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RESUME en français

L’angiogenèse joue un rôle important dans les pathologies comme le cancer, la rétinopathie

diabétique ou l’arthrite rhumatoïde. Elle est contrôlée par un équilibre entre des facteurs

stimulants et inhibiteurs endogènes. Nous avons caractérisé dans la région C-terminale du

facteur plaquettaire 4, un inhibiteur naturel, la séquence peptidique essentielle à son activité. Ce

peptide montre des effets anti-angiogéniques dans de multiples tests d’angiogénèse in vitro et in

vivo. Le changement d’un acide aminé dans sa séquence supprime son activité (C52S) alors que

l’introduction d’un autre la potentialise (Q56R). Cette potentialisation a été révélée par l’inhibition

de la croissance 1) des vaisseaux sanguins induite par le VEGF sur la membrane chorio-

allantoïdienne de l’embryon de poulet et 2) des cellules tumorales de type gliome chez des souris

nudes. Ces peptides sont des bons candidats pour le développement des drogues anti-

angiogéniques pour le traitement du cancer, notamment des glioblastomes.

TITRE en anglais

Characterization and developpement of peptide angiogenesis inhibitors derived from platelet

factor 4

RESUME en anglais

Angiogenesis plays a major role in pathologies like cancer, diabetic retinopathy and rheumatoid

arthritis. It is controlled by a balance between angiogenic growth factors and endogenous

inhibitory molecules. We have characterized a C-terminal fragment of platelet factor 4, a natural

inhibitor of angiogenesis, essential for its activity. This peptide has anti-angiogenic activity in

various in vitro and in vivo assays. Changing one amino acid within the primary sequence yields a

completely inactive peptide (C52S), whereas another change (Q56R or D54E/Q56R)

potentializes its activity. The augmentation in efficacy has been shown in 1) an anti-angiogenesis

assay on the chick chorio-allantoic membrane, and 2) inhibition of tumor growth of established

intracerebral glioma in nude mice. These peptides are thus good candidates for the development

of anti-angiogenic drugs for the treatment of cancer, especially for glioblastoma.

DISCIPLINE - SPECIALITE DOCTORALE

Biologie et physiologie cellulaire

MOTS-CLES

angiogenesis, vascular endothelial growth factor, platelet factor 4, fibroblast

growth factor, peptide inhibitors, chick chorio-allantoic membrane
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Pr Andreas BIKFALVI - Université Bordeaux I, INSERM EMI 0113 'Mécanismes Moléculaires de

l'Angiogenèse' Avenue des Facultés, 33405 Talence, FRANCE



6

Mention: Très honorable



7

SUMMARY

INTRODUCTION.................................................................................................. 9

Historical background: identification of the first angiogenic factors............ 9

Mechanisms of blood vessel formation ......................................................... 10
Sprouting angiogenesis...................................................................................... 10
Intussusceptive angiogenesis ............................................................................ 11
Pre- and postnatal vasculogenesis..................................................................... 12
Arterial – venous differentiation.......................................................................... 14

Angiogenesis modulators ............................................................................... 15
Fibroblast growth factors (FGFs)........................................................................ 15
FGF-2 signaling.................................................................................................. 17
Vascular endothelial growth factors (VEGFs)..................................................... 18
VEGF signaling .................................................................................................. 21
Endogenous angiogenesis inhibitors.................................................................. 23

PUBLICATION I................................................................................................. 25

Introduction publication II ............................................................................... 49

Overview: Platelet factor 4 .............................................................................. 51

Ex vivo systems of angiogenesis: the rat aortic ring assay......................... 52

PUBLICATION II................................................................................................ 55

Introduction publication III .............................................................................. 81

In vivo systems to evaluate angiogenesis inhibitors: The chick chorio-
allantoic membrane assay............................................................................... 82

PUBLICATION III............................................................................................... 83

Final conclusions: Biological activities of modified PF-4 peptides............115

Perspectives – Anti-angiogenesis assay in the CAM and SNA-1 lectin
staining ............................................................................................................118

REFERENCES..................................................................................................121

INDEX OF FIGURES AND TABLES

Figure 1: Emergence of angiogenesis-related research. ..................................................................... 9
Figure 2: Sprouting angiogenesis........................................................................................................11
Figure 3: Intussusceptive angiogenesis. .............................................................................................12
Figure 4: Vasculogenesis.....................................................................................................................13
Figure 5: Interaction of FGF-2 with tyrosine kinase receptors and glycosaminoglycans..................16
Figure 5: FGF-2-induced signaling cascades .....................................................................................18
Figure 6: Vascular growth factors and their receptor specificity. .......................................................20
Figure 7: Signaling pathways of the VEGF receptors 1 and –2.........................................................22
Table 1: Anti-angiogenic molecules derived from other proteins.......................................................24
Figure 8: Mechanism of action of PF-447-70 on FGF-2-induced angiogenesis...................................50
Table 2: Members of the CXC-chemokine family. ..............................................................................51
Figure 9: Microvessels radiating from the edges of aortic rings embedded in collagen gels;
inhibition by PF-47-70ELR and –DLR. ...................................................................................................53
Figure 10: Reconstruction of a single vessel-like sprout from an aortic ring.....................................54
Figure 11: Sambucus nigra lectin and desmin staining of the capillary bed of the day 17 CAM....120



8



9

INTRODUCTION

Historical background: identification of the first angiogenic

factors

During the last 30 years, significant progress has been made to understand the

biological basis of new blood vessel growth. This process, termed

“angiogenesis”, generally describes the growth of new capillaries out of pre-

existing vessels. Figure 1 illustrates the rapid growth of this new field of research

in comparison to cancer-related research and total scientific publications.

Figure 1: Emergence of angiogenesis-related research.

A Medline search (PubMed, NLM) with the keywords “angiogenesis” or “cancer” (no word for total

publications) in abstract was performed in 5-year steps (except 2000 / 2001). Curve fits were

calculated using KaleidaGraph software. Note that number of scientific publications increases

steadily, cancer-related papers grow in a slow exponential manner, whereas angiogenesis-

related research shows a rapid progression since 1980.

The observation that malignant tumor growth may be related to an alteration in

blood vessel morphology is over 100 years old and has initially described by

Virchov in the 19th century and Goldmann in the beginning of the 20th century. In

1945, Algire and Chalkley have shown that tumors transplanted in the skin of

cats evoke a more aggressive vascular response than other transplanted tissue.

Rondoni conclued in 1946, that tumor vasculature originates from capillaries of

the surrounding stroma (reviewed in (1)).
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Judah Folkman’s working hypothesis was that a growing tumor would need to

attract new blood vessels from the host body via soluble (growth) factors. He

isolated the first angiogenic factor in 1971 from rat carcinoma cell fractions,

termed ‘tumor angiogenesis factor’ (2). In the 80s, the first angiogenic proteins

were isolated using their high affinity for heparin. Acidic fibroblast growth factor

(FGF-1) was purified from bovine pituitary gland or bovine brain (3, 4), whereas

basic FGF (FGF-2) was isolated from placenta or hepatoma cells (5, 6). Few

years later, researchers identified another heparin-binding molecule from pituary

glands, which was a selective mitogen for endothelial cells (7-9). This molecule,

today known as vascular endothelial growth factor (VEGF), was found to be

identical to a molecule already described by Senger in 1983 for its induction of a

reversible hyper-permeable effect on blood vessels (10).

Mechanisms of blood vessel formation

Sprouting angiogenesis

There are several distinct ways how new blood vessels can be formed in

physiological and pathological conditions. One well-known mechanism is termed

“sprouting angiogenesis”. It can be divided in three phases: initiation, growth and

maturation. The driving force behind the sprout formation process is a metabolic

deficit (hypoxia, hypoglycemia, etc.), which must be eliminated by providing

nutrients via blood supply in order to maintain tissue integrity and to avoid

necrosis. During the first phase, a pre-existing vessel dilates and becomes leaky

in response to VEGF and NO (nitric oxide). Proteinases digest the basement

membrane and endothelial cells start to migrate into the extracellular space

through gaps in the vessel wall. Angiopoietin 2 (Ang2), a ligand for the Tie-2

receptor and antagonist to Ang1, the other Tie-2 ligand, may additionally provide

plasticity by detaching mural cells (11). During the growth phase, ECs continue to

migrate and proliferate in response to FGF-2 and VEGF. Vascular integrins like

v 3 and v 5 are upregulated on activated ECs and mediate spreading and

migration within the surrounding matrix (12). Ang1 at this stage may start to

tighten up the newly formed sprout (13). During the maturation phase, mural cells

are attracted to the vessel wall. This interaction requires platelet derived growth

factor-B (secreted by ECs) and the presence of PDGFR-  on pericytes and

vascular smooth muscle cells (14). TGF-beta and Ang1/Tie-2 signaling is also
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required for PC recruitment and vessel stabilization. Proteinase inhibitors like

plasminogen activator inhibitor 1 (PAI-1) protect the newly formed extracellular

matrix from degradation through proteinases and are necessary for angiogenesis

(15).

