect representing time. As multilayer
networks can have multiple aspects, a temporal aspect might be
just one of many. In their report on dynamic network visualization
Moody et al. [MMBd05] explain the importance of ‘multiplicity’ in
social networks, i.e. the overlap of types of relations. In particular,
they point out that linking relational timing to tie types allows better
investigation of social dynamics. A recent survey of dynamics graph
visualization techniques was provided by Beck et al. [BBDW17],
but does not consider layers in any context other than a hierarchi-
cal graph.

2.4. Application domains and data

Across all of the application domains mentioned in Section 1, ad-
vances in sensors, scientific equipment and technology mean that
researchers have access to more data than ever. This wealth of com-
plex data is often best understood as a multilayer network model.

2.4.1. Life sciences

Within biological network visualization, there are many con-
texts in which a multilayer network approach may be benefi-
cial [GMD*18]. Biologists have access to more genomic, proteomic
and metabolomic data, allowing for the construction of complex
multilayer models of intricate biological processes. Interactions tak-
ing place within the genomic, proteomic and metabolomic levels
can be modelled as individual networks, but interactions also occur
between elements sitting in different omics levels within a larger
biological system, where the aspect characterizing the layer is the
node type [CWV*10]. This corresponds to the strongly rising topic
of systems/integrative biology, where the challenge consists in un-
derstanding the interplay and the cascade of effects taking place
at the different levels of the biological system at hand [GOB*10,
KTT13]. A prominent task for biologists analysing biological path-
ways consists in comparing a species-specific pathway to a refer-
ence pathway [MMF17]; in this specific case, species type can be

considered a defining aspect for a layer. Another task is to com-
pare tissue-specific interaction networks to understand why certain
tissues, e.g. plant root tissues, synthesize certain molecules which
are not found in other plant tissues. In this case, tissue type is the
defining aspect for a layer.

2.4.2. Social sciences

Data sets within Social Network analysis frequently contain mul-
tiple types of edges (to support examining the different types of
relationships between people, e.g. more recently [CMF*14], but
also in much earlier work such as [BS85, LP99]), or multiple types
(or modes) of nodes, e.g. modelling a citation network containing
researchers, institutions and publications [GKL*13]. Within social
sciences, there are also contexts in which many networks may be
compared to one another. For example, examining social networks
produced as a result of cell phone activity, as done by Freire et al.
[FPSG10]. The contemporary use of multiple online social networks
provides a vast amount of data. This allows for complex social mul-
tilayer networks to be built, which may help sociologists gain deeper
insight [RMV14].

Other fields such as food microbiology have adopted Social Net-
work Analysis techniques, and applied them to understand problems
such as the spread of disease. This can be seen in the work of Crabb
et al. [CAD*17] to understand the spread of salmonella in a large
poultry farming enterprise. Different networks are generated based
on contact between different types of entities. From a multilayer
perspective, contact between entities can be considered an aspect,
with the entity types defining the different layers.

2.4.3. Digital humanities

Within digital humanities fields, such as digital cultural heritage, ar-
chaeology and data journalism, many multilayer approaches [vV17,
MDG16, DHRL*12, SGo16, RRV*18, MBvL*17] can be found.
Digital access to source texts and natural language processing tech-
niques such as Named-Entity Recognition and Topic Modelling
allow for vast Digital Humanities data sets to be built [MDG16].
Co-occurrence relationships between people names, locations, orga-
nizations as well as other entities form a typical multilayer network
whose analysis may reveal insightful interaction patterns.

2.4.4. Infrastructure

Modern vehicles often provide a wealth of information about mod-
ern transportation networks. These networks can also be modelled as
multilayer networks. For example, Halu et al. [HMB14] model the
air and rail transportation networks of India as layers in a multilayer
network. A paper by Gallotti and Barthelemy [GB15] is another
nice example. The Internet and associated infrastructure provide
vast amounts of data about themselves and can be modelled as mul-
tilayer networks, as done by Reis et al. [RHB*14], who represent
the power grid and the Internet as separate interdependent layers in
a multilayer infrastructure network. Recent work concerning Urban
Infrastructure Systems highlights the necessity to adopt an inte-
grated approach to urban planning taking into account the interplay
between multiple networks such as transportation networks, energy
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networks, telecommunication networks and water/wastewater net-
works [Der17]. Some of the related objectives may be to reduce
the cascading of failures across these networks [BPP*10], but also
to develop an efficient repair strategy to restore services after dis-
aster [SDH16]. The precise representation of buildings to support
robot control algorithms is a related domain as seen in [SLP*17].
In this work, the graph represents a layout of the floors of the
building with their interconnections. A layer is a floor containing
rooms. An edge represents a direct connection between two rooms.
Interlayer connections modelled connections between floors. This
kind of model reduces the amount of data to be analysed by a robot.

The vast number of instances of complex data sets produced
across all these domains demands a visual approach to help under-
stand it, and that approach will often be multilayer network visual-
ization.

2.5. Complexity and human performance

Multilayer networks are implicitly more complex than standard net-
works, which is not surprising given their origins in the domain
of complex systems. The complexity can be increased by the type
of task, the sheer volume of data or the density of its connectiv-
ity. Within information visualization, there have been many studies
completed examining the impact of these various types of complex-
ity on human performance at specific tasks. For example, Ghoniem
et al. [GFC05] examine the impact of edge density on choice
of visualization approach, see Section 4.3.3. The notion of practi-
cal densities for empirical evaluation is one which prompts much
discussion [Mel06]. While graph size has been recognized as an
important factor for quite sometime, there is no widely accepted
definition of what is a large or small graph [vLKS*11], with many
empirical evaluations running pilot studies or basing their chosen
size of large graph on assumptions rather than a standardized defi-
nition. While we do report on the state of empirical evaluations with
respect to multilayer networks (see Section 4.6), the topic of human
performance and network complexity is a vast topic in and of itself;
therefore, a full analysis is beyond the scope of this state-of-the-art
report on multilayer networks. For a detailed survey on network
complexity and empirical evaluations, the reader is referred to the
work of Yoghourdjian et al. [YAD*18].

3. Methodology Followed

This section is about the structure of the survey which is built on a
categorisation of the important features of multilayer network and
how we selected papers cited in the many domains we cover.

3.1. Categorization

The categorization of the most important features of multilayer
network visualization that are to be considered for each paper is
built in a manner consistent with Munzner’s nested visualization
design process model [Mun09]:

Tasks and analysis. Multilayer systems that address new prob-
lems and domains may expose tasks that do not fit in existing task
taxonomies, such as [LPP*06, PPS14]. New analytics have been

developed for multilayer networks, and new visualizations have
been developed as a result, e.g. [DDPA15].

Data definition. This aspect of the review looks at the nomen-
clature used for the data set e.g. multiplex, heterogeneous, which
aspects are used to define layers across the data, as well as the
structure of the data.

Visualization approach. We analyse and categorize the various
visualization approaches described, identifying novel approaches
and novel applications of existing approaches, e.g. [BISP16]. While
many visualization systems described in this survey were not ex-
plicitly identified in the original source as being for multilayer net-
works, we point out ways in which they may be applicable and
targeted to them.

Interaction approach. Interaction with multiple layers will of-
ten be more complex and requires innovative techniques, such
as [HD12, SLT*14, RMM15].

Attribute visualization. Multilayer networks can also carry mul-
tivariate data [SKB*14, DHRL*12]. Under this category, we will
examine the impact of multilayer structure on attribute visualization.

Empirical evaluation. Empirical evaluation is a challenge for in-
formation visualization [Pla04]. Within the domain, there are many
guides to evaluation such as [Pur12]. However, techniques devel-
oped in application domains may not have been exposed to the same
level of rigour as those developed within the visualization domain.
It is important to understand which novel techniques have been
empirically validated with respect to their usability.

3.2. Papers selection

The wide range of application domains makes performing a com-
plete survey highly challenging. Within the domain of visualization,
we queried prominent journals and conferences for a list of keywords
related to multilayer networks. Our main search engines were IEEE
Explore and the ACM Digital Library. The list included the terms
(and variants of the terms using hyphens) multilayer, multilevel,
faceted, multirelational, multimodal, multiplex, heterogeneous and
multidimensional. The ambiguity of some of these terms meant
that some completely unrelated papers were returned. These were
removed from the list based on their abstract. The prominent vi-
sualization venues included IEEE TVCG (and implicitly VAST and
Infovis), CHI (including SIGCHI and TOCHI), Computer Graphics
Forum (and implicitly Eurovis), Advanced Visual Interfaces, Paci-
ficVis, Graph Drawing and Network Visualization (formerly Graph
Drawing) and the journal Information Visualization.

