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a b s t r a c t 

Deep learning-based convolutional neural networks have recently proved their efficiency in providing fast seg- 

mentation of major brain fascicles structures, based on diffusion-weighted imaging. The quantitative analysis of 

brain fascicles then relies on metrics either coming from the tractography process itself or from each voxel along 

the bundle. 

Statistical detection of abnormal voxels in the context of disease usually relies on univariate and multivariate 

statistics models, such as the General Linear Model (GLM). Yet in the case of high-dimensional low sample size 

data, the GLM often implies high standard deviation range in controls due to anatomical variability, despite the 

commonly used smoothing process. This can lead to difficulties to detect subtle quantitative alterations from a 

brain bundle at the voxel scale. 

Here we introduce TractLearn , a unified framework for brain fascicles quantitative analyses by using geodesic 

learning as a data-driven learning task. TractLearn allows a mapping between the image high-dimensional domain 

and the reduced latent space of brain fascicles using a Riemannian approach. 

We illustrate the robustness of this method on a healthy population with test-retest acquisition of multi-shell 

diffusion MRI data, demonstrating that it is possible to separately study the global effect due to different MRI 

sessions from the effect of local bundle alterations. We have then tested the efficiency of our algorithm on a 

sample of 5 age-matched subjects referred with mild traumatic brain injury. 

Our contributions are to propose: 

1/ A manifold approach to capture controls variability as standard reference instead of an atlas approach 

based on a Euclidean mean. 

2/ A tool to detect global variation of voxels’ quantitative values, which accounts for voxels’ interactions in 

a structure rather than analyzing voxels independently. 

3/ A ready-to-plug algorithm to highlight nonlinear variation of diffusion MRI metrics. 

With this regard, TractLearn is a ready-to-use algorithm for precision medicine. 

a

h

R

A

1

(

Abbreviations: TWI, Track-weighted imaging; GLM, General linear model; HDLSS, H

nd Projection. 
∗ Corresponding author at: Neuroradiology and MRI, Grenoble Alpes University Ho

E-mail address: arnaudattye@gmail.com (A. Attyé). 

ttps://doi.org/10.1016/j.neuroimage.2021.117927 

eceived 20 May 2020; Received in revised form 25 February 2021; Accepted 1 Mar

vailable online 6 March 2021 

053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access 

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
igh dimensional low sample size data; UMAP, Uniform Manifold Approximation 

spital, Grenoble, France. 

ch 2021 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2021.117927
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.117927&domain=pdf
mailto:arnaudattye@gmail.com
https://doi.org/10.1016/j.neuroimage.2021.117927
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Attyé, F. Renard, M. Baciu et al. NeuroImage 233 (2021) 117927 

I

 

w  

r  

b  

n  

T  

b  

n  

w  

g  

a  

a  

t  

d

 

M  

t  

s  

s  

t  

p  

d  

H  

c  

v  

e  

s

 

M  

i  

f  

o  

u  

t  

W  

c  

a  

o  

w  

d

 

n  

w  

n  

2  

t  

s  

a  

b  

p  

g  

m  

v  

b  

t  

i  

s

 

a  

i

 

M  

t  

F  

t  

R  

t  

g

 

b  

w  

p  

m  

s  

o  

n  

(  

e  

b  

a  

o  

t

 

o  

(  

i  

v  

w  

d  

d  

c

 

s  

(  

r  

o  

w  

c  

i  

m  

j  

r  

a

M

D

 

g

 

h  

a  

(

D

 

t  

a  

c

4  

c  

d  

o  

b  

e  

o

 

T  
ntroduction 

A streamline data-set generated from diffusion MRI provides a

ealth of information regarding structural connectivity between brain

egions in medicine and neurosciences. An elegant approach to segment

rain bundles has recently been proposed, TractSeg, based on a combi-

ation of three convolutional neural networks ( Wasserthal et al., 2019 ).

he first network proposes to segment major bundles using a voxel-wise

inary classification to discern tract and non-tract voxels. The second

etwork allows to learn the start and end regions of each brain fascicle,

hile the last one computes tract orientations mapping to obtain a sin-

le 3D peak vector per voxel. This architecture is then employed to start

 probabilistic tracking algorithm for 72 brain bundles, tested in various

cquisition conditions and on a few disease models. We could consider

his segmentation process as a first step to reduce the dimensionality of

ata coming from a whole-brain diffusion MRI acquisition. 

Usually, group study statistical analyses rely on the General Linear

odel (GLM), a standard tool based on Gaussian distribution assump-

ions that returns for each voxel the mean of the control group. The

ubsequent step is either t-tests (in case of group vs. group studies) or Z-

core (in case of the comparison between one individual versus a group);

his is usually done analyzing each voxel independently. In addition,

recision medicine requires to have algorithms suitable to manage high

imensional low sample size data (HDLSS). A potential limitation of

DLSS is the difficulties to capture all the physiological variation of MRI

ontrasts using a Euclidean mean, leading to high standard-deviation

alues (see supplementary figures 1 and 2, for a simulated illustrative

xample). It can theoretically limit the possibility to distinguish bundle

ubtle quantitative alterations. 

One way to address these two limitations is by manifold learning.

anifold learning is a class of machine learning methods that is gain-

ng success and attracting interest, allowing reconstruction of a mani-

old sub-space to represent, understand and visualize degrees of freedom

f complex quantitative data ( Tenenbaum et al., 2000 ). It is classically

sed before deep learning algorithms to identify outliers, for example

o increase the robustness of images reconstructions ( Zhu et al., 2018 ).

hile classical deep learning algorithms allow to segment, identify, and

lassify imaging features based on big data, a manifold framework usu-

lly requires multiple quantitative biomarkers per region of interest (in

ur case, white matter bundles) to estimate distances between subjects,

hile still remaining applicable to studies with a low number of imaging

ata. 

UMAP (Uniform Manifold Approximation and Projection) is a recent

onlinear manifold learning technique for dimensionality reduction,

hich is constructed from a theoretical framework based on Rieman-

ian geometry approximation and algebraic topology ( McInnes et al.,

018 ). It constructs a high dimensional representation of the data, and

hen optimizes a low-dimensional graph while preserving the structural

imilarity of the data as much as possible, thus providing a Riemannian

pproximation of the original data. It aims at finding the shortest path

etween samples, whose length is called the geodesic distance. Com-

ared to linear dimensionality reduction, geodesic approaches treat the

eometry of all the voxel diffusion MRI metrics contained in brain white

atter bundles as Riemannian manifolds 1 . Therefore, UMAP takes ad-

antage of the Riemannian nature of the manifold when comparing two

undles in a reduced subspace, and the shortest path (here path refers to

he difference in the Euclidian distance between 3-dimensional points

n the reduced manifold) between the two bundles reflects the nonlinear

imilarity between these bundles. 