Figure 2: Sprouting angiogenesis.

Sprouting angiogenesis towards hypoxic stimuli can be divided in three phases: initiation, which

requires basement membrane breakdown; growth, which is characterized by EC proliferation and

migration, and finally maturation, with ECM synthesis and mural cell recruitment.

Intussusceptive angiogenesis

Intussusceptive microvascular growth (IMG) is characterized by the forming of

intra-capillary pillars, which fuse and cause the capillary to divide into two new

ones. It is of great importance during the formation of the vascular network in the

kidney and the lung, but also occurs during tumor angiogenesis. The vasculature

of the chick chorio-allantoic membrane is mainly expanded by intussusceptive

growth between day 8 to day 12 of development (16). Recent findings suggest

that a variant of IMG, intussusceptive branching remodeling (IBR), where pillars

fuse at the bifurcation point of two vessels, is an optimized and fast way used by

blood vessels to adapt to constantly changing hemodynamic forces during

development (17).
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Figure 3: Intussusceptive angiogenesis.

Intussusceptive angiogenesis, a form of non-sprouting angiogenesis, is used to expand vascular

networks in the lung, kidney or, here, in the chick chorio-allantoic membrane. It is characterized

by the forming of intra-capillary pillars, which fuse and give rise to new capillaries (figure from

(18)).

Pre- and postnatal vasculogenesis

The term vasculogenesis generally refers to differentiation of endothelial cell

precursors (angioblasts) from mesoderm and the formation of a primitive vascular

plexus (19). Mesodermal cells differentiate into angiogblasts, and associate into

structures called blood islands, lined by angioblasts and filled with hemopoietic

precursor cells. Important molecules implicated in these differentiation steps are

VEGF and its receptor 2 (VEGFR-2), the latter being one of the earliest markers

of cells committed to differentiation towards the endothelial cell lineage (for

review see (19)). PECAM-1 (CD31), CD34 and VE-cadherin are also expressed

by angioblasts and play distinct roles during cell adhesion, and later, lumen

formation and vascular permeability. Fibronectin and its receptor 5 1 integrin

are vital during early vascular development (20). Interestingly, the v integrin

subunit present in integrins important for pathological angiogenesis (21) does not

seem to play a major role during vasculogenesis in mice. v null mice die in uteri

due to placentation defects but 20% are born alive and die because of

hemorrhages in brain and the intestines later on (22).
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Figure 4: Vasculogenesis.

Events occurring during vasculogenesis (taken from Flamme & Risau, 1995, (19)): After

differentiation of mesodermal cells into angioblasts and hemopoietic cells, blood islands

containing first endothelial cells form, fuse and differentiate into a primary capillary plexus.

Endothelial cell progenitors also play a role during vascularisation processes in

the adult. Angioblasts have been detected in peripheral blood of adult (23) and

intraperitoneal injections of VEGF in mice increase the number of CD34-, VE-

cadherin- and VEGFR-2-positive cells in the blood stream. There is some

evidence that VEGF and PlGF mediate mobilization of angioblasts from bone

marrow to circulation (24, 25). Circulating angioblasts can integrate into blood

vessels at sites of wound healing, in ischemic tissue in the heart and the hindlimb

and in transplanted tumors (26). Recent studies suggest the use of endothelial

progenitors as pro-angiogenic treatment for ischemic vascular diseases (27, 28).

Another group successfully used pluripotent cells for anti-angiogenic therapy:

modified bone marrow-derived cells, which express a truncated soluble form of

VEGFR-2, are incorporated in tumor vessels and can restrict tumor growth when

grafted into the bone marrow of mice bearing neuroblastoma or Wilm’s tumors
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(29). These data suggest a role of postnatal vasculogenesis in physiological and

pathological angiogenesis and open up new perspectives to include endothelial

cell precursors in pro- or anti-angiogenic therapy strategies.

Arterial – venous differentiation

After the primary vascular plexus has formed by vasculogenesis, it is further

remodeled and expanded by interdigitation, branching and sprouting, hence

angiogenesis. Recently, molecular mechanisms have been discovered which

may determine the arterial or venous fate of developing blood vessels from a

very early time point on. Wang et al. described the selective expression of the

ephrin-B2 membrane ligand on arterial endothelial cells and its receptor Eph-B4

on venous ECs. Their ephrin-B2 null mice revealed that proper interaction of this

receptor-ligand pair is required for remodeling of veins as well as for arteries in

the primary capillary plexus in the yolk sac and the head (30). Other proteins

expressed in arteries are the notch ligand delta-like 4 (DLL4) (31) and the

transcription factor gridlock (32). The latter is required for development of the

aorta in zebrafish and the DLL4 - notch1/4-receptor system may be important for

angiogenesis during development (33).

A murine isoform of VEGF, VEGF188, plays also a role in arterial-venous

patterning in the retina. Mice selectively expressing VEGF188 have normal

venules, but impaired arterial development. The same authors also found

neuropilin-1 (NRP1), a co-receptor for some VEGF isoforms, predominantly

expressed on arterioles (34).

During early embryonic chick development, neuropilin-2 (NRP2) is found on

blood vessels on the venous side, whereas NRP1 is expressed on arteries (35).

NRP1-expressing cells from grafted quail arteries can integrate into veins and

arteries in the chick during early stages, but from embryonic day 11 on, they

prefer to associate with arteries. The same could be observed for ECs from

grafted quail vein fragments; they preferentially home into veins when grafted

into chick after day 11. During early phases of development a certain “plasticity”

regarding the arterial or venous outcome of ECs is thus preserved and lost later

on. Isolated ECs grafted into chick embryos do not show any preference for

arterial or venous colonization (36). Vessel wall components may negatively

influence plasticity of ECs in regard to arterial or venous differentiation.
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Using the same technique of quail-chick chimera, another group has reported

that grafted arterial endothelial cells defined by the ephrin-B2 marker keep up the

expression when integrated in chick arteries but lost expression when they

integrated in veins. Vein-derived ephrin-B2-negative ECs, which integrated in

arteries, acquired the ephrin-B2 marker (37). This study reveals a decisive role of

the vessel microenvironment for the selective expression of arterial-venous

markers.

Angiogenesis modulators

Fibroblast growth factors (FGFs)

Fibroblast growth factors are a large family of related growth factors. More than

20 different members have been identified by this writing, FGF-23 has recently

been cloned and shown to be expressed preferentially in the ventrolateral

thalamic nucleus (38). Fibroblast growth factors play important roles during

development, angiogenesis, tissue remodeling, and carcinogenesis. Conditioned

medium of normal mouse mammary cells transfected with a retroviral vector

carrying FGF-4 cDNA, induced angiogenesis in vitro in human umbilical vein

endothelial cells (HUVECs) via an autocrine induction of VEGF (39).

Recombinant adenovirus expressing human FGF-5 has been shown to improve

blood flow in the heart, associated with angiogenesis, in a model of stress-

induced myocardial ischemia (40). Pro-angiogenic effects also have been

described for FGF-8: mouse mammary tumor cells transfected with the murine

splicing variant FGF-8b give rise to highly vascularized tumors in nude mice. Pro-

angionic effects in the CAM-assay as well as in vitro assays are also reported

(41).

However, FGF-1 and –2 are the two members of the fibroblast growth factor

family, which are most intensively studied in the field of angiogenesis.

A single copy gene for FGF-2 encodes for 18, 22, 22.5 and 24 kDa variants; the

three latter isoforms are produced by initiation of translation at three CUG codons

located upstream from the classical AUG initiation site (42). The FGF receptors

consist of four transmembrane tyrosine kinases which give rise to multiple

isoforms as a result of alternative splicing (43, 44).

Knock-out studies of the FGF-2 gene have not revealed a specific function, but

FGF-2 deficient mice exhibit an altered migration of neurons to the cortex at birth
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and are hypotonic when adult (45-47), another group reported delayed skin

wound healing in FGF-2 null mice (48). On the other hand, mice deficient for

FGFR-1 are not viable and show abnormal organization of early embryonic

events (47), thus no further conclusion regarding a specific role for this receptor

during vasculogenesis or angiogenesis can be drawn from these experiments.