Due to the wide range of application domains and numerous
publication venues in each, it was not feasible to perform such a
formalized search within them. We used our initial list of visualiza-
tion papers, as a seed adding papers from the application domains
which were cited by or cited them as found using Google scholar
search.
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Additional papers were also added to the list of those reviewed
based on feedback from reviewers of this STAR, if they indicated
that the papers would be valuable additions. Each paper was re-
viewed by at least one co-author, and the review shared with all
other authors using a wiki. Papers were summarized based on the
characteristics described in Section 3.1. Reviews of the paper were
discussed at group meetings between the co-authors to provide a
final decision on which papers should be included or excluded. All
final text describing the papers within this work was validated by
all co-authors.

As stated in Section 1, the goal of this survey is to rec-
oncile the many visualization approaches from the information
visualization field and the application domains. Many techniques
have been extracted from papers which may not have focused
explicitly on multilayer techniques, perhaps using one of the
names described in Section 1, e.g. heterogeneous. However, the
techniques are included as we believe that they are of inter-
est to researchers who wish to visualize multilayer networks. As
part of the review process, some papers were considered, based
upon the keyword search described above; however, they were
omitted from the final state-of-the-art report due to their con-
tent not being related enough to the visualization of multilayer
networks.

4. Survey of Multilayer Graph Visualizations

In this section, we begin by defining and illustrating a task tax-
onomy for multilayer graphs. Consistent with Munzner’s model,
we survey various data definitions on which the visualizations pre-
sented hereafter are built, as well as relevant interaction techniques.
The survey encompasses the visualization of attributes in the con-
text of multilayer networks and closes with considerations about
visualization evaluation.

4.1. Tasks and analysis

Numerous literature surveys [LPP*06, APS13, PPS14, KKC15,
BBDW17] list tasks relevant to the visual analysis of different types
of networks (general, evolving, multivariate, etc.) and tasks have
been proposed on a domain specific basis, e.g. [MMF17].

Lee et al. [LPP*06] provide a general graph task taxonomy. At
its top level, it considers Topology Based Tasks, Attribute Based
Tasks, Browsing Tasks and Overview Tasks. It explicitly specifies
that the high-level tasks of comparison of graphs and identifying
graph change over time are not covered by the taxonomy.

Pretorius et al. [PPS14] focus on multivariate networks. The
highest level of their taxonomy divides tasks as follows: Structure
Based Tasks, Attribute Based Tasks, Browsing Tasks and Estimation
Tasks. The category Estimation Tasks is further subdivided and more
detailed than Lee et al.’s Overview Tasks. The name was chosen to
capture that these tasks are not easily definable using lower level
tasks and are considered more high level, and are not focused on
giving precise answers. Within this categorization, there is a com-
parison task, which may be of some relevance for multilayer graphs.
It covers comparing information at different stages of a networks

development, and determining causation, i.e. providing an expla-
nation for the differences between two snapshots of a changing
network.

While Pretorius et al. do consider graph change as part of their
multivariate tasks taxonomy, the taxonomies of Kerracher et al.
[KKC15] and Ahn et al. [APS13] both focus specifically on dy-
namic networks, also known as evolving or temporal networks. At
the highest level, Ahn et al.’s taxonomy focuses on three groupings:
Entities, Properties and Temporal Features. The temporal features
are grouped as Individual Events, the Shape of Change and the
Rate of Change. These are considered from the individual entity
level to the entire network level, and for both structural and domain
properties. Kerracher et al.’s taxonomy builds on the non-network
specific taxonomy of Adrienko and Adrienko [AA06] by extending
it to include network data. It considers both elementary and syn-
optic tasks, as defined by Andrienko and Andrienko (elementary
tasks involve individual items and characteristics, synoptic involve
sets of items considered as an entity), but further divides synoptic
tasks into three categories. These are tasks considering graph sub-
sets, tasks considering temporal subsets and tasks considering both
graph and temporal subsets. The taxonomy differs from Ahn et al.’s
in that it focuses more on the tasks that data items take part in, rather
than the data items themselves, and considers a more general con-
cept of pattern changes that captures relational changes in the net-
work, as well as considering tasks which provide context for graph
evolution.

Murray et al. [MMF17] propose a taxonomy in the context of bi-
ological pathway visualization that contains tasks concerning com-
parison, attribute analysis and annotation that relate to multilayer
networks. Although most task taxonomies that have been developed
so far do not directly address multilayer networks per se, they could
be further adapted or extended to target multilayer network visu-
alization. Existing literature does mention specific tasks that may
be relevant for multilayer network visualizations, which we cover
in this section. Some tasks may involve the temporal dimension as
well (such as tracking the evolution of nodes or edges at different
moments).

Unsurprisingly, tasks that are specific to multilayer networks re-
volve around the notion of a layer. Tasks often boil down to ma-
nipulating elements within one layer, or across several layers, or
manipulate the layers themselves. These manipulations often lead
to lower level tasks, which are also critical for visual analytics tasks
(identifying actor roles, grasping group interaction or communica-
tion patterns in social networks, etc.).

In the survey work of Pretorius et al. [PPS14], a task is schema-
tized as a process:

Select entity → Select property → Perform analytic activity

We see here an important difference with the process of perform-
ing a task on a multilayer network involving layers. Conceptually
speaking, layers are genuine building blocks of a multilayer net-
work. They are neither a simple (sub-)network nor a mere property
of a node or edge. They are a conceptual construct that fully enters
the analytic process when performing a task (involving the multi-
layer nature of the network).
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We report here on different approaches or systems that support
tasks relevant to multilayer networks. In many cases, authors have
not explicitly expressed tasks in terms of layers, but rather refer-
ring to properties of the data they consider. This is the case for
authors considering tasks related to group comparison or reconfigu-
ration [HD12, CLLT15]. To this end, in anticipation of Section 5.1,
we propose task categories specific to multilayer networks. We tar-
get tasks directly involving visualization, as opposed to tasks that
can be addressed through computational means only.

Task category A—Cross-layer entity
connectivity (e.g. inter-layer path).
Tasks in this category aim at exploring
and/or inspecting connectivity involv-

ing paths traversing multiple layers. Understanding how shortest
paths expand across layers, inspecting what nodes do occur on these
paths are typical examples of tasks in this category. Being able to
explore cross-layer connectivity has been identified as an important
user task in [GKL*13]. Associative browsing in Refinery [KRD*15]
is a good illustration of cross-layer connectivity task. It performs
cross-layer random walks and collects nodes from different layers in
a single view. The leapfrogging operation in Detangler [RMM15] is
another good illustration of cross-layer connectivity building a dual
view reflecting how/what layers get involved when hopping from
node to node (see Section 4.4).

Task category B—Cross-layer entity
comparison. Tasks in this category
aim at comparing entities (typically,
nodes) across different layers; this re-

quires the ability to query entities across layers. The task may con-
cern the same (set of) node(s) over several layers; or distinct nodes
that are somehow linked across different layers. Jigsaw [SGL08]
typically supports this tasks by allowing users to identify entities
(persons, places, etc.) through several documents (seen as layers in
a multilayer document network). FacetAtlas’ [CSL*10] multi-facet
query box is another good example.

Task category C—Layer manipu-
lation, reconfiguration (split, merge,
clone, project). Tasks in this category
aim at manipulating the layer structure

itself. Such manipulation may allow for previously unseen relation-
ships and structure to be revealed, and allow for new perspectives
on the underlying data. Combining layers through drag and drop
operations, as in the work of Hascoët and Dragicevic [HD12], is
a perfect illustration of this type of task; another example is g-
Miner [CLLT15] which allows to create, edit or refine the grouping
of elements.

Task category D1—Layer compar-
ison based on numerical attributes.
Tasks in this category support com-
paring layers to one another based
on numerical measures summarizing

layer content and structure. Typically, layers could be compared
by looking at how node degree distributions compare layer-
wise. OntoVis [SMER06] (where layers map to node type) sup-
ports layer comparison tasks using a metric they call (inter-
layer) node disparity. Pretorius et al. [PVW08] propose a quite

elaborate approach and system to perform multi-attribute-based
layer comparison.

Task category D2—Layer comparison
based on topological, connectivity pat-
terns. Tasks in this category support com-

paring layers through non-numerical but rather topological features
of layers (e.g. group structure). A layer could be hierarchical (inher-
itance), while another could show a strong scale-free structure, for
instance. The work by Vehlow et al. [VBAW15] is a typical tech-
nique allowing to compare group structure across layers. Tasks R5
and R12 in GraphDice [BCD*10] are another good illustration of
such tasks. In the biological domain, the tool Netaligner [PCA12]
compares different biological networks, which can be considered
analogous to layers, and visualizes them in a single visualization to
allow a user to determine how well the networks are aligned, i.e.
overlapping in terms of nodes and edges.

Table 2 summarizes task categories supported by a selection of
systems and techniques cited and described in this report.