A Riemannian manifold is a smoothed curved manifold, based on the

ssumption that the surface’s curvature is solely determined by comput-

ng distances over the surface. 

Previously published work on Riemaniann framework for diffusion

RI analysis either exploited the geometry of diffusion tensor images

o propose alternative diffusion MRI metrics (e.g. Batchelor et al., 2003 ;

uster et al., 2014 ) or used it to improve the tractography segmenta-
2 
ion step (e.g. Hao et al., 2014 ; Hauberg et al., 2015 ). Here we use the

iemannian framework for a different approach and will demonstrate

hat usual diffusion MRI metrics can also take advantage of a nonlinear

lobal analysis. 

The information contained in the streamline tractograms can also

e exploited to generate further diffusion MRI metrics using the track-

eighted imaging (TWI) framework (which can have super-resolution

roperties)( Calamante, 2017 ; Calamante et al., 2012 ). For example, TWI

aps can be generated from various properties of the streamlines them-

elves, such as maps related to the number of streamlines in each voxel

r their average length ( Calamante, 2016 ; Pannek et al., 2011 ). Alter-

atively, TWI maps can also be computed from track-weighted version

e.g. an average along the track) of the contrast of an associated param-

ter (e.g. a fractional anisotropy map). The TWI contrast has proved to

e useful for clinical care in providing fast identification of major alter-

tions in brain fascicles (e.g. tumor proliferation ( Barajas et al., 2013 )

r demyelination ( Lyksborg et al., 2014 ). Yet, it might be also relevant

o highlight subtler quantitative alterations at the global level. 

As the quantitative and reliability aspects of the TWI contrast has

nly been investigated in the context of whole brain tractography

 Calamante et al., 2015 ; Willats et al., 2014 ), new test-retest data man-

fold learning analysis would be interesting to compare diseased indi-

iduals to a healthy cohort within a Riemannian framework. In other

ords, we raise the hypothesis that manifold learning can be used to

etect local abnormalities in diffusion MRI metrics of white matter bun-

les, and that the detected abnormalities will be robust to the healthy

ontrol data set used (i.e. test/retest data) as reference. 

Here, we propose a 3-step method to obtain a fast-quantitative analy-

is of brain bundles, through various quantitative diffusion MRI metrics

either standard diffusion MRI metrics or TWI metrics). Firstly, we will

educe the dimensionality of all voxels contained in each bundle, to have

ne point per bundle and subject in a manifold subspace. Secondly, we

ill learn the manifold from the test and the retest session of our healthy

ontrols independently ( Tilquin et al., 2019 ) before projection of each

ndividual patient (mild trauma patients in our study) onto the learned

anifolds. Finally, we propose to apply Riemannian Z-scores to the pro-

ection of a new subject onto the learned manifolds (from the test and

etest sessions) before calculating inter-session agreement to detect local

bnormalities. 

ethods 

ata and code availability statements 

The code for TractLearn is available on https://github.com/

eodaisics/TractLearn 

The code for UMAP ( McInnes et al., 2018 ) is also freely available on

ttps://github.com/lmcinnes/umap and the TractSeg pre-trained DWI

lgorithm, openly available at https://github.com/MIC-DKFZ/TractSeg

 Wasserthal et al., 2018a ). 

ata acquisition 

20 healthy males (mean age 20.9 [SD 3.3] years) were recruited for

he study. Informed written consent was obtained from all subjects in

ccordance with ethical approval from the local human research ethics

ommittee of Bordeaux university (France, IRB number 2016-A00765–

6). MRI data were acquired on a 3 T Siemens Prisma scanner using a 48-

hannel head coil. High angular resolution diffusion imaging (HARDI)

atasets were acquired for each subject over two sessions with a delay

f 12 months. Five age-matched subjects referred with mild traumatic

rain injury (mTBI) were also included with the same MR protocol and

thical statements, for one unique MR session acquired between the time

f the test and retest session for the controls. 

Diffusion-weighted imaging (DWI): single-shot spin-echo sequence;

E/TR: 80/4700 ms; voxel size: 1.5 mm isotropic; 99 slices; multiband

https://github.com/geodaisics/TractLearn
https://github.com/lmcinnes/umap
https://github.com/MIC-DKFZ/TractSeg
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Fig. 1. Overview of the workflow put forward in this work. The bundle-to- 

image conversion ( ∗ ) was obtained in MRtrix either using tckmap (for TW-FOD 

and TWI-FA contrasts) or afdconnectivity (for the AFD-related contrast). The FA 

contrast was obtained directly from the FA map. N represents the number of 

bundles successfully reconstructed using TractSeg. In the example data set in- 

cluded in this study, N = 68 (from the original total 72 TractSeg bundles, see 

Section III1 for further details). 
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1 In MRtrix, afdconnectivity can be used to compute a map of the AFD 

estimated for each voxel, based on the sum of the FOD lobes aligned with 

the direction of the streamlines, divided by the streamline length (see 

https://mrtrix.readthedocs.io/en/latest/concepts/afd_connectivity.html for 

more details). 
actor: 3; scan time: 7.5 min. In addition to 10 non-DWI volumes (which

ere averaged), 3 DWI shells were acquired, each with a different dif-

usion weighting and a unique set of diffusion-weighted directions. The

et of directions was independently generated for each shell by electro-

tatic repulsion, as follow: directions/b-value (in s/mm 

2 ) = 60/2000,

5/800, and 10/300. 

In order to allow pre-processing minimization of distortion artefacts,

wo additional b = 0 s/mm 

2 images were acquired before each HARDI

cquisition, with identical imaging parameters as above, but one had its

hase encoding reversed to allow for susceptibility distortion correction

Holland et al., 2010). 

T1-weighted anatomical images were acquired using the three-

imensional magnetization-prepared rapid gradient echo (3D MPRAGE)

equence (Mugler and Brookeman, 1990) with the following parameters:

56 × 256 × 192 matrix; 0.9 mm isotropic resolution; TE 2.6 ms; inver-

ion time TI 900 ms; TR 1900 ms; flip angle 9° Susceptibility-weighted

maging and 3D-FLAIR sequences were also acquired. 

ata pre-processing 

DWI preprocessing included denoising of data ( Veraart et al., 2016 ),

ddy current correction and motion correction ( Andersson et al., 2003 ),

ias field and Gibbs artefacts corrections ( Tustison et al., 2010 ), and

p-sampling DWI spatial resolution in all three dimensions using cubic

-spline interpolation, to a voxel size of 1 mm isotropic ( Raffelt et al.,

012a ). We have estimated fiber orientation distributions (FODs) using

he Constrained Spherical Deconvolution (CSD) model ( Tournier et al.,

007 ) using group response function (RF); in particular, we used the

ulti-shell 3-tissue CSD variant ( Jeurissen et al., 2014 ). We derived the

H peaks from the FOD maps. Spatial correspondence was achieved by

rst generating a group-specific population template with an iterative

egistration and averaging approach ( Raffelt et al., 2011 ) using FOD

mages from 45 MR scans (5 mTBI, 20 healthy control subjects acquired

n a test session, and 20 healthy control subjects acquired in a retest

ession). Each subject’s FOD image was then registered to the template

ia a FOD-guided non-linear registration ( Raffelt et al., 2011 , 2012a). 