Mice expressing a dominant-negative form of FGFR-1 develop retinal

degeneration due to photoreceptor cell loss and show abnormal choroidal

angiogenesis (49). In humans, mutations in the FGFRs are closely linked to

craniofacial dysostosis syndromes (50).

Figure 5: Interaction of FGF-2 with tyrosine kinase receptors and glycosaminoglycans.

(Taken from Powers et al. (51)): FGFs activate their receptors by inducing receptor dimerization,

an event which is facilitated by HLGAGs (heparin-like glycoaminoglycans).

An important role in tumor angiogenesis has also been clearly established for

FGF-2. Compagnie et al. have generated a recombinant adenovirus encoding for

soluble FGFRs, which strongly inhibited the induction and maintenance of tumor

angiogenesis and tumor growth in nude mice transplanted with cell lines derived

from pancreatic -cell carcinoma. The same virus strongly suppressed tumor
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growth in the RIP1-Tag2 transgenic mouse model (52). In this model, 100% of

animals normally develop pancreatic -cell tumors (53).

Numerous antibodies against different regions on FGF-2 have been raised and

display anti-tumor efficacy in vivo (54, 55). In particular, antibodies against the

heparin-binding domain seem to have strong activity in vivo (55). This is

confirmed by an interesting study where peptides containing the FGF-2 heparin-

binding domain or the receptor-binding domain were used to vaccinate mice.

Only mice vaccinated with the heparin-binding domain peptide showed a reduced

angiogenic response in a gelfoam sponge model of angiogenesis, and

experimental metastasis was inhibited by more than 90% in two tumor models

(56). When C6 glioma cells were transfected with a dominant-negative form of

FGFR-1 or -2 and implanted in immunodeficient mice, smaller and less

vascularized tumors developed (57). These studies clearly show that FGF-2 and

its receptors have important roles in pathological angiogenesis.

FGF-2 signaling

Inhibition of FGFR signaling has become an interesting target for drug

developers. A pyrimidine derivate (PD166866) with nanomolar affinity for the

kinase domain of FGFR-1 efficiently block microvessel outgrowth of cultured

human placental arteries (58). A tyrosine kinase inhibitor of FGFR1, PD173074,

has potent anti-angiogenesis properties in vitro and in vivo; oral treatment of

mice with breast cancer leads to prolonged survival and enhanced efficacy of

photodynamic therapy (59). The molecule displays also selectivity for VEGFR-2

(at much higher doses) and corneal angiogenesis induced by FGF-2 or VEGF

can be effectively inhibited (60). High-resolution structure analyses have

revealed that it binds to the ATP-binding cleft of FGFR1 (60).

Another kinase inhibitor, SU6668, which targets not only FGF-R but also PDGFR

and VEGFRs is a very active agent against established human tumors like

melanoma or glioma transplanted in athymic mice (61, 62). Other potential

targets for anti-angiogenic therapies are phosphatidylinositol-3’ kinase (PI3K)

and protein kinase C isoforms (63, 64). To achieve full inhibition of FGF-2-

induced endothelial cell proliferation, both PI3K and ERK1/2 pathways have to

blocked: each pathway alone mediates 50% of FGF-2 mitogenic activity (65).
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Increased insight in structure-activity relationships of synthetic small molecules

with tyrosine kinases may generate highly selective and effective new drugs in

the future.

Figure 5: FGF-2-induced signaling cascades

FGF-2 binding leads to receptor dimerization and phosporylation of specific tyrosine residues,

which trigger signal pathways inducing different biological responses. Signal molecules like Src

and Fyn mediate tubulogenesis, whereas activation of ERK1/2 via the Ras-Raf-MEK pathway

induces EC migration. PI3K is connected to the receptor via docking proteins like Grb2 and Crk

and interacts with Akt to support endothelial cell survival. HIF1a may enhance binding of FGF-2

by increasing HSPGs on the cell surface (diagram from (66).

Abbreviations: ERK, extracellular-signal-regulated kinase; FIBP, FGF-binding protein; FRS2,

FGFR substrate-2; GlcNAcT-I, N-acetylglucosamine transferase I; HIF1 , hypoxia inducible factor-

1 ; HS2ST, heparan sulfate 2- Osulfotransferase; HSPG, heparan sulfate proteoglycan; MAPK,

mitogen-associated protein kinase; MEK, MAPK kinase; nFGF, nuclear FGF; PI3K, phosphatidyl

inositol 3 kinase; PKC- , protein kinase C- ; PLC- , phospholipase C .

Vascular endothelial growth factors (VEGFs)

VEGFs are some of the few endothelial cell specific growth factors discovered to

date, even though evidence for a relation of this factor with nerve growth and

physiology is emerging (for review see (67)). Six VEGF isoforms (VEGF121, 145, 165,

183, 189, 206) are generated by alternative splicing and exhibit different biochemical
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properties; variant VEGF165 represents the most abundant form and is one of the

strongest angiogenic growth factors (68, 69). Beside the originally described

VEGF (VEGF-A) five other forms of VEGF have been identified: VEGF-B (70),

VEGF-C (71), VEGF-D (72, 73), VEGF-E (74) and the related placenta growth

factor (PlGF) (75). Recently, a novel organ-specific form of a heparin-binding

vascular endothelial growth factor, named EG-(endocrinal gland) VEGF has been

cloned and found to specifically promote growth of endothelial cells found in

steroidogenic endocrinal glands (76). EG-VEGF is not structurally related to the

other VEGFs, but it shares biological activities with them: induction of EC

proliferation, migration and fenestration.

Other biological entities have evolved molecules similar to VEGF. For example,

VEGF-E is encoded by the Orf parapoxvirus, which induces angiogenic lesions in

infected subjects. This form of VEGF binds to and activates VEGFR-2 like its

mammalian counterpart (74). Another VEGF-like molecule called “increasing

capillary permeability protein” (ICPP) has recently been isolated from snake

venom. It shares about 50% homology with human VEGF and has biological

activities similar to VEGF, which could be abrogated by a VEGFR-2 tyrosine

kinase inhibitor (77).

VEGF receptors VEGFR-1 (synonym flt-1) and VEGFR-2 (KDR/flk-1) are

expressed in endothelial cells of blood vessels, whereas the expression of

VEGFR-3 (flt-4) is restricted to lymphatic endothelium (69). Accessory receptors

are neuropilin-1 and –2, which can enhance biological activities of VEGFR-2 and

VEGF165 (78).

Targeted gene inactivation experiments have revealed the importance of the

VEGF growth factor family for normal development. Knock-out mice with only a

single allele of the VEGF gene die during early embryonic stages due to impaired

blood-island formation (79, 80). Inactivation of VEGFR-1 results in a deadly form

of abnormal blood vessel assembly (81); and mice deficient for VEGFR-2 have

no yolk-sac blood islands and severely reduced number of hemangioblasts (82).

Targeted gene inactivation of VEGFR-3 leads to embryonic lethality due to

malformation of large vessels (83).
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Figure 6: Vascular growth factors and their receptor specificity.

(Taken from Yancopoulos et al., (84)): The three families of vascular growth factors known to

date. VEGFs bind to tyrosine kinase receptors with different affinities and specificities. VEGFR-2

is the main receptor for VEGF165 and responsible for most of the growth and permeability actions

of the growth factor. VEGFR-1 has a higher affinity for VEGF165 but a much lower tyrosine kinase

activity, suggesting a role as a decoy receptor. VEGFR-3 is predominantly expressed in lymphatic

ECs and is activated by VEGF-C. Angiopoietin-1 and -2 bind to the Tie-2 receptor, both receptor-

ligand interactions are crucial for normal development. Little is known about Ang3 and -4 and the

role of Tie-1. Amongst the large Eph receptor family, ephrin-B2 ligand and its EpHB4 receptor

play specific roles in during vascular development, possibly by determining the arterious or

venous fate of a vessel.

A recent study has shown that VEGF-A has a unique role in tumor angiogenesis,

which cannot be replaced by other growth factors or even other VEGFs. In a

modified RIP1-Tag2 mouse model of pancreatic -cell cancer, where the VEGF-

A gene was inactivated in pancreatic -islets, only small “hollow” tumors with very

limited vasculature developed upon transgene activation (85). These

experiments show that members of the VEGF / VEGFR system have distinct,

irreplaceable roles during development and tumor angiogenesis and suggest the

absence of redundancy in this ligand-receptor system.