4.2. Data definition

This subsection looks at the various data definitions found in the
visualization literature on which visual representations of networks
with multilayer characteristics are built. Only a few approaches
explicitly mention the use of multilayer networks (both as data
underlying the visualization and as a visual encoding). Most systems
dealing with multivariate networks couple relational data with node
and edge attributes [SMER06, Wat06, BCD*10, HP14] often using
table-based representations [KS14, HP14]; they do not consider any
data or attribute specifying a layer structure. Cao et al. [CSL*10]
consider classes of entities they call ‘facet” which appear to naturally
map to layers of nodes (see Section 2.3.2). Among all, the work of
Pretorius et al. [PVW08] is a notable exception as it introduces the
notion of layers without using the term, and explicitly defines nodes
as Cartesian products of attributes (see Section 2.1).

Other systems and approaches infer multilayer structure by ag-
gregating data from multiple sources, whether databases [KSW14]
or a collection of ego networks (as in [DACP15]) and/or personal
data [HTA*15]. Interestingly enough, some systems do not directly
target the visualization of multilayer networks, but use multiplex
and/or hypergraph representations to build query graphs or summa-
rize query responses [TS13, SW13].

Obviously, MuxViz [DDPA15] relies on the exact definition and
implementation (see Section 2.1) introduced by [KAB*14], which
is also the case of authors mentioning explicit use of the MuxViz
framework [GB15]. Elementary layers originating from aspects of
the network, such as time or node/edge type, are quite similar to
the facets described in [HSS15]. Detangler [RMM15] relies on an
explicit encoding of layers, with a goal to allow an easy exploration
of inter-layer correlation (see Section 4.1). Making a distinction
between layers as being either structural or functional (or of any
other type) may be useful depending on the pursued goal [ATSN17].

4.3. Visualization approaches

From a multilayer network perspective, previous work in network
visualization techniques may be classified based on their awareness
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Table 2: A selection of techniques/systems grouped as far as possible by task categories, relevant to multilayer networks, that they either implicitly or explicitly
support. Notes in parentheses refer to task labelling/naming as indicated by authors in their paper.

D—Layer comparison

A—Cross-layer B—Cross-layer C—Layer manip. D1 D2
connectivity entity comparison reconfiguration numerical topological

VisLink [CC07]
√

Multilayer Graph Edge Bundling [BISP16]
√ √

MuxViz [DDPA15]
√ √ √

BicOverlapper [STQ08]
√ √ √
√

Refinery [KRD*15] (assoc. browsing)
√

√ √ √
Multimodal Social Networks [GKL*13] (Q1b,c) (Q1a)

√
(Q2c)√ √ √

HybridVis [LWYZ17] (Q4) (Q1, Q2) (Q3)√
Detangler [RMM15] (leap-frogging)

√ √
GraphTrail [DHRL*12]

√
ManyNets [FPSG10]

√
√ √

GraphDice [BCD*10] (multi-facet query) (R5, R12)
Hierarchical Edge Bundling [HVW08]

√ √
FacetAtlas [CSL*10]

√ √
NetworkAnalyst tool [XGH15]

√ √
Donatien [HD12]

√ √
Dynamic communities [VBAW15]

√ √
Hive Plots [KBJM11]

√ √
g-Miner [CLLT15]

√ √
Ontovis [SMER06]

√ √
√

Pivot Graphs [Wat06] (roll-up)
Circos [KSB*09]

√
√

Jigsaw [SGL08] (disparity)

of the notion of a layer. When this is the case, layers are visu-
ally encoded using any appropriate Gestalt principle in a way that
structures the spatial representation; they are also manipulated as
visual objects in their own right as detailed in Section 4.1. This is
why this section is organized based on the type of visual encoding
used to show layers explicitly. This survey also documents and re-
flects on the widespread use of weaker visual cues (in the sense of
Mackinlay’s ranking of perceptual tasks [Mac86]) to encode layer
information, such as node or link colour.

4.3.1. One-dimensional representations of layers

Existing visualization techniques use a large variety of one-
dimensional (1D) representations of layers (see Figure 4 for ex-
amples of basic 1D visualization). This type of visual encoding
relies on the law of continuation of Gestalt theory, such that the
eye may perceive paths on which nodes are arranged whether these
paths are actually drawn or not. This applies to circular paths, as
well as straight axes, or any curve shape.

Circular representations. This body of work includes concentric
circles, where each circle stands for a layer. Concentric circles are

Figure 4: A simple illustrative example of a vertical-axis-based
one-dimensional layout and a circular layout. In both cases, it is
the ordering of the nodes that is more important than coordinate
position.

used in [BSH13] where the focus is on depicting paths through the
whole set of layers (Task category A in our taxonomy). Node order
optimization and edge bundling are used to reduce edge clutter.
A similar layout is used in the ring view of MuxViz [DDPA15]
but focuses on visual correlation analysis of node attributes across

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



134 F. McGee et al. / Multilayer Network Visualization STAR

different layers (Task category D1). Node colour encodes attribute
values (see Section 4.5 and Figure 16), while ring order and
ring thickness encode computed layer-level metrics. Similarly,
Circos [KSB*09] is a popular tool for comparative analysis of
genomic data, where each ring/layer may stand for a biological
sample. To compare node attribute values across samples, a
histogram is wrapped around each ring (Task category D1).

Chord diagrams display layers as arcs composing one overall cir-
cle. They are used in the NetworkAnalyst tool [XGH15] to analyse
gene expression data. Links between layers are drawn as splines
connecting identical nodes occurring in different layers/arcs (Task
category B). The analyst may click on a pair of arcs to highlight
their common nodes (and the bridging links). A similar approach is
followed in [AAMH13, CMF*14]. In the presence of multilevel cat-
egorical attributes as in [HEAE16], each arc of the chord diagram
can further be split hierarchically (Task category C). The chords
would then connect nodes at the leaf level across all layers where
they are repeated.

Axis-based node-link representations. In this category, a layer is
materialized by a straight 1D axis. Obviously, the representation of
a multilayer network lays out nodes on several such parallel axes.
An important way of distinguishing axis-based visualizations re-
lates to the type of variable represented by the axis, whether it is
quantitative, e.g. a graph metric like node degree or any numeric
node attribute, or ordinal/ranking-based. Despite the visual simi-
larity to the Parallel Coordinates plot [ID90], a polyline represents
a path between nodes sitting in different layers/axes, rather than a
thread linking attribute values across different columns in a given
table entry. Crnovrsanin et al. [CMF*14] describe a view that uses
such parallel axes arrangement, and alternatively chord diagrams.
An example of analyses they run consists in comparing the ‘ag-
gression network’ among students in four different schools, based
on student race group. They show that smaller groups do not show
internal aggression patterns, while larger groups victimize every-
body equally (within the same group and in other groups). In this
case, the analyst is more interested by topological considerations
at the group level, and structural differences between layers (Task
category D2).

Ghani et al. [GKL*13] provided an approach called parallel node
link bands (PNLBs). Nodes are positioned uniformly across spaced
parallel axes which represent layers defined by the node type (or
mode), see Figure 5. Edges are only drawn between adjacent layers,
and within layer, edges are shown in a separate visualization. Node
order on axes can be set based on edge attributes or connectivity to
other layers. They use their approach to analyse the National Science
Foundation (NSF) funding data set. Examples of tasks they carry
out include determining whether some NSF programme managers
award funding to some Principal Investigators (PIs) more often than
others on a three-layer networking containing programme managers,
projects and PIs. This is an instance of Task category A where the
focus is on paths traversing all layers.

The list view of Jigsaw [SGL08] provides an overview of entities
grouped by type, with edges being drawn between connected entities
in adjacent lists. One of the main utilities of this system is to relate
different types of named entities (people, geographic locations and

Figure 5: The parallel node-link bands (PNLBs) representation
of [GKL*13]. Each axis is a distinct set of vertices. Edges are only
displayed between adjacent axes. Some axes show a quantitative
value, e.g. project budget, while others display text strings, sorted
based on a graph metric or alphabetically.

Figure 6: The hive plot representation of health data by [YTL*16]
showing four layers/axes: toxicity type (duplicated), material and
particle size. Edges are only displayed between adjacent axes. The
vertices on the horizontal axis are coloured based on their cluster
membership.

organizations) mentioned in the same documents. Entities which
are connected to a currently selected item are highlighted by colour
across all lists. It therefore emphasizes the analysis of paths across
all available layers (Task category A). The list view is complemented
by a node-link and a matrix-like scatterplot view, among others.