All preprocessing steps were conducted using commands either im-

lemented within MRtrix3 ( Tournier et al., 2019 ) ( www.mrtrix.org ), or

sing MRtrix3 scripts that interfaced with external software packages. 

ractSeg deep learning bundle specific tractography 

We have used the TractSeg pre-trained algorithm, to automatically

dentify 72 white matter bundles in each subject. Briefly, authors have

roposed a custom probabilistic tracking algorithm that samples from

 Gaussian distribution with fixed standard deviation centered on each

pherical harmonic peak. They have used three convolutional neural

etworks (tract segmentation, start/end region segmentation and tract

rientation mapping), all based on U-Net ( Ronneberger et al., 2015 ) that

eceives as input the fiber orientation distribution function (FOD) peaks.

Importantly, for our application, we have warped all the resulting

ractSeg tracks from each individual space into the common FOD tem-

late space, before the subsequent steps of our analysis. 

stimating track-weighted imaging 

As the manifold approach requires an accurate voxel to voxel match-

ng between subjects, we first converted each track file into TWI maps

ased on the number of streamlines (also known as track-density imag-

ng (TDI) maps ( Calamante et al., 2010 )). The objective was to crop the

undle masks, only keeping the voxels with top 80% TDI values (a value

hat was empirically chosen). This allows to decrease potential misreg-

stration of brain bundles between subjects by removing the smallest

ortical terminations, which can be highly variable at the group level. 

Secondly, we computed TWI maps using a Gaussian-smoothed ker-

el for computing the parameter along each streamline; a full-width
3 
alf-maximum kernel was set to 8 mm, as an empirical compromise

etween spatial smoothing (for increase signal to noise) and along-tract

patial blurring (to be able to detect localized effects) ( Calamante, 2017 ;

illats et al., 2014 ). In particular, for the results presented here, we con-

idered two types of TWI maps: TWI based on the Fractional anisotropy

TW-FA), and TWI based on the amplitude of the FOD (TW-FOD) along

he direction of the track ( Willats et al., 2014 ). Finally, for compari-

on purpose of not using the TWI approach, we have extracted from

ach bundle the voxel values from the FA and an FOD related map.

o construct the FOD-related map ( Raffelt et al., 2012b ), we used the

fdconnectivity command in MRtrix, which provides an estimate of the

bre volume of the pathway of interest at each voxel. 1 Fig. 1 shows an

verview of the workflow of the analysis. 

odeling brain fascicles quantitative values with manifold 

earning 

We used a strategy similar to that developed in ( Tilquin et al., 2019 )

o localize an abnormality among TractSeg bundles. Note that while

ractLearn uses a Riemannian framework to estimate the distance be-

ween all diffusion MRI metrics contained in brain bundles, the statis-

ics in the low-dimensional reduced manifold space (for example the

istance between a point corresponding to a patient and a point cor-

esponding to a healthy control in the manifold subspace) are then

erformed following classical Euclidean metrics. Here we assume that

he residuals in the reduced subspaces follow a classic Gaussian law

 Titsias and Lawrence, 2004 ). 

ractLearn can be summarized as follow 

i) Low-dimensional reduction to convert collection of voxels quantita-

tive values from each bundle into a unique point in a manifold sub-

space. To test the effect of dimension reduction on the MRI data, we

http://www.mrtrix.org
https://mrtrix.readthedocs.io/en/latest/concepts/afd_connectivity.html
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performed optimization-based methods. We have chosen the number

of dimension by repeating the reduction process using an increasing

number of dimensions and evaluating whether incorporating more

components achieves a significantly lower value of the loss function

that the method minimizes ( Nguyen and Holmes, 2019 ). 

ii) Here we have used UMAP ( McInnes et al., 2018 ). UMAP is a man-

ifold learning approach, where the degrees of freedom of the data

are captured by the latent variables. Importantly, the structure of

points in the latent space (the reduced space) mimics the structure of

data in the original space. Interpoint distances in the reduced space

reproduce as much as possible interpoint distances in the original

space; Euclidean and geodesic distances are respectively used. We

investigate two issues: (a) interpreting the latent variables, and (b)

determining the effect a change in the latent variables incurs in the

MRI space, i.e. the corresponding changes in identified brain bundles

voxels. 

ii) We learn the manifold based on the data from the healthy controls: 

Y = f(x) + 𝜀 . 

Y being healthy control data in real space (i.e. quantitative values

extracted from each TractSeg bundle), x the corresponding point

in the reduced space, and 𝜀 the residuals; f will be the regression

equation between the reduced space and the real space. 

The projection f of a new subject will correspond to the image closest

to that of the tested subject, while belonging to the manifold of

the healthy controls. 

It is worthwhile to note that, in the Riemaniann framework, f(x)

represents the local mean value (ie. the mean value of the closest

healthy subject) of the tested diffusion MRI metrics in the reduced

space ( Titsias and Lawrence, 2004 ). For a comparison purpose,

the GLM and a Principal Component Analysis (PCA) approach

were also used, based on following equations: 

Y = Euclidean Mean + 𝜀 𝐺𝐿𝑀 

Y = A ( x ) + 𝜀 𝑃𝐶𝐴 

A(x) being a linear matrix in the case of Principal Component Anal-

ysis. 

We have calculated the sum of squared residuals (SSR

Archdeacon, 1994 ) as metric for comparison between the

GLM, PCA and UMAP approaches. SSR is a statistical measure of

the discrepancy between the data ( Y i ) and an estimation model,

here defined: 

𝑆 𝑆 𝑅 = 

∑

𝑖 

(
𝑌 𝑖 − 𝑓 

(
𝑥 𝑖 
))2 

where Y i is the i th value of the variable to be predicted, x i is the i th

value of the explanatory variable, and f(x i ) is the predicted value

of Y i. 