One variant of VEGF, VEGF-C (71), is a ligand for VEGFR-3 which is pre-

dominantly expressed on lymphatic endothelial cells and it co-localizes in the

lymphatic network with this receptor (86). VEGF-C induces lymphangiogenesis in

vivo if over-expressed in transgenic mice (87) or deposited on the chick-
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chorioallantoic membrane (88). Recent findings suggest that VEGF-C might play

a pivotal role in tumor metastasis. When transgenic animals overexpressing

VEGF-C under the control of the insulin promoter (RIP-VEGF-C) were crossed

with the RIP1-Tag2 mice, which develop a non-metastatic form of pancreatic -

cell cancer, metastasis occurred to regional lymph nodes via the newly formed

lymphatic vessels surrounding the -islets (89).

Given the unique roles of the VEGFs and their receptors during vasculogenesis

and physiological angiogenesis, it is of obvious interest to explore anti-VEGF

strategies in pathological conditions such as cancer, retinopathy and rheumatoid

arthritis, all diseases, whose progression is angiogenesis-dependent (90).

VEGF signaling

An obvious challenge for drug discovery is to determine the role of intra-cellular

signaling molecules during the different phases of angiogenesis. VEGF-A binds

to two receptor tyrosine kinases, VEGFR-1 and –2. Little is known about the

physiological importance of VEGFR-1 signaling. Two ligands for this receptor,

PlGF and VEGF-A, do not induce migration or proliferation of normal or VEGFR-

1-transfected endothelial cells, but migration of monocytes seems to be mediated

by PlGF or VEGF binding to VEGFR-1 (91, 92) Apparently, signaling activity of

VEGFR-1 is not required for normal development; transgenic mice lacking the

intracellular tyrosine domain are viable (93). Recent work of Carmeliet and

colleagues points towards an important function of VEGFR-1 during pathological

angiogenesis. Mice deficient for PlGF, a high affinity ligand for VEGFR-1, fail to

exhibit a normal response towards numerous angiogenic stimuli such as healing

wounds, ischemia and tumors. Bone marrow of normal mice transplanted into

PlGF (-/-) mice restored angiogenic responses, suggesting a role of the

PlGF/VEGFR-1 receptor system in recruiting angioblasts (25).

Binding to VEGFR-2 leads to receptor auto-phosphorylation and initiation of a

complex signaling cascade involving specific enzymes and adaptor proteins like

Grb2, Nck and Shc. The signals converge to the Raf-MEK-MAPK pathway,

resulting in gene transcription. Specific inhibitors of MAPK kinases (e.g.

PD98059) are able to abolish VEGF pro-angiogenic effects and are thus potential

anti-cancer drugs. It should be noted however, that the very efficient inhibitor of

VEGF signaling, SU5416, which blocks angiogenesis in various in vitro and in

vivo studies (94) has now been retrieved from clinical studies due to inefficacy
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(95). To achieve good anti-angiogenic response in humans, it might be

necessary to target more than one signaling pathway. This is of importance,

since VEGF alone is able to induce endothelial cell proliferation using pathways

(e.g. PKCs), which are not used by FGF-2 or epidermal growth factor (96). Very

promising results come from synthetic molecules with a simultaneous inhibitory

activity against different PKC isoforms and other tyrosine kinase receptors:

administered orally to mice protects against new blood vessel growth in a

hypoxia model of retinal neovascularization (64, 97).

Figure 7: Signaling pathways of the VEGF receptors 1 and –2.

PlGF, VEGF-1 and –B constitute ligands for VEGFR-1, whereas VEGF-A, -C, -D and –E bind to

VEGFR-2 (schema taken from (98)). Tyrosine residues (Y) implicated in activation of signaling

cascade are shown. Several signaling molecules can interact directly with Y1213 and Y1333 of

VEGFR-1. Downstream effector molecules can mediate specific physiological events. For

example, activation of PLA2 or eNOS is associated with permeability effects of VEGF, whereas

Akt and PI3K mediate survival functions.

Abbreviations: eNOS, endothelial nitric oxide synthase; FAK, focal adhesion kinase; MAPK,

mitogen-activated protein kinase; MEK, MAPK kinase; PI3K, phosphoinositide 3-kinase; PLA 2 ,

phospholipase A 2 ; PLC ,phospholipase C ; PKC, protein kinase C; Sck, Shc-like protein;

SH2, src – homology domain 2; SHP-2, SH2 phosphatase 2; VRAP, VEGF receptor-associated

protein.
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Endogenous angiogenesis inhibitors

The first anti-angiogenic activities were isolated from shark cartilage extracts (99,

100). Shark cartilage had been chosen as a potential source for anti-angiogenic

molecules because of the natural absence of blood vessels in this tissue and the

peculiar fact that sharks almost never develop cancer. Today, numerous single

molecules with anti-angiogenic effects have been isolated from cartilage from

different species. These include troponin I, a component of human cartilage

(101), U995, a peptide inhibitor (102), and Neovastat, which has already entered

phase III clinical trials. Protamine was also one of the first angiogenesis inhibitors

discovered (103). Like platelet factor 4 (104), it has high affinity for heparin, an

important co-factor for angiogenic growth factors like FGF-2 and VEGF (for

reviews see (105)).

Folkman’s group has made an interesting observation several years ago: When

the primary tumor of mice bearing Lewis lung cell carcinoma was removed,

metastases started to grow rapidly. This led to the suggestion, that the primary

tumor secretes a (anti-angiogenic) factor, which restrains the growth of

metastases. They could isolate a protein from serum and urine from these mice,

which was named angiostatin (106). Amino acid sequencing revealed that

angiostatin is a fragment of plasminogen, a precursor of the anticoagulant protein

plasmin. Using a similar approach, the same group discovered later a protein

called endostatin (107), which was isolated in vitro from cell culture supernatants

of hemangioendothelioma. Endostatin causes regression of primary tumors in

animal models. Interestingly, it is also a fragment of a larger protein, collagen

XVIII. It is thus possible that numerous proteins of various functional biological

systems (eg. clotting cascade, basement membrane) undergo controlled

cleavage by yet unknown mechanisms to generate molecules that participate in

the endogenous regulation of angiogenesis.

The first evidence of an anti-angiogenic protein directly linked to the process of

carcinogenesis was given by the discovery of thrombospondin-1 (108). Loss of

the wild-type allele of the p53 tumor suppressor gene, a hallmark of malignant

cell growth, results in reduced expression of thrombospondin-1 and subsequent

acquisition of an angiogenic phenotype (109). This could thus be a mechanism

by which cancer cells circumvent the physiological anti-angiogenic state of
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quiescent adult endothelium. The other way round, this is also true: a human

fibrosarcoma cell line (HT1080), which had retained the active p53 tumor

suppressor gene, prevents the growth of experimental B16/F10 melanoma

metastases in the lungs of nude mice due to the production of high levels of

thrombospondin-1 (110). TSP-1 most likely exerts its anti-angiogenic effects in

vivo by inducing apoptosis mediated by the CD36 receptor in microvascular

endothelial cells (111).

Beside these first endogenous inhibitors, numerous molecules have been

discovered, which are parts of larger proteins with functions not primarily related

to angiogenesis.

FULL PROTEIN ANTI-ANGIOGENIC FRAGMENT
Plasminogen Kringle 1-4: angiostatin (106)
Plasminogen Kringle 5 (112)

Prothrombin
Prothrombin kringle-1 & kringle-2 domains
(113, 114)

Fibrinogen Fibrinogen E fragment (115)
Thrombin aAT (carboxyl-terminal loop) (116)
Tissue factor Cytoplasmatic tail (117)
Collagen XVIII Endostatin (C-terminus, 185 aa) (107)
Collagen XV Restin (118)
Collagen IV ( 2
chain)

Canstatin (119)

Calreticulin Vasostatin (120)
Prolactin, growth
hormone variant,
placental lactogen

N-terminal 16-kDa fragments (121, 122)

MMP-2 PEX (123)
Fibronectin III1-C (Anastellin) (124)

Table 1: Anti-angiogenic molecules derived from other proteins.

This table shows a summary of anti-angiogenic peptides and protein fragments that are part of

larger proteins, whose primary biological functions are not related to angiogenesis.