Hive Plots [KBJM11] differ from the previous techniques in that
they arrange the axes radially. Originally introduced for the anal-
ysis of genomic data, they have been used in other domains like
performance tuning in distributed computing [EW12] and in the
domain of health [YTL*16], as can be seen in Figure 6.
In [KBJM11], node (gene) subsets are placed on separate axes based
on a node-partitioning algorithm. The fundamental questions they
answer using hive plots include determining differences in connec-
tivity patterns between layers (Task category D1). An element’s
position along its axis is often calculated based on a graph metric,
e.g. node degree in [EW12] and may be based on the raw or normal-
ized value of an attribute. Edges are displayed between adjacent axes
only. Yet, visual clutter may still occur with real application data.
Layer duplication as in Figure 6 is convenient when the relationship
to a non-adjacent axis becomes necessary (Task category C).
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Figure 7: A simple illustrative example of 2D, 2.5D and 3D visu-
alizations of a network. The 2D layout (left) is a standard node link
layout where nodes are positioned with x and y coordinates and,
usually, an orthogonal projection is used to render the visualization.
The 2.5D approach (centre) draws sets of nodes on 2D planes at
different depths. For the 3D example (right), nodes are at different
depths in that they actually have an individual z coordinate (depth
value) for position. In this example, the nodes themselves are 3D
objects (spheres) rather than circles, and are shaded to clarify their
3D shape. 3D network visualizations are usually rendered with a
3D projection. As can be seen from this figure, depth is difficult to
convey in a static 2D image. 3D visualizations usually require some
level of camera movement to reveal occluded data, as well as the
depth aspect to be conveyed through motion and/or stereoscopy.

4.3.2. 2D, 2.5D and 3D node-link representations

Across the various papers we surveyed, node-link layouts cropped
up frequently. As illustrated in Figure 7, for the standard two-
dimensional (2D) layout, x and y coordinates are assigned for each
node. For the 2.5D approach, sets of nodes are assigned to planes at
a different depth, and for the three-dimensional (3D) approach, the
nodes are usually assigned a different individual depth (z coordi-
nate). The MuxViz toolkit[DDPA15], from the domain of complex
systems, utilizes several variants of node-link visualizations. They
are also used in other domains that depend on complex systems
theory [GB15, BBB*16, DD17].

A widespread visual design consists in encoding layer informa-
tion using node colour or shape, as depicted in [MMBd05, FHK*09,
KSW14, ZB16]. Colour coding of edges is also used in [Duc17,
DDPA15]. This design choice relies on the law of similarity of
Gestalt theory (colour similarity in this case). This design is often
adopted when the multivariate nature of the network is the driving
motivation of the visual design. For instance, Figure 8 represents
flows of maritime traffic using colour to encode different modes
of shipping (or layers). The analyst looks among other things at
structural changes over time, where different layers encode dif-
ferent time slices (Task category D2). But if the analyst is inter-
ested in analysing a given time slice, different layers may represent
different shipping modes. The related task consists of comparing
structural differences among the different modes. In similar visual
designs, layer information is diffuse, relationships between lay-
ers and within the same layer are mixed and users seldom get a
handle on layers to manipulate them directly. Nodes belonging to
different layers are intertwined in the 2D plane, when standard
node-link layouts are used, and edge clutter is problematic. Layer-
related tasks may therefore be difficult to carry out under these
circumstances.

Figure 8: A multilayer network visualization describing the flow of
maritime traffic. Nodes represent ports and different edge colours
represent different modes of shipping, taken from [Duc17].

While not explicitly designed with multilayer network visual-
ization in mind, constraint-based layouts offer the possibility to
constrain a 2D node-link layout in such a way that respects the con-
cept of layers. For example, the SetCola constraint-based layout of
Hoffswell et al. [HBH18] allows users to apply layout constraints
to sets of nodes, which might easily correspond to layers. Such a
layout approach supports analysing cross-layer connectivity (Task
category A) as well as layer comparison (Task category D2). The
examples covered by the authors include a food web networks and
a network modelling a biological cell, and both of these data sets
can be considered to have multilayer characteristics. The multilevel
layout approach of Topolayout [AMA07] is also not designed with
multilayer networks in mind, but, as an approach, may be of inter-
est in the multilayer case. Topolayout is a feature-based approach
that decomposes an graph into a hierarchy of features (hence, being
considered a multilevel algorithm) and chooses a suitable algorithm
to layout each feature. Within a multilayer network, the structure
of each layer may be very different, requiring an approach that can
adapt to the different features in each. The highest level feature
detected by the Topolayout algorithm is a connected component;
therefore, the algorithm could be adapted to consider each layer as
a connected component, but also would need to be enhanced further
to consider the impact of inter-layer connectivity.

Inspired by the multilevel nature of some problem areas, e.g. bi-
ological networks, the 2.5D approach materializes layers as 2D
translucent parallel planes in a 3D layout, similar in spirit to
Figure 2. This visual design relies on the law of uniform con-
nectedness of Gestalt theory. It separates links lying within layer
from those between layers providing a more natural support for
path-related tasks (Task categories A and B) than traditional 2D
node-link layouts, but 3D navigation is required to allow the user
to change his perspective on the data and resolve visual occlusion

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



136 F. McGee et al. / Multilayer Network Visualization STAR

problems. As opposed to 1D axis-based representations, the par-
allel 2D planes provide space to lay out intra-layer links. In the
2.5D category, some approaches use colour redundantly to encode
layer information as in [FHK*09]. Other visual design options for
2.5D consist in using colour to encode an attribute value or a com-
puted metric, e.g. community assignment by a community detection
algorithm as in [DDPA15], across the different layers. From the bi-
ological domain, the Arena3D application visualizes biological data
using an interactive 3D layout, where layers are also projected onto
planes, and entities are connected across layers by edges rendered as
3D tubes. The authors demonstrate its effectiveness by analysing the
relationship across layers, based on proteins and genes associated
with a specific disease (Task category A).

The use of 3D layouts is much less common in the information
visualization research community. While some work has shown that
there may be some benefit to 3D layouts, this is only under stereo-
scopic viewing conditions [WM08]. Outside of stereoscopic view-
ing conditions, there are no empirical studies which demonstrate
usability gains from a 3D graph visualization [GPK12].

A more widely accepted approach in information visualization,
especially for the purpose of comparative analysis of graphs, con-
sists in using small multiple views. This is often used for graph
matching tasks, where the focus is on understanding commonali-
ties and differences between a set of related networks [HD12]. In
the context of this paper, the networks that need to be matched are
distinct layers in a larger multilayer network (Task categories D1
and D2). Whether in a 2.5D setting or in a flat small multiples set-
ting, one challenge consists in ensuring that duplicate nodes are laid
out consistently across layers, by introducing constrained layout
strategies as in [FHK*09, HD12] to better support cross-layer entity
comparison (Task category B). Node-link layouts have been used to
compare networks visually, as done by Andrews et al. [AWW09]
and Di Giacomo et al. [DGDLP09], but in many situations, other
approaches may be more suitable (see Sections 4.3.3 and 4.3.5).

More generally, coordinated multiple views are often used in the
domain of information visualization, and in many applications, e.g.
the analysis of micro-array data [STQ08]. In this case, 2D node-link
views may be used as one of multiple complementary visualizations
of a multilayer network, e.g. [KRD*15, GKL*13, SGL08]. It is yet
possible to eschew the idea of using a node-link visualization al-
together, for example, using aggregate views of nodes (based on
attribute data), such as a bar chart enhanced with arcs [DHRL*12].
Coordination between views is common, e.g. brushing and linking.
The Detangler [RMM15] application builds on this by also har-
monizing layouts between views. It supports several task categories
identified in this survey, namely cross-layer connectivity (Task cate-
gory A), layer manipulation (Task category C) and layer comparison
(Task categories D1 and D2).

Edge visualization. The complex structure of multilayer graphs
makes edge visualization an important challenge. It may be impor-
tant in some cases to distinguish between inter-layer and intra-layer
links, in other cases the number of layers may cause enough clutter
with respect to edges, that a visualization becomes less understand-
able. In some cases, the chosen solution is to simply not draw all
edges and to allow the user to choose which edges to see via interac-

Figure 9: The multilayer edge bundling of [BISP16].

tion to ease inter-layer comparisons (Task category B). For example,
the PNLBs technique [GKL*13] only draws inter-layer edges be-
tween nodes on parallel axes, and intra-layer edges are displayed
in a separate visualization. The well-established technique of edge
bundling [Hol06] has been adapted for the multilayer use case by
Bourqui et al. [BISP16]. The authors bundle all edges in a single
visualization, in an aesthetically pleasing manner, with edges being
kept adjacent to each other when they share a common path, and
edge crossing being avoided (see Figure 9). This approach is useful
for showing edges from multiple layers in a single visualization
(where there is no division of nodes between layers); the approach
is agnostic to the source or target layer, or whether the edges are
between or within layer (Task categories A and B).