A small SSR indicates a tight fit of the model to the data. It is often

used as an optimality criterion in parameter selection and model

selection. A paired t -test was used to compare UMAP and PCA

from one side, UMAP and the GLM from the other side 

i) The back-projection step was done from the manifold atlas to the

individual MRI space. As the Riemannian atlas has been built to

capture the maximum variability, a new subject projected onto the

learned manifold (for example the projection of one mTBI patient)

will be synthetized using a local average to the closest individuals of

the 20 healthy controls. For the estimation of the local average, we

have used the Nadaraya-Watson kernel for high dimensional non-

parametric regression (Conn and Li, 2017), here defined: 

𝑌 = 

∑
𝑖 𝐾 ℎ 

(
𝑥 − 𝑥 𝑖 

)
𝑦 𝑖 

∑
𝑗 𝐾 ℎ 

(
𝑥 − 𝑥 𝑗 

)

where K h represents a Gaussian kernel of bandwidth h. The training

couples (x i , y i ) includes x as the quantity to regress and y as the

prediction. 
4 
ii) We would like to emphasize that in our framework the residual 𝜀 is

calculated based on the difference between a synthetic bundle (we

estimate the quantitative values coming from one brain bundle based

on local mean values at a given location in the reduced subspace) and

the true bundle quantitative values. 

The selected healthy controls will be those who have closest quanti-

tative values from the tested subject. Consequently, it is expected

that f(x) will be generally less than the Euclidean mean, allowing

𝜀 to be more representative of the pathological changes in the Rie-

mannian framework. Indeed, a classical Euclidean 𝜀 GLM 

does rep-

resent both potential pathological changes and anatomical vari-

ability (i.e. the standard deviation of the mean) ( Tilquin et al.,

2019 ; Vik et al., 2007 ). The choice to work on a manifold (ei-

ther Riemannian or using a more classical linear principal com-

ponent analysis) is to shorten the standard deviation value so that

𝜀 mainly represents the potential disease effect. A visual compar-

ison of standard deviation between the GLM and TractLearn is

provided in supplementary figure 1. 

i) To ensure robustness in our dataset, 𝜀 was estimated using a leave-

one-out (LOO) strategy, by randomly selecting inter and intra-

individual distances in the manifold from the test session. We con-

sider that the residual 𝜀 is representative of the abnormalities present

in a new subject when it is greater than the model variability learned

during the LOO on the healthy control group. A total of 1360 per-

mutation tests were computed in the control group using the LOO.

At this step, we have obtained 𝜀 estimation in all controls allowing a

comparison with the 𝜀 estimated from the 5 mTBI patients. We make

the assumption that 𝜀 follows a multivariate Gaussian distribution

with a standard deviation that varies across the voxels ( Tilquin et al.,

2019 ; Vik et al., 2007 ). 

ii) We finally identified altered voxels in each fascicle in real space

by applying a generalized Z-score, here defined in our Riemannian

framework 1 : 

𝑧 = 

𝑌 − 𝑓 ( 𝑥 ) 
𝜎

Here we assume that Y follows a Gaussian law as follow: N[ f ( x ), 𝜎2 ].

This approach aims at generalizing the classic Z-score formula: 

𝑧 = 

𝑌 − μ
𝜎

where 𝜇 is the Euclidean mean of the population. 

where f(x) is our learned healthy manifold, Y is the raw score (here

he bundle quantitative values) to be converted into a standard score,

nd 𝜎 the standard deviation of the population. 

i) A Bonferroni correction was performed for the testing of a mean of

n voxels tests (dividing the p-value by a factor of n). The number of

n voxels corresponds to all the voxels which are contained in each

TractSeg generated bundles (for example, a bundle of 20,000 vox-

els was analyzed by dividing the p-value by a factor of 20,000). A

Bonferroni-corrected significance threshold of 0.05 was used. Fur-

thermore, we have also generated a synthetic lesion on corpus callo-

sum 3 to illustrate the difference between Z scores in our Riemannian

frameworks and using the GLM (supplementary figure 2). 

Fig. 2 

Fig. 4 

est-Retest statistics 

We have used three strategies to estimate the test-retest reliability of

ach voxel diffusion MRI metric in the TractSeg bundles. 

Firstly, we have calculated intra-class correlation coefficients (ICC)

or the different diffusion MRI metrics by comparing the mean values
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Fig. 2. Example of the right cingulum, showing a minimum mean square error of the reconstructions for a dimension equal to 3. Each point of the curve represents 

a single execution of the TractLearn algorithm with a particular regularization: the x - and y -axes positions are determined by the dimension of the reduced space and 

mean square errors of the reconstruction, respectively. 
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Fig. 3. 2D reduced space of left thalamo-prefrontal bundles. The units of each 

axes are usually arbitrary in dimensionality reduction. Here the TW-FOD met- 

rics are provided as input for TractLearn . In this framework, a point represents 

a collection of TW-FOD values (one per voxel in a given bundle) in the reduced 

subspace. The farther two points are from each other, the more different the 

quantitative diffusion MRI metric values are. Healthy controls are numerated 

from 1 to 20, with green dots representing the test session, and red dots repre- 

senting the retest session 12 months later; the mTBI patients are represented by 

the five blue dots. For most subjects, red and green dots are in close vicinity in 

the manifold, with the black lines representing the “MRI inter-session effect ”. 

The patients bundle collection of diffusion MRI metrics here are located among 

those of the controls, suggesting that there is no or low global difference between 

controls and patients in this randomly selected bundle. 
f all voxels contained in one bundle between the test and the retest

ession. It is a classic approach in which a single-score ICC is based on

 two-way model. A paired t -test was used to compare TW-FA and FA

rom one side, TW-FOD and AFD from the other side. 

Secondly, we have compared the distance between the test and the

etest session in the reduced space for each bundle with the distance

etween the controls and each patient, as illustrated Fig. 3 . 

Finally, we have evaluated the number of injured bundles in the 5

TBI patients depending on the choice of session for training the man-

fold space, i.e. when the test (or retest) session was used to compute

he learned manifold of the healthy group. To allow loss functions com-

arisons (i.e. to statistically compare the inaccuracy of predictions in

etecting the number of lesions between the test and retest session), we

ave considered lesions with at least 5 altered voxels per bundle. 

esults 

ractSeg and diffusion MRI metrics reliability 

All but two bundles (fornix and anterior commissure) of the 72 Tract-

eg brain bundles were successfully reconstructed in all subjects using

ractSeg (Note however that this refers to the success of output from

ractSeg and does not refer to the specific accuracy of each reconstruc-

ion, as no ground truth for those bundles is available). As the anterior

ommissure and the fornix were not robustly reconstructed in all sub-

ects, they have been excluded from further quantitative analyses. 