Publication I describes in more detail the major groups of molecules implicated in

the regulation of angiogenesis and how the insight gained by fundamental

research has led to the development of anti-angiogenic strategies to fight

diseases like cancer, rheumatoid arthritis and retinopathies.
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Abstract

There is growing evidence that anti-angiogenic drugs will improve future therapies of diseases like cancer, rheumatoid arthritis
and ocular neovascularisation. However, it is still uncertain which kind of substance, out of the large number of angiogenesis
inhibitors, will prove to be a suitable agent to treat these human diseases. There are currently more than 30 angiogenesis inhibitors
in clinical trials and a multitude of promising new candidates are under investigation in vitro and in animal models. Important
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Abbre�iations: CAM, chicken allantoic membrane; flk, fetal liver kinase; flt, fms-like tyrosine kinase; FGF, fibroblast growth factor; FGFR,
fibroblast growth factor receptor; GST, glutathione-S-transferase; HUVEC, human umbilical vein endothelial cell; LLC, Lewis lung carcinoma;
MMP, matrix metalloproteinase; MT-MMP, membrane-type matrix metalloproteinase; PDGF, platelet derived growth factor; Tiel, tyrosine
kinase with immunglobulin and epidermal growth factor homology domain; TIMP, tissue inhibitor of matrix metalloproteinase; THP, tumor
homing peptide; VEGF, vascular endothelial cell growth factor; VEGFR, vascular endothelial cell growth factor receptor; VN, vitronectin.
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therapeutic strategies are: suppression of activity of the major angiogenic regulators like vascular endothelial growth factor
(VEGF) and fibroblast growth factor (FGF); inhibition of function of �v-integrins and matrix metalloproteinases (MMPs); the
exploitation of endogenous anti-angiogenic molecules like angiostatin, endostatin or thrombospondin. Given the wide spectrum
of diseases which could be treated by anti-angiogenic compounds, it is important for today’s clinicians to understand their
essential mode of action at a cellular and molecular level. Here we give an in-depth overview of the basic pathophysiological
mechanisms underlying the different anti-angiogenic approaches used to date based on the most recent fundamental and clinical
research data. The angiogenesis inhibitors in clinical trials are presented and promising future drug candidates are discussed.
© 2000 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Angiogenesis; Endothelial cell; Clinical trial; Angiogenesis inhibitor

1. Introduction

Angiogenesis is defined as the growth of new blood
vessels out of pre-existing ones. It plays a key role in
numerous human diseases like malignant tumors,
rheumatoid arthritis, retinal and choroidal neovascular-
isation and various skin diseases [1]. Under physiologi-
cal conditions, angiogenesis is only observed during
wound healing and at periodic time points in female
reproductive organs as well as in pregnancy and embry-
onic development. The growth of the primitive vascular
network which forms during development (vasculogen-
esis) emerges from multipotential mesenchymal progen-
itor cells (for reviews see [2,3]). It has recently been
suggested that vasculogenesis may also participate in
vascular development in adult tissues [4].

The concept of anti-angiogenic therapy has been
formulated nearly 30 years ago by Judah Folkman who
suggested that cutting the blood supply of a tumor may
actually destroy it [5]. During the following three
decades researchers gained essential insight into the
biological mechanisms of angiogenic vessel growth. A
lot of progress has been made to determine how new,
proliferating endothelial cells differ from their non-pro-
liferating ‘dormant’ counterparts and how their growth
is controlled.

This research has led to the discovery of numerous
regulatory molecules which influence endothelial cell
physiology in vitro and angiogenesis in vivo. They can
be divided into several groups, consisting of growth
factors, extracellular matrix molecules and membrane-
bound proteins like integrins and growth factor recep-
tors. The most recent research focuses on different
tyrosine protein kinases which transmit signals from
specific growth factor receptors or integrins into the
cell. Some already known drugs like Taxol® [6],
Thalidomide [7] or Interferon-� [8] are seeing a new
area of therapeutic use since it was discovered that they
have anti-angiogenic properties. Other drugs already on
the market can become anti-angiogenic when coupled
to specific molecules which target them specifically to
proliferating endothelial cells [9,10].

In this review we will focus on the mechanisms of
action of the most important angiogenesis inhibitors

and stimulators on a molecular and cellular level and
describe how the discoveries in basic research have been
used to design new drugs for humans. These include:
VEGF and its receptors, Ties and angiopoietins, FGF-
2, �v-integrins, angiogenin, vasostatin, platelet factor 4,
thrombospondin, MMP inhibitors and uPA/PAI-1, an-
giostatin, endostatin, interleukins, as well as non-spe-
cific inhibitors and already known drugs with
anti-angiogenic properties (see Fig. 1).

2. Target molecules in anti-angiogenesis therapy

2.1. Vascular endothelial growth factors (VEGFs) and
their receptors

Among the most substantial mediators of angiogene-
sis are the VEGFs and their receptors. VEGF (formerly
Vascular Permeability Factor, VPF or Vasculotropin,
VAS) was isolated independently by two groups in 1989
from media conditioned by bovine pituitary folliculos-
tellate cells and by human tumor cells (U937) [11,12].
VEGF is an endothelial cell-specific mitogen, secreted
as a 45 kDa protein consisting of two subunits which
does not induce cell proliferation in other cell types.
There are five human isoforms with different numbers
of amino acids (VEGF121, 145, 165, 189, 206) [13], generated
by alternative splicing of the mRNA from a single gene
comprising eight exons. VEGF121 and VEGF165, are the
only soluble isoforms and also the most abundant, with
VEGF165 being the most powerful stimulator of en-
dothelial cell proliferation [14]. To date, five different
members of the VEGF family have been discovered:
VEGF [11], VEGF-B [15], VEGF-C [16], VEGF-D
[17,18] and VEGF-E [19].

Knocking out a single allele of the VEGF gene in
mice results in embryonic lethality, suggesting an essen-
tial role of VEGF in vascular development [20]. An
intact VEGF system still remains mandatory for sur-
vival for up to 4 weeks after birth. Injection of a
VEGFR-1-IgG chimera into newborn mice during that
time causes death because of liver and renal failure due
to increased apoptotic endothelial cell death in their
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developing organs. At later stages animals survive with-
out visible defects [21].

Clinical studies have shown the importance of VEGF
in human disease. High pre-treatment serum VEGF
levels in patients with small cell lung cancer are corre-
lated with a low response to conventional chemother-
apy and a poor survival rate [22]. VEGF is also a
valuable marker for tumor angiogenesis in breast can-
cer patients [23].

Different strategies have been designed to inhibit
VEGF function. Specific VEGF antibodies are a way of
stopping the angiogenic effects of this growth factor.
Injecting a monoclonal VEGF-antibody into nude mice
bearing various tumors of human origin significantly
suppresses tumor growth and reduces tumor weight of
treated animals up 96% [24,25]. A humanized antibody
against VEGF, rhuMAb-VEGF has recently been de-
signed [26,27] and undergoes testing in cancer patients
in Phase II clinical trials.

Another approach is the coupling of a toxin to
VEGF itself. When active parts of diphtheria toxin
(DT390) are linked to VEGF165 or VEGF121, the
chimeric molecule exerts highly selective toxic effects on

endothelial cells, leaving other cell types untouched. It
disrupts neovascularisation in the chicken allantoic
membrane assay (see Table 1), and it slows down the
growth of the tumors in a murine Kaposi’s sarcoma
model [28].

Blocking the interaction of VEGF with its receptors
has been shown to be another option for anti-angio-
genic treatment. VEGFR-1 (flt-1), VEGFR-2 (flk-1)
and VEGF-3 (flt-4) are almost exclusively expressed on
endothelial cells. Knock-out mice lacking one of these
receptors die in early embryonic state, underlining the
unique importance for the vascular system (see Table
2). Interestingly, transgenic mice lacking only the ty-
rosine kinase domain of VEGFR-1 are alive and de-
velop normally [29]. This can be explained by the fact
that VEGFR-1 has only a very weak kinase activity but
a ten-fold higher binding capacity for VEGF than
VEGFR-2. It may be that VEGFR-1 acts as a co-recep-
tor or as an extracellular absorbing ‘sponge’ for VEGF
thus preventing against excess signaling by VEGFR-2.