Within their list-based view, Crnovrsanin et al. [CMF*14] use
edge bundling between different list columns as a clutter reduction
technique clarifies similarities between different edge types. The au-
thors essentially group edges based on relation type, by clustering
the vertices and altering the clustering based on vertex mode.They
also use a modified edge bundling in their circular layout, which
distinguishes within-mode edges and between-mode edges, see
Figure 10.

Quite naturally, the visualization of edge group structures, as sur-
veyed by Vehlow et al. [VBW17], presents a lot of similarities with
multilayer network visualization and some work cited (e.g. Detan-
gler) can be easily adapted especially for cross layer connectivity
and layer reconfiguration (Task categories A and C).

4.3.3. Matrix-based visualizations

Standard node-link representations of graphs give equal importance
to nodes and links and aim usually to convey structural properties
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Figure 10: Edge bundling as utilized by [CMF*14]. Within cate-
gory edges are routed around the exterior of the circle. Between
category edges are routed via the interior of the circle and bundled.

Figure 11: A simple illustrative example of a matrix visualization
and the corresponding node-link visualization.

Figure 12: A simple illustrative example of a hybrid approach,
mixing both matrix and node link in a single visualization.

of the graph at hand. They may, however, be difficult to read, due
to edge clutter, for moderate size graphs, and for the more complex
networks encountered in many real usage scenarios. When dealing
with large and/or dense graphs, matrix-based representations were
found to be more readable than node-link diagrams [GFC05] for
many tasks, except path finding. They have also been shown to out-
perform node-link visualizations for some tasks concerning clusters

of nodes [OJK18]. Matrix-based visualizations consist of laying out
nodes as the rows and columns of a 2-way table. A link between two
nodes is often represented as a rectangle at the intersection of the
associated row and column, as illustrated in Figure 11. This avoids
altogether the edge clutter problem of standard node-link represen-
tations. Colour is often used to encode the weight of the links, when
link attribute values are available. This makes matrices very similar,
if not identical in essence, to heat map views frequently used in
biology and other domains [WF09]. Other visual designs include
using circles at the intersection of rows and columns with size and
colour encoding link attribute values, as in [CMH12]. Matrix repre-
sentations have been used to visualize homogeneous graphs (nodes
of one type), e.g. in software engineering [VH03], and bipartite (or
2-mode) graphs, e.g. in software performance tuning [GCFJ05]. In
the latter work by Ghoniem et al., the analyst needed to compare the
graph structure and edge weight distribution before/after a software
revision by contrasting the corresponding matrix representations,
and also to monitor the runtime behaviour of the software through
the animation of the matrix representation as the graph structure and
edge weights changed over time.

The ability to detect link patterns in a matrix view is conditioned
by the use of an appropriate ordering of rows and columns. Various
seriation algorithms [Che02, Lii10, Fek15] reorder the rows and
columns of the matrix to create dense rectangular blocks of links.
Community detection in a bipartite graph consists in finding groups
of nodes in one layer which are densely connected to groups of nodes
found in the second layer (Task category A). Two-way hierarchical
clustering is commonly used with biological data for this purpose.
The BicOverlapper system [STQ08] uses bi-clustering methods to
find such relationships between groups of genes and related groups
of medical conditions. On the visual side, BicOverlapper uses coor-
dinated multiple views, one of which employs convex hulls within
a standard node-link representation to materialize groups of genes,
akin to the notion of elementary layers described in Section 4.2. The
overlapping convex hulls are meant to support the identification of
commonalities and differences between layers (Task categories B
and D2).

In the presence of multiple layers, the comparison of link patterns
between many pairs of layers may be useful to the analyst (Task cat-
egory A). Laying out small multiples of matrix views side by side is
one approach. Liu and Shen [LS15] investigate several possible jux-
taposition strategies, and assess their usability with multi-faceted,
time-varying networks. MuxViz [DDPA15] uses matrices to sum-
marize layer-level statistics, as a means to convey a notion of layer
similarity to the analyst (Task categories A, B, D1 and D2). In an
evaluation by Alper et al. [ABHR*13], which focused specifically
on weighted graphs in the context of brain connectivity analysis,
matrix visualizations were shown to perform better for comparison
tasks than node-link visualizations.

4.3.4. Hybrid approaches

Recent work has been exploring the integration of multiple visual-
ization techniques in an effort to better grasp underlying data [JE12],
see Figure 12 for an illustrative example. Although matrices have
been shown superior to node-link diagrams for dense networks,
the latter may facilitate the tracking of edge directions. In this
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Figure 13: Graph thumbnails generated to compare the structure
of two graphs generated in the analysis of protein interaction net-
works, taken from [YDK*18]. The colour and size of the circles
represent structural information in a hierarchical decomposition of
the graphs.

spirit, NodeTrix [HFM07] mixes node-link views with matrix-
based visualizations to support typically locally dense social net-
works. While NodeTrix is not explicitly a multilayer network vi-
sualization technique, it is the first hybrid approach that focused
specifically on network visualization. Since its inception, the idea
has been extended by other techniques to support other types of
data, such as compound graphs [RMF12]. Although they do not
always focus on visualizing multilayer networks, such approaches
could also be directly reused or adapted to support multilayer net-
works. VisLink [CC07], for instance, allows visualizing a data
set using multiple representations at once, also explicitly display-
ing the cross-view links. Using the technique, one layer could be
used for each representation, and inter-layer links could be high-
lighted (Task category A). Adopting another perspective, Hybrid-
Vis [LWYZ17] allows using the same kind of representation, but
for different levels of details (or hierarchical scales). In this case,
a node-link view may include some levels that are shown as ex-
panded, and other levels are shown as collapsed (Task category C).
With additional views (histograms, parallel coordinates), more de-
tails on level attributes can also be obtained (Task categories D1
and D2).

4.3.5. Structural summary visualizations

For some graph comparison tasks, where detailed inspection of lo-
cal structure is not required and only an overview is necessary, a
summary approach not showing individual nodes or edges can be
taken. In the Graph Thumbnail representation [YDK*18], a graph
is decomposed hierarchically using what the authors refer to as a
K-core component clustering, or KC3, decomposition. In this de-
composition in which the top two layers of the hierarchy are defined
by the single and bi-connected components of the graph, respec-
tively, the third level consists of three cores within a bi-connected
component, and the subsequent levels are defined by k-cores (where
k ≤ 3). The hierarchical decomposition is visualized using a hi-
erarchy of circles, positioned using a circle packing algorithm and
adorned with further node and edge distribution information, as seen
in Figure 13. This type of visualization reveals structural informa-
tion about a network, allowing for rapid comparison of networks,
and can be easily applied to the comparison of layers in a multilayer
network (supporting Task category D2).

Figure 14: The list view of the Manynets application [FPSG10],
summarizing attributes of networks using bar charts. The vertical
bar charts show the distribution of attribute values and the green
and red stacked horizontal bar is a combined score based on several
inputs.

Other existing systems also provide the ability to view
graph structure information as a form of summary visualization.
ManyNets [FPSG10] is an approach that uses simple attribute based
visualizations, such as bar charts and histograms, as a means of
summarizing and comparing networks, as seen in Figure 14. The
simple charts show metrics that describe the structure of the graph.
The set of charts describing a network is referred to as a ‘network-
fingerprint’ and the tabular presentation allows for easy comparison
and sorting across networks (or layers, depending on the nomencla-
ture chosen). The annular visualization of MuxViz [DDPA15] also
allows for comparison of structure across layers (see Section 4.5).
In general, structural visualizations are used to compare graphs, and
hence can be used to compare layers (Task categories D1 and D2).
For a complete taxonomy of visual comparison in information vi-
sualization, see the work of Gleicher et al. [GAW*11].

4.4. Interaction approaches

The discussion about user interactions may be grounded in Yi et al.’s
categorization of interaction techniques [YaKS07]. According to
Hascoët and Dragicevic [HD12], multilayer network visualizations
may support user interaction at the level of individual network
elements (e.g. individual nodes and links), and at the level of
whole layers whether single layers or groups of layers (Task cat-
egory C). They argue that layer-level interactions require a visual
affordance [Nor13]. In particular, their system, called Donatien,
supports the Yi et al.’s reconfigure and explore interactions.

4.4.1. Node-level and link-level interactions

Traditional interactions include:

� selection: point and click selection, lasso selection of nodes;
� filtering: keeping/removing nodes or links based on attribute

values;
� navigation: to visually inspect a fragment of the visual represen-

tation using zoom and pan, or context+detail techniques (e.g.
fisheye distortion or magic lenses).
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Figure 15: A screenshot from Detangler [RMM15] showing how nodes (left panel) relate to layers (right panel). Selecting layers (lasso)
trigger the selection of nodes they involve (red nodes, left panel).

These have obviously been used widely with standard node-link
representations, and are directly applicable one layer at a time in the
context of multilayer networks.