We have also chosen to study the corpus callosum through the seven

ubparts identified by TractSeg (rather than as a single anatomical struc-

ure), to help with the localization of potential lesions. Our analysis is

herefore restricted to the remaining 68 bundles (all TractSeg bundles

ut left fornix, right fornix, anterior commissure, and non-segmented

orpus callosum). 
5 



A. Attyé, F. Renard, M. Baciu et al. NeuroImage 233 (2021) 117927 

Fig. 4. Radar plots of TractLearn results for patient 5 showing the number of voxels presenting with significant altered Z scores in each bundle, as identified using 

TractLearn based on session 1. 
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The names and abbreviations of each brain bundle are as follow

 Wasserthal et al., 2018b ): Arcuate fascicle (AF), Anterior thalamic ra-

iation (ATR), Corpus callosum (Rostrum (CC 1), Genu (CC 2), Rostral

ody (CC 3), Anterior midbody (CC 4), Posterior midbody (CC 5), Isth-

us (CC 6), Splenium (CC 7)), Cingulum (CG), Corticospinal tract (CST),

iddle longitudinal fascicle (MLF), Fronto-pontine tract (FPT), Inferior

erebellar peduncle (ICP), Inferior occipito-frontal fascicle (IFO), Infe-

ior longitudinal fascicle (ILF), Middle cerebellar peduncle (MCP), Op-

ic radiation (OR), Parieto-occipital pontine (POPT), Superior cerebellar

eduncle (SCP), Superior longitudinal fascicle I (SLF I), Superior longi-

udinal fascicle II (SLF II), Superior longitudinal fascicle III (SLF III),

uperior thalamic radiation (STR), Uncinate fascicle (UF), Thalamo-

refrontal (T PREF), Thalamo-premotor (T PREM), Thalamo- precen-

ral (T PREC), Thalamo-postcentral (T POSTC), Thalamo-parietal (T

AR), Thalamo-occipital (T OCC), Striato-fronto-orbital (ST FO), Striato-

refrontal (ST PREF), Striato-premotor (ST PREM), Striato-precentral

ST PREC), Striato-postcentral (ST POSTC), Striato-parietal (ST PAR),

triato-occipital (ST OCC). Note: besides MCP and the 7 CC subdivi-

ions, all other bundles were present in each hemisphere. 

The MRI inter-session effect of the diffusion MRI metrics measured

n the TractSeg bundles was firstly studied by the ICC coefficients. ICC
 p  

6 
as on average 0.89, 0.88, 0.85 and 0.84 for TW-FA, FA, TW-FOD and

undle AFD, respectively; individual bundle ICC values are shown in

able 1 . 

The t-tests, as paired per bundle, showed significantly higher ICC

alues for TW-FA in comparison to FA ( p = 0.00014) but not for TW-

OD as compared with Bundle AFD ( p = 0.86). 

ractLearn 

The comparison of the GLM with PCA-based dimension reduction

nd UMAP nonlinear dimension reduction was done based on the SSR. 

The mean SSR for all brain bundles was estimated as being 957.6 (SD

81,4) for the GLM; 101.4 (SD 69.8) for the PCA and for 74.5 (SD 57.3)

MAP. UMAP outperforms the PCA ( p < 0.001) and the GLM ( p < 0.001)

or all brain bundles. As example of SSR differences, we have randomly

elected a few bundles ( Fig. 6 ). 

The rest of the pipeline was based on UMAP for dimension reduction.

We have firstly determined that the dimension with the minimum

ean square error was equal to 3 for all 68 bundles. For visualization

urpose, we have chosen to graphically present the reduced space as
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Table 1 

ICC coefficients for all 4 diffusion MRI metrics mean value in each TractSeg bundle. 

TW-FA FA TW-FOD Bundle AFD TW-FA FA TW-FOD Bundle AFD 

AF_left 0,93 0,92 0,97 0,94 SLF_II_left 0,81 0,78 0,84 0,81 

AF_right 0,95 0,94 0,96 0,94 SLF_II_right 0,9 0,87 0,92 0,89 

ATR_left 0,9 0,9 0,82 0,84 SLF_I_left 0,8 0,78 0,7 0,77 

ATR_right 0,89 0,9 0,78 0,78 SLF_I_right 0,87 0,85 0,8 0,57 

CC_1 0,82 0,81 0,81 0,78 STR_left 0,91 0,91 0,73 0,88 

CC_2 0,91 0,89 0,87 0,87 STR_right 0,91 0,9 0,82 0,87 

CC_3 0,81 0,77 0,76 0,65 ST_FO_left 0,93 0,93 0,84 0,87 

CC_4 0,82 0,81 0,83 0,79 ST_FO_right 0,8 0,78 0,71 0,52 

CC_5 0,92 0,93 0,91 0,97 ST_OCC_left 0,95 0,94 0,96 0,92 

CC_6 0,9 0,91 0,9 0,89 ST_OCC_right 0,91 0,91 0,97 0,94 

CC_7 0,9 0,91 0,81 0,7 ST_PAR_left 0,91 0,9 0,92 0,92 

CG_left 0,88 0,86 0,92 0,85 ST_PAR_right 0,89 0,88 0,95 0,94 

CG_right 0,86 0,85 0,93 0,85 ST_POSTC_left 0,86 0,83 0,73 0,75 

CST_left 0,96 0,96 0,92 0,92 ST_POSTC_right 0,9 0,89 0,85 0,81 

CST_right 0,85 0,85 0,87 0,79 ST_PREC_left 0,94 0,94 0,89 0,93 

FPT_left 0,93 0,92 0,9 0,88 ST_PREC_right 0,94 0,94 0,91 0,92 

FPT_right 0,95 0,95 0,94 0,9 ST_PREF_left 0,79 0,74 0,66 0,55 

ICP_left 0,79 0,79 0,67 0,66 ST_PREF_right 0,91 0,9 0,89 0,86 

ICP_right 0,83 0,83 0,82 0,86 ST_PREM_left 0,84 0,71 0,77 0,64 

IFO_left 0,94 0,94 0,94 0,94 ST_PREM_right 0,93 0,94 0,78 0,88 

IFO_right 0,87 0,87 0,88 0,84 T_OCC_left 0,96 0,96 0,96 0,93 

ILF_left 0,92 0,92 0,91 0,9 T_OCC_right 0,84 0,86 0,88 0,87 

ILF_right 0,75 0,75 0,62 0,8 T_PAR_left 0,89 0,88 0,78 0,89 

MCP 0,9 0,9 0,87 0,87 T_PAR_right 0,85 0,85 0,81 0,85 

MLF_left 0,91 0,88 0,9 0,85 T_POSTC_left 0,91 0,89 0,75 0,88 

MLF_right 0,95 0,95 0,86 0,93 T_POSTC_right 0,96 0,96 0,73 0,86 

OR_left 0,97 0,97 0,96 0,93 T_PREC_left 0,91 0,91 0,67 0,85 

OR_right 0,8 0,79 0,87 0,89 T_PREC_right 0,93 0,92 0,87 0,9 

POPT_left 0,92 0,93 0,91 0,92 T_PREF_left 0,9 0,9 0,85 0,87 

POPT_right 0,95 0,94 0,9 0,9 T_PREF_right 0,95 0,95 0,9 0,88 

SCP_left 0,84 0,84 0,84 0,89 T_PREM_left 0,88 0,89 0,93 0,93 

SCP_right 0,84 0,82 0,82 0,84 T_PREM_right 0,94 0,94 0,77 0,87 

SLF_III_left 0,91 0,89 0,86 0,93 UF_left 0,84 0,8 0,9 0,88 

SLF_III_right 0,89 0,86 0,89 0,89 UF_right 0,84 0,81 0,88 0,74 
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-dimensional plots, though all the residual estimation was based on a

-dimensional reduction of each brain bundle. 