Purified soluble VEGFR-1 binds VEGF with high
affinity and blocks VEGF-induced endothelial cell pro-
liferation [30]. Transfection of tumor cells with a cDNA

Fig. 1. Major regulators of angiogenesis and their receptors. This simplified scheme of an endothelial cell illustrates the major regulators of
angiogenesis and their receptors. On the upper part of the cell angiogenesis promotors are shown, on the lower part inhibitory molecules. VEGF-C
acts mainly on lymphatic endothelial cells and is the only lymph-angiogenic factor known so far [222]. VEGF165R (=neuropilin-1) is a co-receptor
for VEGF165 which enhances the activity of VEGFR-2 [36]. Tie-2 function depends on the ligand, overexpression of angiopoietin-1 is
pro-angiogenic and angiopoietin-2 is the natural antagonist to angiopoietin-1 but not a typical inhibitor of angiogenesis.
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Table 1
Models of angiogenesis

Model (Patho) physiological mechanism

In �itro
Endothelial cell culture systems Formation of lumen-like 2 dimensional structures, observation of

endothelial cell proliferation and migration [163]

Ex �i�o
Human placental blood vessel fragments in fibrin gel Microculture of vessel-fragments in fibrin gels without the need to

add growth factors [164]
Rat aorta rings in serum-free collagen gel or clotted plasmaRat aorta explants
[165,166]

In �i�o
Implantation of a pouch containing an angiogenic molecule into theCornea micropocket model
stroma of the cornea of various animals with subsequent
neovascularisation of the physiologically avascular cornea, allows
quantification of angiogenic response [167–170]
Induction of a transparent air sac on the back of the animal byRat subcutaneous air sac model
injection of air subcutaneously, has the advantage to be less painful
for the animal than the cornea assays [171]
Inoculation of tumor cells in mice either by injection in the tail veinTumor angiogenesis
(lung colonization), subcutaneously, or directly in a specific organ
leads to development of new vessels in the growing tumor and
metastases [5,105,172]
Exposure of rodent pups to high oxygen concentrations at a criticalOxygen induced models of retinal neovascularisation
time point of their development yields severe retinal
neovascularisation [173]
Normal wound healing angiogenesis after a incision wound in theMurine subcutaneous granulomatous tissue
skin [174]

Angiogenesis in vivo using basement membrane extracts (Matrigel) Angiogenesis occurs in response to subcutaneous injection of
matrigel [175].
Induction of a virus oncogene, SV40 large T antigen (Tag) underTransgenic mice with pancreatic islet cell primary tumors (RIP Tag
the transcriptional control of the insulin gene promotor (RIP) leadsmice)
to angiogenesis-dependent islet cell tumors in all animals [176].
Growth of blood vessels on the chick c� horio-a� llantoic m� embraneCAM assay
[177–179].

encoding the native soluble truncated VEGFR-1 sig-
nificantly inhibits their implantation and growth in the
lungs of nude mice following i.v. injection. More im-
portantly, the survival rate was significantly higher of
mice injected intracranially with human glioblastoma
cells stably transfected with soluble VEGFR-1 cDNA
than in control mice [31].

VEGF also plays an important role in retinal ne-
ovascularisation [32]. Low tissue oxygen concentrations
are observed in tumors as well as in several retinal
diseases and are known to induce VEGF expression
(for reviews see [33]). A chimeric fusion protein made
of the extracellular domain of VEGFR-1 and IgG
inhibits retinal neovascularisation up to 77% after a
single intravitreal injection [34]. These results underline
the possibility of using soluble VEGF receptors as a
therapeutic anti-angiogenic approach.

New peptides which interfere with the binding site of
VEGF with VEGFR-2 or VEGFR-1 have been found
through the use of random peptide phage display tech-
nology. Biopanning on the receptor binding domain of
VEGF yielded some disulfide-constrained 20 amino

acid peptides which bind directly to an active region
participating in receptor recognition thereby inhibiting
VEGF-induced proliferation [35].

VEGF165 has also its own, isoform-specific receptor
and binds to it via a region of 44 amino acids, encoded
by exon seven. The receptor has been found to be
identical to neuropilin-1 [36]. Binding of VEGF165 to
neuropilin-1 enhances indirectly the mitogenic activity
of VEGFR-2 in HUVEC cells. A GST-fusion protein
containing the 44 amino acid region is able to inhibit
HUVEC cell proliferation up to 60% [14]. The mito-
genic activity of the protein is completely dependent on
a cysteine residue at a specific position (Cys146).

Another group has studied peptides derived from the
VEGF165-binding region of the VEGFR-2. The 18-
residue peptide inhibits VEGF165 dependent cell
growth and migration in vitro at micromolar concen-
trations [37]. These approaches are a promising start-
ing point for further development of new
anti-angiogenic drugs because they shed light on criti-
cal interactions between angiogenic growth factors and
their receptors.
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When VEGF binds to VEGFR-2, the pro-angiogenic
signal is transmitted via a receptor tyrosine kinase to
downstream effector proteins. Inhibition of VEGFR-2
signaling may consequently be a way to stop angiogen-
esis. Such inhibitors have been identified by in vitro
screening of random chemical compound libraries. The
panning yielded some molecules with the general struc-
ture of 3-[(five-membered heteroaryl
ring)methylidenyl]indolin-2-ones which are highly spe-
cific blockers of VEGFR-2 tyrosine kinase autophos-
phorylation [38] (see also Table 3). One of these
compounds, SU5416, strongly inhibits growth of subcu-
taneous tumors in mice, converting the tumors to pale
white, avascular nodes [39]. SU5416 has been tested in
a Phase I clinical trial without severe adverse effects
and preliminary data indicate that it may have clinical
activity in patients with colorectal, lung and renal cell
cancers as well as AIDS-related Kaposi’s sarcoma [40].
The SU5416 drug is now in phase II clinical trials.

2.2. The Tie-angiopoietin system

Beside the VEGFRs, only two other endothelial cell-
specific surface receptors with tyrosine kinase activity
are known so far. Since their discovery in the early
nineties, Tie-1 [41–43] and Tie-2 [44] were found to
hold unique functions in vascular biology as revealed
by gene knockout experiments. Null-mice lacking Tie-1
die at various time points in uteri because of edema and
hemorrhage resulting from a general vascular instability

[45,46]. Tie-2 knockouts develop normal vessel patterns
but die around embryonic day 10 with heart failures,
probably due to deranged endocardial/myocardial in-
teractions and disturbed integration and stabilization of
blood vessels in their mesenchymal environment [47]
(see Table 2). Interestingly, a mutation in the kinase
domain of the Tie-2 receptor, resulting in an arginine-
to-tryptophan substitution, has been found to be re-
sponsible for an inherited form of venous
malformations in two unrelated families. The mutation
leads to an increased activity of the Tie-2 receptor and
patients have reduced smooth muscle cells in their
venous walls [48]. As a conclusion, Tie-2 needs to be
activated in a very restrained fashion because either
overfunctioning or its absence results in vascular
abnormalities.

Little is known about the biological functions of the
Ties in the adult organism, where their expression is
sporadic. Tie-1 has been found in wound healing tissue
and during menstruation [49,50]. Tie-2 is also present
on endothelial cells in human breast cancer and
glioblastoma tissues [51,52], suggesting a connection to
tumor angiogenesis.

Taking this assumption as a starting point, Lin et al.
showed that they could reduce tumor growth more than
75% in mice by injecting a single dose of the extracellu-
lar domain of the Tie-2 receptor. The soluble receptor
also completely inhibited corneal neovascularisation in-
duced by pellets containing tumor cell-conditioned me-
dia [53]. In a more recent publication, the same group

Table 2
Phenotypes after genetic manipulation of important angiogenesis regulators

PhenotypeTargeted gene

Animals deficient in Tie-1 die directly after birth because of a failure to establish structural integrity of vascularTie-1
endothelial cells, resulting in pulmonary edema and localized hemorrhages in skin and other organs [45]
Animals deficient for Tie-2 die around E10.5 due to abnormal vascular network formation. Absence of sprouting andTie-2 (tek)
branching of additional cords from the primary vascular plexus, lack of recruitment of periendothelial support cells [45]

Angiopoietin-1 Gene knockout is lethal at embryonic day 12.5 because of disturbed interactions between the endothelium and surround-
ing matrix and mesenchyme, similar to the Tie-2 knockout [56].Targeted overexpression of angiopoietin-1 in the skin of
mice produces living animals with larger, more numerous and more highly branched vessels [180]

Angiopoietin-2 Transgenic mice overexpressing angiopoietin-2 die at E9.5-10.5 due to similar defects as observed in angiopoietin-1
transgenic or Tie-2 knockout mice [57]
Loss of a single VEGF allele is lethal in the mouse embryo between days 11 and 12 [20,181]VEGF
Endothelial cells were developed but assembled into abnormal vascular channels with overgrowth of endothelial cells,VEGF-Receptor

1 (flt-1) embryos die in uteri at mid-somite stage (E8.5) [182]Mice lacking only tyrosine kinase domain of the receptor have
normal endothelial/hematopoietic development, but VEGF-mediated macrophage migration is suppressed [29]

VEGF-Receptor Homozygotes for this mutation die in utero between 8.5 and 9.5 days post-coitum because of an early defect in the
2 (flk-1) development of haematopoietic and endothelial cells, complete absence of organized blood vessels [183]

VEGF-Receptor Null mice have large vessels, abnormally organized with defective lumens and fluid accumulation in the pericardial cavity
3 (flt-4) resulting in cardiovascular failure at embryonic day 9.5. [184]

�v-Integrin 80% born dead, 20% alive. The liveborn �v-null mice have intracerebral and intestinal hemorrhages and cleft palates [185]
FGF-2 (bFGF) Delayed wound healing of excision skin wounds mice lacking FGF-2, significant reduction in neuronal density in most

layers of the motor cortex [68]
TGF-� 1 Severe defects in yolk sac vasculogenesis, inadequate capillary tube formation and weak vessels with reduced cellular

adhesiveness [186]
Null mice lack microvascular pericytes, development of numerous capillary microaneurysms that ruptured at late gesta-PDGF-B
tion [187]
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Table 3
Promising new angiogenesis inhibitors in experimental evaluation

Source/type of moleculeMechanism of actionName of molecule

Unknown, induction of endothelial cellAngiostatin [188] Fragment of plasminogen
apoptosis?