The Detangler approach [RMM15] combines two distinct syn-
chronized visual representations. A first panel (Figure 15, left) dis-
plays the overall network connectivity through a node-link view be-
tween nodes of all layers. Another panel (right) displays a node-link
view showing how layers interact (where interaction is measured
and inferred in an ad hoc, domain-dependent, manner). Detangler
supports a ‘leapfrogging’ interaction: the selection of nodes in the
left panel automatically triggers the corresponding layers in the
right panel (Task category A). Leapfrogging (executed by double-
clicking the selection lasso) expands the original selection to in-
clude all nodes (Boolean OR) involved in any one of the layers
that were selected; or restricts the original selection to nodes in-
volved in all layers that were selected from the layer view (Boolean
AND).

4.4.2. Layer-level interactions

Interacting with entire layers is more relevant to the present discus-
sion and ties back to layer-level tasks described earlier in Section 4.1
(Task categories D1 and D2). The Donatien system offers three dif-
ferent spatial organizations of layers: (1) small multiples, (2) stack-
ing the layers on top of each other and (3) animation. Starting from
the small multiples view, the analyst can drag and drop a layer onto
another one, to stack them and more easily compare their elements
based on the distinctive layer colour. In the stacked mode, a set of
title bars provides an affordance to reorder the layers in the stack
interactively. The title bars also include reconfiguration tools, e.g.
choices of layout algorithms that are applied to the layer being ma-
nipulated or to the whole stack of layers. Crossing-based interaction
across the set of title bars is used to achieve flipbook animation, also
for the sake of comparison across layers. This seems quite a natural
approach when the layers are defined as consecutive snapshots of
a dynamic network. Also, in the stacked mode, Donatien clusters
nodes from different layers together based on their spatial proximity
in the pixel space. The analyst is able to edit the resulting clusters
interactively by pulling a node out, or by dragging and dropping a
node on another node (or group of nodes) to merge them. Merged
nodes carry a colour-coded pictogram relating them to the layers
they occur in.

Figure 16: A screenshot from MuxViz [DDPA15] showing the val-
ues for a centrality across layers. Each ring specifies a different
layer.

More structured layer organizations may prove to be necessary,
e.g. a hierarchy of layers. This ensues from the concepts of aspects,
layers and elementary layers put forth by Kivelä et al., but also
from many real application needs. From an interaction perspective,
merging layers together or splitting them apart becomes a matter of
collapsing or expanding their parent node in that layer hierarchy. In
this vicinity, the Ontovis system [SMER06] uses an ontology visu-
alization to steer the associated network visualization. An ontology
could be seen as an artefact representing the layer structure of a
multilayer network.

The OnionGraph application [SLT*14] provides a hierarchical
focus and context approach targeted specifically towards heteroge-
neous data. The hierarchy provides different levels of abstraction
based on node type, role equivalence and structural equivalence. In
their example use case, using an academic publication data set, the
heterogeneity of the data is derived from node types, and edges only
exist between certain node types. There is no formal layer definition
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and the abstraction used to provide the hierarchical focus and con-
text is applied across all data types and does not fully consider the
heterogeneity of the data. Such abstractions could be adapted to be
applied on a per layer basis. This could be very useful in multilayer
systems, particularly for comparison of complex layers.

4.5. Attribute visualization

As with standard network data, node and edge entities in multilayer
networks may have many attributes, either categorical or numeri-
cal, associated with them. However, within a multilayer network,
attributes of nodes are not only considered within a single net-
work context.

4.5.1. Numerical attributes

Attributes need to be considered across layers, and attribute values
(especially for numerical attributes) may change across layers, es-
pecially if the attributes are derived from graph metrics, which may
be calculated on a per layer basis. An example of this can be seen in
the MuxViz toolkit [DDPA15]. Here, the authors use an annular ring
visualization approach, which shows the values of metrics across
layers, with each ring representing a layer, or in some cases a differ-
ent centrality for a specific layer, see Figure 16 (Task category D1
or D2).

This basic approach involves completely separating the at-
tribute visualization from the graph structure. To better relate the
relationship between networks structure and attributes, the attributes
may be integrated into the network visualization itself (referred to as
augmented network visualization by [DMR16a, RM15]) or a linked
view brushing approach maybe taken, by which the relevant related
nodes would be highlighted in a network view, when selected in the
attribute visualization and vice versa (Task category B).

The standard multivariate visualization of parallel coordinates
is also a suitable basic visualization technique. In the case where
the graph is multiplex, and nodes appear in all layers, the different
axes can represent a specific layer attribute. Heat maps may also be
adapted for a multilayer use case. For example, the temporal heat
maps of Grottel et al. [GHWG14] are made suitable for multilayer
attribute visualization, by using graph layers instead of time slices
for each column (see Figure 17).

The approach used for attribute visualization relies heavily on the
task the user is performing. For example, a scatter-plot matrix is one
technique by which attributes may be summarized, possibly even
across layers. However if the user’s goal is to understand correla-
tions of attributes across layers, an approach such as the modified
multilayer version the scatter-plot staircase (SPLOS) of Viau et al.
[VMCJ10] may be more efficient in terms of comprehension and
space. In this approach, scatter-plots of the attributes are ordered
pairwise based on correlation and common axes.

Attribute visualization can also be combined with interaction
within the context of multilayer graph visualization, to help bet-
ter understand the connection between layers. The Detangler ap-
plication [RMM15] visualizes the level of entanglement of a se-
lected set of nodes by colouring the selection lasso (an attribute

Figure 17: The temporal heat map of [GHWG14] showing changes
in attribute values over time slices.

measuring internal cohesion of a group—as opposed to group iner-
tia or entropy [Sha48], also proposed in [BNL14]).

Attributes should not be considered only at a per node level.
Aggregation is an important feature of GraphTrail [DHRL*12]
an application which focuses on exploring multivariate heteroge-
neous networks. It eschews standard network visualization encod-
ings, such as node-link and matrix, in favour of aggregate attribute
visualizations using a hybrid approach bar charts combined with
arc diagrams. Such an approach is beneficial to the characterization
and understanding of layers and their interactions. As described
in Section 4.3.5, attribute-based visualization can also be used to
summarize the structure of a network and allow for network (or
layer) comparison, as done by ManyNets [FPSG10], as seen in
Figure 14.

4.5.2. Categorical attributes

An interesting example of categorical multivariate data in a single
layer, which could be extended for multilayer visualization can be
seen in the multivariate graph analysis tool of Pretorius and van
Wijk [PVW08]. Their approach uses icicle plots to describe the
(hierarchical) categorical attributes of the source and target of a
set of directed edges. The source icicle plot is on the left side of
the screen and the one for the target nodes is on the right, with
the edge and their associated data drawn in the middle. Such an
approach may be easily adapted to compare categorical labels across
layers (Task category B). Combined with edge bundling, as done
by Holten [HVW08] with Hierarchical edge bundling, it could also
be used to examine structural and categorical attribute difference
between layers simultaneously (Task categories B and D2).

It is also possible to consider categorical attribute data as a
network layer in and of itself. For example, in the application
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OntoVis [SMER06], Shen et al. use a node ontology graph to query
a large heterogeneous social network data set. The node ontology
graph reflects the disparity of the attribute (how well distributed it
is across nodes), and its edges display frequency of links between
the entities. It acts both as a visualization of aggregated categorical
data, and a layer by which the data set can be better interacted with
and understood.

4.6. Empirical evaluation

Many of the multilayer network visualization papers from the
information visualization domain described here are either
system papers, e.g. [RMM15, KRD*15] or design studies,
e.g. [GKL*13]. Evaluation frequently involves user feed-
back [GKL*13, DHRL*12], visualization expert review [SLT*14]
and usage scenarios [DHRL*12, RMM15]. There is a dearth of
low-level empirical evaluations specific to multilayer network
visualizations, although this is partially because there are few
clearly low-level tasks defined, and there is also a lack of existing
techniques to compare them with. For example, a novel interaction
like that of Detangler [RMM15] cannot be compared directly to any
other technique. Therefore, an empirical comparison of user per-
formance at a related low-level task is simply not practical. Within
domains external to those related to information visualization, there
is less demand for performing a thorough evaluation of systems or
techniques, so authors may just demonstrate the techniques with a
suitable data set, e.g. [CMF*14]. The MuxViz application displays
layers in a 2D plane in a 3D visualization (a.k.a. 2.5D), in one of
the many types of visualization it offers. However, as mentioned
earlier, no empirical evaluation has ever shown such use of 3D
graph visualization to be beneficial, with the exception of when
viewed with stereo and/or motion or depth cues [WM08, GPK12].