The inter-session effect was then directly studied in the manifold. Us-

ng TractLearn , the distance in the geodesic space for each bundle was

ignificantly shorter between the test and the retest procedure (intra-

ubject) than between two different subjects ( p < 0.001) (e.g. see exam-

le in Fig. 3 ). 

In all patients, the bundle AFD metric found the highest number of

undles with altered voxels. When taking into account the results from

he manifold based on the test and the manifold based on the retest le-

ion, patient number 5 presented with the higher number of injured bun-

les (including corpus callosum parts 4 and 7, right thalamo-occipital

undle, right striato-occipital bundle, right optic radiation and middle

erebellar peduncle), with some of them including at least 20 altered

oxels. Patient 2 showed no bundle with more than 10 altered voxels

or any diffusion MRI metrics ( Fig. 5 ) – see Supplementary Material for

he corresponding results of the other three patients. 

No morphological abnormalities were seen on morphological MRI

equences (see supplementary figure S6). 

The back projections allow to identify the location of altered voxels

ithin each bundle separately using the TW-FOD, TW-FA, bundle AFD

nd FA metrics, as illustrated in Fig. 6 and 7 for two of the patients. 

Using the Zero-one loss function for classification learning (i.e. to

ssign 0 to loss for a correct concordance between bundles with more

han 5 altered voxels on the learned manifold built using the first MR

ession and bundles with more than 5 altered voxels on the learned

anifold built using the second MR session: 0 is considered as a perfect

core while 1 implies a total absence of concordance for all bundles),

e have found scores as being 0.0029, 0.0088, 0.0147, 0.0029 for FA,

W-FA, AFD, TW-FOD, respectively (see Fig. 8 for an example). 
7 
iscussion 

We have proposed a novel unified framework for the quantitative

nalysis of properties of brain bundles by geodesic learning. TractLearn ,

 data-driven learning task, allows mapping between the high dimen-

ional image domain and a reduced latent space of brain fascicles. In

he patient group, TractLearn detected white matter abnormalities in a

umber of bundles; importantly, our results show that the identification

f the abnormal bundles was reproducible, by comparing the number

nd location of abnormalities between a learned manifold built using

he test session of controls and another learned manifold based on the

etest session ~1 year later. The proposed framework provides a new

eans to quantitatively analyse the results from diffusion MRI fibre-

racking on a patient-specific basis. 

The injuries location identified by TractLearn (mainly located in the

rontal lobes, occipital lobes and in the corpus callosum) are compati-

le with the known pathophysiology of mTBI ( Delouche et al., 2016 ;

tokum et al., 2015 ) and were not visible on conventional MR se-

uences. In addition, we proposed a statistical framework having the

apabilities to detect a potential interaction between voxel alteration

hrough their representation in the reduced manifold space. As the vox-

ls are not analyzed independently, we can theoretically identify sub-

le diffusion MRI metrics variation in a given bundle. Finally, we pro-

osed to use a method of back-projection from the highly sensitive low-

imensional manifold space to the MRI individual subject space, to vi-

ualize the physical location of the brain abnormalities. 

For the examples shown in our study, we have used some selected

llustrative diffusion MRI metrics (i.e. FA, bundle AFD, TW-FA and TW-

OD); it is however straightforward to extend the TractLearn framework

o include other metrics, including exploiting the flexibility of the TWI
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Fig. 5. Radar plots of TractLearn results for patient 2, showing a low number of voxels presenting with significant altered Z scores in each bundle, as identified using 

TractLearn based on the session 1. 
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pproach, which allows to combine a tractogram with any other (even

on-MRI) co-registered metric ( Calamante, 2017 ). TractLearn only needs

 collection of quantitative diffusion MRI metrics for each bundle as

nput. 

enefits of manifold learning 

A common problem in DWI studies is the difficulty to detect abnor-

alities at the single subject level (e.g. for precision medicine), and

nstead having to rely more commonly on group-based studies. The

ossibility to detect subtle fiber architecture alterations at the voxel

evel in individuals through direct analysis of multiple MRI contrasts

equires advanced tools with the ability to manage high-dimensional

ector space. Typical clinical studies often include a limited number of

atients; the natural mathematical space of the quantitative values at the

ascicle level then needs to be constrained to control for the mismatch

etween the number of samples (here the number of controls/patients)

nd the number of features (here the number of voxels in each bundle).

his problem, which occurs in the context of HDLSS data, is known as

he curse of dimensionality, and we therefore need to reduce the space,

or example to be able to apply Z-score algorithms on quantitative anal-

sis. 
8 
Dimensionality reduction seeks to produce a low dimensional repre-

entation of high dimensional data that preserves the original structure.

imensionality reduction algorithms offer a solution to important prob-

ems in data science. They allow visualization of complex data and they

an be applied as potential pre-processing step for machine learning.

hey are classically divided into two categories: those that seek to pre-

erve the original distance structure within the data, and those that favor

he preservation of local distances over global distance. The second cat-

gory of algorithms includes for example t-SNE, the state-of-the-art in

imensionality reduction for visualization ( Maaten and Hinton, 2008 ).

he advantage of UMAP over t-SNE is a better preservation of the orig-

nal structure (here the diffusion MRI metrics coming from brain bun-

les) ( McInnes et al., 2018 ) while being as powerful for visualization

urpose. 

We also proposed a generalization of the classical Z-score where f(x)

orresponds to the mean value. Indeed, we have modeled the popula-

ion by a regression function instead of a unique sample. In other words,

ll healthy controls do represent the population of reference instead of a

nique individual. The first consequence is that each new studied subject

n a previously learned manifold will be projected as close as possible to

ne of the control subjects (i.e. those with diffusion MRI metrics values

losest to the new subject) (see supplementary figure S1). In the classi-
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Fig. 6. SSR bar plots in 5 randomly selected 

brain bundles (Corpus Callosum part 2, left cor- 

ticospinal tract, right superior thalamic radia- 

tion, left striato-postcentral and right uncinate 

fascicle). While all bundles showed a big dif- 

ference between GLM SSR and PCA/UMAP SSR 

values; the differences between PCA and UMAP 

varies across bundles. Here for example the dif- 

ference appeared more important for the left 

striato-postcentral bundle than for the right un- 

cinate fascicle. 