MMP-2 fragmentInhibition of �v�3/MMP-2 interactionsPEX [150]
Synthetic peptides discovered by in-vitroSelective blocking of MMP-2 and MMP-9HWGF-containig peptides [189]
phage display

Inhibition of �v�3/vitronectin interaction atSC-68448 [190] Peptidomimetic molecule
nanomolar concentrations

Cyclic peptide RGDfKCyclic RGD peptides [132] Blocking of �v�3-action
Peptide–doxorubicine conjugate targets the Synthetic peptides discovered by in-vivoTHP-dox (THP= tumor homing peptide) [10]
new blood vessels of tumors and penetrates phage display coupled to doxorubicine
into the tumor stroma
In part via blocking of FGF-2 dimerizationPlatelet factor 4 and derived peptides Natural occurring protein synthesized by
and VEGF action platelets[72,77,79]

Synthetic molecule (Pyrimidine-derivate)FGF-Receptor 1 tyrosine kinase inhibitorPD 166866 [70]
FGF-Receptor 1 tyrosine kinase inhibitorPD 173074 [71] Synthetic molecule (Pyrimidine-derivate)
Inhibits binding of VEGF165 to VEGFR-2 DNA AptamerNX 1838, NeXstar Pharmaceuticals, Boulder,

CO, USA, www.nexstar.com
Inhibits binding of VEGF and signaling ofAnti-VEGFR-2 antibody [191] Monoclonal antibody
VEGFR-2
VEGFR tyrosine kinase inhibitorZD4190, AstraZeneca PLC, (formerly Zeneca Synthetic molecule

and Astra AB), www.zeneca.com
Blocking of Tie-2 receptor mediatedSoluble Tie-2 [53] Soluble receptor
angiogenesis

Vasostatin [113] Fragment of calreticulinUnknown
Natural protein secreted by plateletsThombospondin (TSP-1) [117,192] Unknown, but in part via blocking of FGF-2
Short peptides containing theUnknownTSP-1 derived peptides [122,123]
angio-inhibitory region of TSP-1

Binds extracellular copper and inhibits glysylSC-7, Cell Therapeutics, Inc., Seattle, WA, Aryl cyclam
USA, www.cticseattle.com oxidase, which is required for collagen

crosslinking, an early step in blood vessel
assembling

extended their findings by showing that effective sup-
pression of melanoma and mammary carcinoma
growth occurs if the Tie-2 receptor is delivered to mice
using an adenoviral vector [54].

The natural ligands for the Tie-2 receptor are called
angiopoietins (by this writing no ligand for Tie-1 has
been published). Angiopoietin-1 binds and activates
Tie-2 [55]. During development it can not be replaced
by another molecule since the angiopoietin-1 knockout
is lethal, showing very similar defects to those mice
lacking its receptor, Tie-2. The signals emerging from
the angiopoietin-1/Tie-2 interaction seem to be respon-
sible for the assembly of non-endothelial cells for the
vessel wall, such as pericytes and smooth muscle cells
[56]. The other Tie-2 ligand, angiopoietin-2, does not
activate Tie-2, suggesting an antagonist function to
angiopoietin-1. Indeed, transgenic mice with a vascula-
ture-targeted overexpression of angiopoietin-2 show
similar defects as observed in the angiopoietin-1 and
Tie-2 knockouts, underlining its role as a competitor of
angiopoietin-1 in the developing vascular system [57].
Angiopoietin three and four have been cloned very
recently. Their contribution to the Tie-2 regulatory
system in vivo is yet not known, but angiopoietin-4 is

only expressed in the lung whereas angiopoietin-3 has a
wide tissue distribution. Given the low stringency
screening methods involved in the discovery of angio-
poietin-3 and -4 and the repetitive cloning of only the
four forms during the screens make it likely that all
forms of angiopoietin have now been identified [58].

These findings together underline the feasability to
use the Tie/angiopoietin system to control angiogenesis
and vasculogenesis. But before these important
molecules can be used for theraphy, their effects on
adult human vasculature and their interaction with
other angiogenesis-influencing molecules during physio-
logical and repair-associated angiogenesis have to be-
come more clearly.

2.3. Fibroblast growth factors (FGFs)

One of the most important stimulators of angiogene-
sis are the fibroblast growth factors, first identified in
1975 [59]. The two most extensively investigated
proteins of this family are FGF-1 (acidic FGF) [60] and
FGF-2 (basic FGF) [61]. FGF-2 exists in four forms,
one low molecular weight (18 kDa FGF-2) and three
high molecular weight forms (HMWs FGF-2), resulting



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110 95

from alternative initiations of translation. The four
forms are found in different intracellular compartments
and trigger different physiological functions [62].

FGF-2 acts in a paracrine and autocrine manner and
is produced either by tumor cells, macrophages or
released by the extracellular matrix. It can upregulate
other important angiogenic factors like VEGF [63] or
plasminogen activator [64] and inhibits endothelial cell
apoptosis by Bcl-2-dependent and independent mecha-
nisms [65], showing an essential role for endothelial cell
growth and survival.

Blocking of FGF-2 results in inhibition of angiogene-
sis in vitro and in vivo [66] and implantation of aden-
ovirus transfected fibroblasts expressing secreted
FGF-2 (FGF-2 fused to the FGF-4 signal sequence)
into mice skin results in production of functional blood
capillaries [67]. Knocking out the FGF-2 gene in mice
does not impair embryonic growth or vascular develop-
ment. However, repair-associated angiogenesis is possi-
bly impaired in FGF-2-knockout mice since they
exhibit a delayed skin wound healing response [68] (see
also Table 2). The absence of a visible phenotype in the
FGF-2-knockout does not exclude an involvement of
this growth factor in developmental angiogenesis be-
cause of redundancy between FGF family members.

FGFs confer their pro-angiogenic signal to the cell
nucleus via a family of four transmembrane receptor
tyrosine kinases (for review see [69]).

Blocking the intrinsic kinase activity of FGF-recep-
tors is a promising new target for drug development.
PD 166866, a pyrimidine derivate, specifically blocks
signaling of FGFR-1 and inhibited microvessel out-
growth from cultured human placental arteries at
nanomolar concentrations [70]. The interactions of an-
other pyrimidine-based compound (PD 173074) have
been characterized further by crystallography. Binding
of the molecule to FGFR-1 results in interfering with
the ATP-binding site in the kinase domain. This leads
to potent in vitro and in vivo inhibition of neovascular-
isation [71]. The FGF/FGFR interaction is also a target
for the anti-angiogenic effects mediated by platelet fac-
tor 4 (PF-4). PF-4 inhibits binding of FGF-2 to its
receptor by abolishing the dimerization of the growth
factor a necessary step for further progression of angio-
genic signals [72].

2.4. Platelet factor 4 (PF-4)

Platelet factor 4 belongs to the CXC cytokine super-
family which consists of chemotactic polypeptides less
than 10 kDa in size that either support or suppress
angiogenesis. Members of this family are angiogenic if
they contain an ELR peptide motif at their N-terminus.
CXC-polypeptides lacking this sequence are angiostatic
[73,74]. Platelet factor 4 does not have the ELR motif
and has anti-angiogenic properties whereas ELR-con-
taining interleukin-8 is angiogenic (for reviews see [75]).