5. Discussion and Open Challenges

The goal of this report is a review of a large set of tools and tech-
niques to support the increasing demand for the visualization of
multilayer networks. Many of the interesting ideas come from re-
lated concepts, such as multivariate and faceted visualization; how-
ever, neither of these concepts fully encompasses the multilayer
network model. The existing techniques provide a starting point;
however, as a result of the complexity of the systems modelled as
multilayer networks, there are still many novel tasks that need to be
addressed (Section 5.1), possible improvements for modelling lay-
ers (Section 5.2), visualization and interaction gaps that need to be
filled (Sections 5.3–5.5) and empirical user evaluations to be made
(Section 5.6).

5.1. Multilayer networks task taxonomy

Tasks are a motivating force for multilayer network visualization
as a topic. There are many existing task taxonomies that cover
network visualization as discussed in Section 4.1. Our taxonomy
of tasks extends these existing taxonomies. The taxonomy of Lee
et al. [LPP*06] considers graph comparison as a high-level task not
covered by their taxonomy. In the definition of multilayer networks,
layers become an integral part of the structure and as a result, layer-

related tasks can no longer be considered abstract or high level.
They are as fundamental part of a graph task taxonomy as nodes
and edges. However, these aspects of Lee et al.’s taxonomy can be
applied to the graph entities within each layer.

5.2. Data definition

As mentioned in Section 4.2, many of the approaches, particularly
from the information visualization domain, did not explicitly men-
tion that the data were a multilayer network. An important part of
understanding the data is determining what aspects (and hence lay-
ers) need to be visualized to support the users goals as early in the
design process as possible. As described in Section 2.1, layers can
be considered a characteristic of the multilayer system as a whole,
defined either by a physical reality or the system being modelled.
However, there are still multiple ways to determine the set of layers
for analysis.

5.2.1. Modelling of real-world concepts from the data

Real systems often begin with raw data and not a graph. However,
in many of the papers, we have reviewed that the systems are pre-
sented with fully organized and cleaned data sets, e.g. [KRD*15,
SLT*14]. Within the application domains, generating a multilayer
data set for analysis is often a significant focus of the work [Duc17,
ZB16, GB15] independent of visualization. It is already recognized
that creating a general purpose graph from real data is a chal-
lenge [KHP*11, SPEB18], and doing so across multiple layers can
be considered even more challenging. Existing approaches [HP14,
SPEB18] consider the problem from a general graph point of view
and could be developed further to consider graph aspects and
layer definition.

5.2.2. Entities that encode layer definitions

When modelling layers, it is easy to consider a node-type attribute
to characterize an aspect and encode data into layers. However, it
is worth emphasizing that there are many other options. Multiple
aspects can be combined together, e.g. in the biological domain, one
aspect could be omics level and another could be species, resulting in
layers that describe an omics level for a specific species. Edge types
are used in many cases to generate layers (usually in multiplex cases
such as [RMM15, Duc17]). It is worth remembering the advice of
Kivelä et al., and be ‘creative’.

5.2.3. Analytical generation of layers

The raw data may not map to the real-world concepts embodied
in a system and may require some processing. If layers are not
immediately forthcoming, a clustering approach might reveal struc-
ture not explicitly encoded in the data. Consider the example of a
predator–prey network, a topological clustering may group animals
based on geography even if geography is not explicitly encoded in
the data. While the process is analytical, it still results in a layering
that reflects the reality of the system being modelled. Projection
is another means by which layers can be created. Bipartite sys-
tems can be analysed by projecting on a node type [LMDV08]. For

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



142 F. McGee et al. / Multilayer Network Visualization STAR

example, a bipartite author–paper network, where researchers are
connected to papers that they authored. A projection on the paper
node-type results in a co-authorship network of researchers, where
two researchers are connected if they ever authored a paper. Such
an operation may be adapted to a multilayer user case. Degree of
interest (DOI) functions suggest nodes for inclusion based on what
the user has already characterized as interesting. This approach has
already been used by the Refinery application and may also be
applied to data sets that are explicitly multilayer [LMP17].

5.3. Visualization approaches

As seen in Section 4.3, there are a wide range of existing visual-
ization techniques which can used for, or adapted to, visualizing
multilayer networks. There are many aspects of multilayer network
visualization that are opportunities for immediate investigation with
respect to visualization.

Hybrid visualizations, as discussed in Section 4.3.4, are tech-
niques which can be exploited for multilayer network visualization.
Only a small subset of the range of approaches discussed through-
out Section 4.3 have been combined and hybridized, meaning that
there are many potential options still to be investigated to support
multilayer tasks.

The need to address tasks related to cross-layer entity comparison
also means that there may be interesting opportunities with respect
to edge routing and visualization. The approach used by [CMF*14]
is not developed much beyond the original edge bundling algorithm
of Holten and van Wijk, while the bundling of [BISP16] focuses on
edge routing in the case where the nodes and edges of all layers are
presented in a single node-link diagram.

Within this report, we have intentionally avoided focusing on
more complex data modelling approaches such as hyper-graphs.
However, it is worth noting that in many applications, particularly
within biology, data sets are explicitly modelled as hyper-graphs,
e.g. the Systems Biology Graph Notation (SBGN) [LNHM*09] that
is often used to describe biological pathways. Representing hyper-
edges in a multilayer context (particularly if endpoints belong to
discrete layers) is an interesting open challenge.

Some multilayer data sets also contain a temporal aspect,
e.g. [GB15], and there has been much work done in the field of com-
plex systems on the dynamics of multilayer networks [BBC*14].
However, integration between temporal and other aspects for dy-
namic multilayer networks may still offer opportunities for novel
visualization techniques.

5.4. Interaction approaches

Multilayer network-related tasks and exploration may require novel
interaction techniques. As described in Section 4.4, Detangler is one
example of an interaction technique to support multilayer network
exploration (Task categories A, C and D). The Donatien application
of [HD12] supports interaction techniques related to comparison
of multiple layers (Task category D2 in our taxonomy), and defin-
ing layers for comparison (Task category C). However, there is
still a large design space to be explored for multilayer use cases,

particularly inter-layer exploration (Task category D) and layer cre-
ation/manipulation (Task category C).

5.5. Attribute visualization

Attribute visualization is important for understanding the differ-
ences in attribute values for the same node in different layers, and
understand differences at the layer level via aggregation or sum-
marization. However, many existing techniques can be adapted rel-
atively easily to the multilayer case, as seen in Section 4.5. The
most novel attribute visualization, seen in the Detangler [RMM15]
system, is related to a multilayer interaction technique that uses a
multilayer metric. Many classical network centralities have been
adapted for the multilayer network use case [DSRO*13, KAB*14].
While MuxViz [DDPA15] does include some visualization of these
types of attributes, as shown in Figure 16, there is much opportu-
nity for novel attribute visualization considering multilayer central-
ities, integrated into network visualizations, to support cross-layer
comparisons incorporating both attributes and structure (Task cate-
gories D1 and D2).

5.6. Evaluation

Task taxonomies are widely accepted to be useful for the evalua-
tion process [KK17] and the tasks described in Section 4.1 should
support the evaluation of multilayer visualization systems and tech-
niques. As described in Section 4.6, there is a lack of empirical eval-
uation for multilayer network visualizations. Crowdsourcing offers
a lot of promise for information visualization [BLB*17], particu-
larly for evaluation. A recent survey [BMB*18] of evaluation using
crowdsourcing in information visualization has shown that while
the majority of evaluated tasks are simple, more complex (and syn-
optic) tasks are possible. Many existing crowdsourcing platforms
do not lend themselves to tasks that are highly interactive; however,
the development of new platforms driven by academic needs, such
as suggested by [HJR*17], may simplify evaluating more complex
tasks. Crowdsourcing may be useful to address the lack of evalu-
ation for approaches to multilayer network visualizations, but the
complexity of the tasks and the data sets, for the moment, makes
it challenging.

6. Conclusion and Road Map for Future Research

With this paper, we have presented a survey showing the state of the
art of visualization of multilayer networks within both the domain
of visualization, and others. We have shown that multilayer network
problems are at the intersection of domain and data. There are many
existing techniques that address many aspects of multilayer network
visualization that may be used in many situations.

We have also identified aspects that require further research. We
have identified categories of tasks, not covered by existing net-
work task taxonomies, and have identified immediate opportuni-
ties for research on multilayer network visualization. We believe
that the visualization of multilayer networks will play an important
role in the future of network visualization and by working closely
with the field of complex systems and the application domains we
can uncover, and find solutions, to many new visualization-related
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challenges. As the field of complex networks grows, more appli-
cation domains will take advantage of the ability to better model
and handle the complexity inherent in the systems being studied.
Bringing the visualization community closer to the application do-
mains communities, as well as the complex systems communities,
will result in improved outcomes for all involved. Organizing in-
terdisciplinary workshops and seminars that include representatives
from all communities was found to foster innovation in both sci-
ence and technology [Kos99]. As experts from various backgrounds
get together, they will encounter new and interesting challenges
and will need novel visualization (and visual analytics) approaches
to address these problems. Such interdisciplinary gatherings need,
however, to follow certain guidelines to maximize their benefit and
avoid common pitfalls [BDW15]. In our opinion, the road map for
future research starts by the following:

Re-framing user needs and data as multilayer network
problems. Kivelä et al. discuss the range of data definitions (het-
erogeneous, multiplex, etc.) that are covered by their framework.
Re-framing a user’s problem with these descriptions may prevent
commonalities between problems being obscured by nomenclature,
but more importantly, it will give the visualization researchers more
exposure to application domain researchers addressing multilayer
network problems.