Fig. 6. Back projection of the manifold residual in the template space, to localize the brain abnormality in Patient 1. Here is the example of the first part of the 

Striato-fronto-orbital (ST-FO right) with the track file identified by TractSeg (A), the track-weighted maps based on the TW-FOD contrast B) and the back projection 

of the Z Score (C). The Z-score threshold was set to − 4.35; corresponding to a Bonferroni correction for a bundle of 7444 voxels. It has allowed the identification of 

voxels with significantly different TWI contrast, in comparison with the control group (here retest session). 
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al Euclidean framework, there is no local mean as proposed but global

ean, thus all tested subjects will have the same reference. This auto-

atically leads to a higher standard deviation in diffusion MRI metrics

omparison, which in turn will hinder the possibility to detect quantita-

ive abnormalities as the residual 𝜀 does contain the standard deviation

dded to the potential pathological effect. 

Tilquin et al. (2019 ) have already proposed to learn the manifold

panned by the normal controls using non-linear dimensionality reduc-

ion techniques. In their work, based on T1-weighted imaging, the image

f a subject is projected on the control group manifold allowing a com-
9 
arison of the reconstruction with the subject’s original neuroimaging

ata. The objective of these projection techniques is to detect abnormal

atterns by way of statistical tests on the residuals. In this prior work,

he importance of non-linear modeling of the manifold in the reduced-

imension subspace was highlighted, as well as robustness to abnormal-

ties detection on a larger dataset, yet without retest session to assess the

eliability, as we were able to include in our study. 

Manifold learning has also been previously used in DWI. For exam-

le, the estimation of the embedded reduced space for DTI-based tensors

as been previously described using Manifold Learning ( Khurd et al.,
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Fig. 7. Another example from the corpus callosum part 7 (Patient 1) with the track file identified by TractSeg (A), the track-weighted maps based on the AFD contrast 

B) and the back projection of the Z Score (C). The Z score has allowed the identification of voxels with significantly different AFD contrast ( p < 0.05 Bonferroni 

corrected for colored voxels), in comparison with the control group. The Z-score threshold was set to − 4.73; corresponding to a Bonferroni correction for a bundle 

of 21,303 voxels. 

Fig. 8. Example of the patient 4 left Superior thalamic radiation (A) and the subsequent track-weighted fractional anisotropy contrast (TW-FA, B). The image C 

illustrates the location of a local association of altered voxels (more than 15 voxels as identified using the radar plots) based on the test session manifold. The image 

D illustrates the altered voxels (here represented as blue voxels) based on Z-score calculated from the manifold of the retest session. The Z-score threshold was set 

to − 4.34; corresponding to a Bonferroni correction for a bundle of 4100 voxels. 
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007 ). More recently, manifold learning has also been used on DWI to

ap the white matter fiber in a controlled subspace with an adapted

odel of fingerprint called “fiberprint ” and on multimodal MRI acquisi-

ion including DWI data ( Kumar et al., 2018 ; Kumar et al., 2017 ); these

tudies have shown interesting relationship between compact finger-

rint and genetic biomarkers on a large population data. The novelty of

ur study is to propose and assess a framework to identify altered vox-

ls based on diffusion MRI metrics using a manifold Riemannian frame-
10 
ork and state-of-the-art tractography analysis methods. We propose to

eplace the GLM by a manifold reference for the healthy control group,

mproving diagnostic performance in terms of disease detection at the

atient-specific level. 

The possibility to back project the manifold information (here the

-score testing) in the subject space help to precisely locate a disease

rocess or pathophysiology in a patient-specific basis. Taken into ac-

ount that the DWI data used here is consistent with a clinically suit-
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ble protocol (e.g. total acquisition time of DWI sequence < 10 min), it

an be anticipated that comparable level of sensitivity to detect brain

lterations is possible with other similar acquisition protocols. It should

e emphasized that patient-specific abnormalities were here detected

ither using the first learned manifold (built from the test session of

he healthy controls) or using the second learned manifold (built from

he retest session ~1 year later). The global effect on voxels diffusion

RI metrics owing to the acquisition condition (test or retest) can be

isualized in the reduced subspace. Regardless of the learned manifold

hosen, the resulting number and location of abnormalities showed good

orrelation using the zero-one-loss test. It should be noted that Cohen’s

appa should be avoided as performance measure due to the unbalanced

ature of our dataset ( Delgado and Tibau, 2019 ) (i.e. an important mis-

atch between the high number of bundles with no voxel abnormalities

nd the low number of altered bundles). 

This suggests that, in our dataset, the local effect due to local axonal

hear lesion or bleeding (associated with mTBI) is larger than the global

ffects related to the use of either the test or retest session to compute

he learned manifold. 

It could be speculated that this may also suggest that TractLearn

ight be more lenient to be able to detect local (disease related) effects

ver global (acquisition related) effects when using data from various

cquisition or scanning protocols. This remains to be tested in future

ork, for example using datasets coming from multi-center studies. 

iemannian versus Euclidean statistical analysis 

The GLM, based on a Euclidean framework, has been widely used in

he medical and neurosciences communities, and has been implemented

n popular software tools, such as Statistical Parametric Mapping (SPM,

ttps://www.fil.ion.ucl.ac.uk/spm/ ). While being effective in the case

f low-dimensional data comparison for group study, its main limitation

elies on its inability to properly model the data distribution without us-

ng a smoothing step. The smoothing of Diffusion-weighted data usually

ecreases the standard deviation of all voxels metrics coming from the

LM, yet here we have shown that it leads to standard deviation much

igher than in our framework (as illustrated in the supplemental mate-

ial). It could be argued that smoothing still occurs within the TWI calcu-

ation; this however can be seen as a ‘smart-type’ (streamline-informed)

moothing ( Calamante, 2017 ). 

Imposing the Euclidean topology led to poor estimation, as demon-

trated with the mean SSR difference between UMAP and the GLM. In

ddition, the non-linear topology of the brain bundles was also benefi-

ial, based on the difference between PCA and UMAP mean SSR values,

ith residuals lower in the latter model when making the difference be-

ween the synthetic subject reconstructed from the manifold subspace

nd the real values coming from DWI acquisition. We have then used

MAP , which relies on non-Gaussian and robust modeling, to capture

he variability of the brain bundles diffusion MRI metrics. 

Such inabilities to model quantitative data relying on complex

opology have been also demonstrated using dimensionality reduction

y Tenenbaum et al., 2000 ), but also for comparing T1-weighted imag-

ng anatomy ( Miller, 2004 ) or high angular Diffusion-weighted data

 Goh et al., 2011 ). In addition, using Riemannian distances allowed us

o detect joint statistical variations in a group of voxels. 

It should be noted that, even including a low sample data size for

ontrols - with its inherent limitations to have potential anatomical vari-

tions displayed in the manifold, we were able to detect local bundle

lteration in individual patients with mTBI. Riemaniann geometry has

lready been used in various applications linked to diffusion MRI, such

s proposing new nonlinear metrics ( Batchelor et al., 2003 ; Fuster et al.,

014 ), identifying bundle shape variability ( Sun et al., 2017 ) or improv-

ng segmentation of white matter bundles ( Hao et al., 2014 ). To the best

f our knowledge TractLearn is the first toolbox that can be employed

n usual DWI MRI metrics for individual’s abnormality identification

xploiting the benefits of a manifold analysis. 
11 
he benefit of using twi as a quantitative biomarker 

TWI has proved to be powerful in mapping fascicles alterations in

eurodegenerative diseases ( Bozzali et al., 2011 ; Ziegler et al., 2014 )

r mTBI preclinical imaging ( Tan et al., 2016 ), among others. The TWI

ontrast intrinsically contains the anatomical information of the fiber

rchitecture (through the track-weighted averaging step), while also

llowing a way to combine it with other local quantitative informa-

ion (e.g. FA and FOD, in the current study). Numerous studies have

roven the benefits of extracting FOD-related parameters for group stud-

es, such as for example in the case of AFD in motor neuron disease

 Raffelt et al., 2012b ) or, more recently, Alzheimer’s disease ( Mito et al.,

018 ). FA analyses, based on the tensor model, have been widely done,

nd they have allowed us to increase our understanding of numerous

rain diseases, including traumatic disorders ( Ilvesmäki et al., 2014 )

 Aoki et al., 2012 ), neurocognitive diseases ( Bozzali et al., 2011 ), and in

ptic pathways studies ( Bender et al., 2014 ; Mandelstam, 2012 ). These

ere some of the reasons for our choice of possible parameters to illus-

rate TractLearn in the current study. 

Here, more brain bundles alterations were detected using the bundle

FD metric. 

Our work is, however, limited by the inability to validate our findings

ith pathological analyses, thus making difficult to compare the real

dded value of TractLearn over a more classical Euclidean approach.

uture work is needed to address the sensitivity and specificity of the

bnormalities detected by TractLearn . 

As emphasized above, the track-weighted contrast uses a ‘smart’

moothing effect (of the FOD amplitudes or FA values, in the current

tudy) along the streamline. This work complements that of Willats et al.

2014 ), which has demonstrated that the track-weighted contrast had

ood reproducibility in a sample of 8 subjects. Here we find high ICC

alues in 68 different brain regions of very different sizes in the context

f a relatively large test-retest protocol (one year between sessions, in-

tead of < 2 weeks in the work of Willats et al.). We also note that TW-FA

as shown to be more reproducible than FA using a paired t -test on each

undle, consistent with the work of Willats et al. In contrast, we did not

nd a significant difference between TW-FOD and AFD ICC values. It

hould be noted however, that TW-FOD is not constructed based on the

undle AFD map and, therefore, their relationship is not as direct as the

A case (cf. TW-FA is constructed based on the FA map). Furthermore,

undle AFD mapping does also includes some smoothing along the bun-

le (related to the afdconnectivity command in MRtrix), and thus the

enefits of increased reproducibility with the track-weighted approach

n TWI is limited when compared with bundle AFD. 

Interestingly, the Zero-one loss function results indicated that FA had

igher concordance of detecting an abnormality than TW-FA. This might

elate to the very focal abnormalities in the mTBI patients included in

ur small cohort, as then the streamline-specific smoothing involved

ith TW-FA could dilute the effect of the abnormality rather than am-

lify it ( Calamante, 2017 ). Future work with a larger range of patient

everities is required to fully characterize the benefits of TWI vs using

TI metrics directly. 

patial coregistration 

Most group DWI neuroimaging studies are registered to a common

emplate. Here we have used a custom-made FOD template for robust

oregistration of each individual FOD maps to the template, and thus ob-

ain accurate matching between white matter structures ( Raffelt et al.,

011 ); the resulting spatial transformation was applied to the Tract-

eg tractograms for each subject, to ensure correspondence between

he identified bundles. This also ensures that the FODs and tracks

ie on the same space, in order to correctly compute TW-FOD values

 Calamante, 2017 ). However, we have here limited the anatomical vari-

bility of cortical termination by keeping only the top 80% voxels val-

es of each bundle, based on the track-density contrast. Indeed, while

https://www.fil.ion.ucl.ac.uk/spm/
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he coregistration based on FOD symmetric diffeomorphic has allow to

atch major brain bundles, we have noticed that cortical variability

ade more difficult a perfect matching for the entire bundle. Absence

f this step could potentially lead to false positive lesions on the bundles

oundaries. In addition, as TractSeg tends to produce bundle overlay-

ng (i.e. some boundaries voxels can be linked to two different bundles),

sing a thresholding has allowed to precisely locate abnormalities. 

uture perspectives 

In medicine, researchers often raise a prior anatomical hypothesis on

otential diseased brain bundles from which the quantitative analysis

ould allow to early detect the prodromal stages. Here we propose not

o pass through this step to directly study a large part of the brain fascicle

n a semi-supervised way (as the status of each point in the manifold is

nown before the calculation of the residual, i.e. whether the subject is

 healthy control or a patient). 

While TractLearn was here used for precision medicine (i.e. one vs. a

ealthy group), in general, it could be also applied on the more classical

pproach of group comparison studies, such as by replacing Z-score back

rojection with p-values back projection. The objective would be then

o detect brain bundles alteration at the group level taking advantage

n the Riemannian framework. With the appropriate statistical models

n hand, we may also regress the manifold data directly against one or

ore independent variables, for example clinical, biological or patho-

hysiological data. 

While it was very reassuring that TractLearn provided stable results

ven with a relatively small healthy cohort (i.e. we demonstrate good

est-retest with only 20 healthy subjects to define the healthy manifold),

t remains to be investigated how reliability is impacted by factors such

s type of disease, location, extent, severity, as well as data quality.

uture studies evaluating these factors are guaranteed, which should

elp further characterize the performance of TractLearn. 

Finally, while here we have used one scalar value per voxel for each

anifold (e.g. a manifold for TW-FOD and a different one for TW-FA,

tc.), it might be the case that some pathologies will not be able to be

haracterized just with one parameter. Similarly, it might be the case

hat higher order dimensions are needed to represent certain DWI fea-

ures (e.g. using a manifold of the spherical harmonics amplitudes of the

ODs rather than just the TW-FOD). The manifold framework should al-

ow to decompose the DW signal by providing the same algorithm a

ollection of MRI metrics per voxel simultaneously. 

onclusion 

We have presented TractLearn , a unified framework for brain fasci-

les quantitative analyses by geodesic learning. The possibility to detect

bnormalities in individuals in the context of high-dimensional low sam-

le size data hold promise for precision medicine. 
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