Closer interaction with the applications domain communities.
Consolidating and refining multilayer network tasks with the typol-
ogy of Munzner and Brehmer [BM13] and developing higher level
task descriptions with the domains will allow for a better under-
standing of both the core elements of problems across domains and
the full range of solutions available.

Closer interaction with the complex systems community. To
better understand the data, closer interaction with the complex sys-
tems community will allow for the use of novel analytic approaches.
multilayer analytics have not been fully exploited in support of vi-
sualization, and we have only touched on a few key aspects in this
survey. There is a vast amount of new multilayer network analytics
which may be part of the answer to the visualization challenges that
arise from the application domains.
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[HD12] HASCOËT M., DRAGICEVIC P.: Interactive graph matching and
visual comparison of graphs and clustered graphs. In Proceedings
of the International Working Conference on Advanced Visual
Interfaces (Capri Island, Italy, 2012), AVI ’12, ACM, pp. 522–
529. https://doi.org/10.1145/2254556.2254654.

[HEAE16] HUMAYOUN S. R., EZAIZA H., ALTARAWNEH R., EBERT A.:
Social-circles exploration through interactive multilayered chord
layout. In Proceedings of the International Working Conference
on Advanced Visual Interfaces (AVI) (Bari, Italy, 2016), ACM,
pp. 314–315. https://doi.org/10.1145/2909132.2926072.

[HFM07] HENRY N., FEKETE J. D., MCGUFFIN M. J.: Nodetrix: A
hybrid visualization of social networks. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007), 1302–1309.
https://doi.org/10.1109/TVCG.2007.70582.

[HJR*17] HIRTH M., JACQUES J., RODGERS P., SCEKIC O., WYBROW

M.: Crowdsourcing technology to support academic research. In
Evaluation in the Crowd. Crowdsourcing and Human-Centered
Experiments. Vol. 10264 of Lecture Notes in Computer Science.
D. Archambault, H. Purchase and T. Hoßfeld (Eds.). Springer
International Publishing, Berlin, Germany, 2017, pp. 70–95.
https://doi.org/10.1007/978-3-319-66435-4_4.

[HMB14] HALU A., MUKHERJEE S., BIANCONI G.: Emergence of over-
lap in ensembles of spatial multiplexes and statistical mechanics
of spatial interacting network ensembles. Physical Review 89
(January 2014), 012806. https://doi.org/10.1103/PhysRevE.89.
012806.

[Hol06] HOLTEN D.: Hierarchical edge bundles: Visualization of
adjacency relations in hierarchical data. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (September 2006),
741–748. https://doi.org/10.1109/TVCG.2006.147.

[HP14] HEER J., PERER A.: Orion: A system for modeling, trans-
formation and visualization of multidimensional heterogeneous
networks. Information Visualization 13, 2 (2014), 111–133.
https://doi.org/10.1177/1473871612462152.

[HS09] HEATH L. S., SIOSON A. A.: Multimodal networks: Struc-
ture and operations. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB) 6, 2 (2009), 321–332.
https://doi.org/10.1109/TCBB.2007.70243.

[HSS15] HADLAK S., SCHUMANN H., SCHULZ H.-J.: A sur-
vey of multi-faceted graph visualization. In Eurograph-
ics Conference on Visualization (EuroVis) (Cagliary, Italy,
2015), The Eurographics Association, pp. 1–20. https://
doi.org/10.2312/eurovisstar.20151109.

[HTA*15] HUANG D., TORY M., ASENIERO B. A., BARTRAM L., BATE-
MAN S., CARPENDALE S., TANG A., WOODBURY R.: Personal visu-
alization and personal visual analytics. IEEE Transactions on
Visualization and Computer Graphics 21 (2015), 420–433.

[HVW08] HOLTEN D., VAN WIJK J. J.: Visual comparison of hierar-
chically organized data. Computer Graphics Forum 27, 3 (2008),
759–766. https://doi.org/10.1111/j.1467-8659.2008.01205.x.

[ID90] INSELBERG A., DIMSDALE B.: Parallel coordinates: A tool
for visualizing multi-dimensional geometry. In Proceedings
of the 1st IEEE Conference on Visualization: Visualization
‘90 (San Francisco, CA, USA, October 1990), pp. 361–378.
https://doi.org/10.1109/VISUAL.1990.146402.

[JE12] JAVED W., ELMQVIST N.: Exploring the design space of com-
posite visualization. In Proceedings of IEEE Pacific Visualization
Symposium (PacificVis) (Songdo, Republic of Korea, 2012), pp.
1–8. https://doi.org/10.1109/PacificVis.2012.6183556.
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[MBvL*17] MÜLLER M., BALLWEG K., von LANDESBERGER T., YIMAM

S., FAHRER U., BIEMANN C., ROSENBACH M., REGNERI M., ULRICH

H.: Guidance for multi-type entity graphs from text collections.
In Proceedings of the EuroVis Workshop on Visual Analytics
(Goslar Germany, Germany, 2017), EuroVA’17, Eurographics
Association, pp. 1–6. https://doi.org/10.2312/eurova.20171111.

[MDG16] MCGEE F., DURING M., GHONIEM M.: Towards visual
analytics of multilayer graphs for digital cultural heritage. In
Proceedings of 1st Workshop on Visualization for the Digital
Humanities (Baltimore, USA, 2016).

[Mel06] MELANCON G.: Just how dense are dense graphs in the real
world?: A methodological note. In Proceedings of the 2006 AVI
Workshop on BEyond Time and Errors: Novel Evaluation Meth-
ods for Information Visualization (Venice, Italy, 2006), BELIV
’06, ACM, pp. 1–7. https://doi.org/10.1145/1168149.1168167.

[MMBd05] MOODY J., MCFARLAND D., BENDER-DEMOLL S.: Dy-
namic network visualization. American Journal of Sociology 110,
4 (2005), 1206–1241. https://doi.org/10.1086/421509.

[MMF17] MURRAY P., MCGEE F., FORBES A. G.: A taxon-
omy of visualization tasks for the analysis of biological path-
way data. BMC Bioinformatics 18, 2 (February 2017), 21.
https://doi.org/10.1186/s12859-016-1443-5.

[Mor53] MORENO J.: Who Shall Survive? (2nd edition). Beacon,
NY: Beacon House Inc., 1953.

[Mun09] MUNZNER T.: A nested process model for vi-
sualization design and validation. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 921–928.
https://doi.org/10.1109/TVCG.2009.111.

[Nor13] NORMAN D.: The Design of Everyday Things: Revised and
Expanded Edition. Basic Books, New York, 2013.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://doi.org/10.1007/978-3-642-41281-3_7
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1007/978-3-319-06793-3_4
https://doi.org/10.1186/1752-0509-7-64
https://doi.org/10.1186/1752-0509-7-64
https://doi.org/10.1002/sam.10071
https://doi.org/10.1016/j.socnet.2007.04.006
https://doi.org/10.1038/nbt.1558
https://doi.org/10.1016/S0378-8733(99)00002-7
https://doi.org/10.1016/S0378-8733(99)00002-7
https://doi.org/10.1145/1168149.1168168
https://doi.org/10.1145/2702123.2702217
https://doi.org/10.1145/1518701.1518896
https://doi.org/10.1016/j.jvlc.2017.03.008
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.2312/eurova.20171111
https://doi.org/10.1145/1168149.1168167
https://doi.org/10.1086/421509
https://doi.org/10.1186/s12859-016-1443-5
https://doi.org/10.1109/TVCG.2009.111


148 F. McGee et al. / Multilayer Network Visualization STAR

[OJK18] OKOE M., JIANU R., KOBOUROV S. G.: Node-link or
adjacency matrices: Old question, new insights. IEEE Trans-
actions on Visualization and Computer Graphics (2018), 1.
https://doi.org/10.1109/TVCG.2018.2865940.
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ZECKZER D.: Heterogeneous networks on multiple levels. In
Multivariate Network Visualization: Dagstuhl Seminar #13201,
Revised Discussions (Dagstuhl Castle, Germany, May 12–
17, 2013), A. Kerren, H. C. Purchase and M. O. Ward
(Eds.). Springer International Publishing (2014), pp. 175–206.
https://doi.org/10.1007/978-3-319-06793-3_9.
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