It has been known for a while that platelet factor 4
inhibits angiogenesis [76] and that recombinant human
PF-4 impedes growth factor-stimulated endothelial cell
proliferation [77]. But the mechanisms by which PF-4
achieves its endothelial cell specificity and angiostatic
effects has not been known until more recently.
VEGF165 is hindered to bind to VEGFR-2 in the
presence of PF-4 and VEGF121-induced endothelial cell
proliferation is abrogated by PF-4 [78]. Our group has
shown that PF-4 complexes with FGF-2 and inhibits
endogenous or heparin-induced FGF-2 dimerization.
Furthermore, the chemokine blocks FGF-2 internaliza-
tion and binding to its receptor, suggesting that the
factor stops angiogenesis at least in part via inhibition
of FGF-2 [72]. We also have been able to link the
inhibitory action of platelet factor 4 to a region local-
ized at the C-terminus of the molecule. The C-terminal
fragment blocks both FGF-2 and VEGF-mediated an-
giogenesis in vitro by interfering with ligand-receptor
interactions [79].

PF-4 lacking the heparin binding-domain is as angio-
static as the natural protein when it is injected intrale-
sionally into mice bearing B-16 melanoma or HCT-116
human colon carcinoma and strong inhibition of tumor
growth occurs. The chemokine does not slow down the
proliferation of tumor cells in vitro, suggesting the
anti-tumor effects might be due to inhibition of tumor
angiogenesis [80]. It also limits significantly lung metas-
tasis and primary tumor growth if injected intra-
venously or subcutaneously in various murine tumor
models [81]. Further evidence for the angiostatic effects
of PF-4 comes from gene therapy experiments. When a
secretable form of PF-4 is delivered to endothelial cells
via retro-or adenoviral vectors, it inhibits cell prolifera-
tion in vitro and tumor growth in vivo, diminishing the
number of blood vessels in the tumors [82].

Beside the anti-angiogenic effects, PF-4 has the inter-
esting feature of selectively attaching to endothelial cells
in vitro and to new blood vessels in vivo. Fluorescein-
labeled PF-4 binds to proliferating endothelial cells of
different origins (veins and arteries) and is quickly
internalized. It also stains angiogenic blood vessels in a
hamster cheek pouch model as revealed by intravital
microscopy [83]. Two other studies suggest that the
decoration of the vessel walls by PF-4 reflects a selec-
tive binding to regions of active angiogenesis [84,85].

Taken together, the existing in vitro and in vivo data
show that PF-4 is a potent inhibitor of angiogenesis. It
might act as a natural antagonist of FGF-2 and VEGF
induced neovascularisation. A first Phase I clinical trial
with nine patients suffering from advanced colorectal
carcinoma revealed that recombinant human PF-4 is
well tolerated and even though no effect has been
observed at the doses tested so far [86]. However, it is
not possible in Phase I studies to draw any conclusions
about the efficacy of the anti-tumor activity of any
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agent (see Table 4 for a summary of the aims of clinical
trial phases).

Anti-angiogenic therapy using natural inhibitors, like
platelet factor 4 or its active peptide-derivates, is likely
to become an important direction in anti-angiogenesis
therapy.

2.5. Interleukins

Interleukins have been known for a long time for
their immunomodulatory activities but their role in
angiogenesis is just now becoming a hot topic in cancer
research.

Some of the interleukins have anti-angiogenic prop-
erties (interleukin-10,-12,-18) others seem to be pro-an-
giogenic (interleukin-1,-6,-8,-15), some have both
effects (interleukin-4). The mechanisms by which inter-
leukins achieve their effects on endothelial cells are
quite different and not fully understood. For example,
interleukin-10 inhibits in-vitro angiogenesis induced by
prostate cancer cells through stimulation of the release
of a tissue inhibitor of matrix metalloproteinases
(TIMP-1) and by decreasing the secretion of MMP-2
and MMP-9. These effects could be reversed by an
antibody against IL-10 receptor or TIMP-1 [87].

In contrast, interleukin-8 stimulates the angiogenic
potential of melanoma cells through upregulation of
MMP-2 expression at the transcriptional level. This
contributes to the more aggressive behavior of injected,
IL-8-transfected melanoma cells in vivo [88]. This find-
ing is paralleled by another study which proved that
IL-8 receptors are present on endothelial cells of small
vessels in all samples from patients with breast cancers,
but only in 50% of the samples from normal breast
tissue [89].

Interleukin-12 blocks corneal neovascularisation in
normal and immundeficient mice, suggesting that the
presence of immuncompetent T-cells is not a prerequi-
site for the anti-angiogenic features of IL-12 [90]. IL-12
acts via the release of interferon-� and consequently
interferon-inducible protein 10 (IP-10), a member of the
CXC chemokine family, which itself can block the

activity of a major angiogenic growth factor, FGF-2
[90–92]. In addition, downregulation of MMP-9 and
increase of TIMP-1 may also contribute to the angio-
inhibitory effects of IL-12 [93]. Interestingly, interferon-
� also inhibits angiogenesis and has been successfully
used to treat children with life-threatening hemangioma
[8].

Interleukins may be useful tools to treat angiogene-
sis-related diseases and several clinical trials are under-
way to test the therapeutic effect in humans.

2.6. Angiogenin

Angiogenin is a 14 kDa single chain protein which
has been isolated from human adenocarcinoma cells. It
induces angiogenesis in the rabbit cornea in the pico-
molar range [94,95].

Angiogenin is a physiological component of human
serum, circulating at concentrations around 360 ng/ml.
The activity of plasma angiogenin is probably con-
trolled by plasminogen which specifically enhances elas-
tase-mediated proteolysis of angiogenin, thereby
abolishing its angiogenic function [96]. In patients with
pancreatic cancer the angiogenin levels nearly double
and correlate with a poor prognosis [97]. This estab-
lishes a role for angiogenin in human malignancies.

The angiogenic properties of angiogenin are the re-
sult of interactions with several other molecules: First,
actin present on the cell surface binds angiogenin and
the complex then activates tissue plasminogen activator
(tPA) which generates plasmin [98,99]. This is followed
by degradation of extracellular matrix and basement
membranes, a prerequisite for endothelial cell migra-
tion. Endothelial cell proliferation may then be medi-
ated by a 170 kDa angiogenin receptor expressed only
on subconfluent endothelial cells with no detectable
surface actin–angiogenin complexes [100]. Angiogenin
is further processed in the cell and translocates into the
nucleus, which seems also to be necessary for angio-
genin to become angiogenic.

Blocking of angiogenin with a monoclonal antibody
can impair subcutaneous tumor growth of colon adeno-

Table 4
Definition of clinical trials

Trial Properties

Pre-clinical Evaluation of pharmacological effects and short term toxicity (normally 2 weeks to three months) through in-vitro and
in-vivo animal testing: Genotoxicity, drug metabolism, excretion pathways in at least two species of animals (rodent and
non-rodent)
Closely monitored first introduction of the new drug to healthy or diseased volunteers (20–80 subjects). DeterminingPhase I
metabolism, dose-side effect relations, early evidence of effectiveness possible, but not required

Phase II Closely monitored introduction of the drug to patients, clinical study with usually several hundred patients to obtain
preliminary data on effectiveness of the drug for a particular indication.

Phase III Expanded controlled and uncontrolled trial (several hundred/thousand patients) after evidence of effectiveness in Phase II
studies. Benefit-risk relationship of the drug.
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carcinoma in athymic mice in a dose-dependent man-
ner [101]. In 40–50% of the cases, growth of human
breast carcinoma xenografts in athymic mice could be
completely inhibited by a humanized version of the
monoclonal anti-angiogenin antibody cAB 26-2F
[102]. Other strategies to abolish angiogenin-induced
angiogenesis include the use of DNA aptamers (ap-
tamers are small synthetic DNA or RNA molecules
complementary to the RNA/DNA one wants to
target) which have been selected from a large aptamer
library. The identified molecules co-translocate with
angiogenin into the cell nucleus of human endothelial
cells and thereby inhibit angiogenesis [103].

Interestingly, the aminoglycosid antibiotic
neomycine also blocks nuclear translocation of angio-
genin, whereas other aminoglycosids do not show any
similar activity. Adding as little as 20 ng neomycine
per egg completely disrupts angiogenesis in the
chicken allantoic membrane assay [104].

Anti-angiogenic therapy using angiogenin as a
target may become an important tool because angio-
genin mediates neovascularisation by mechanisms dis-
tinct from VEGF and FGF-2.

2.7. Angiostatin, endostatin and other endogenous
inhibitors

Angiostatin is perhaps one the most exciting dis-
coveries in the field of angiogenesis and cancer in the
last years. Based on the clinical observation that re-
moval of a primary tumor can result in rapid, angio-
genesis-dependent growth of metastasis elsewhere in
the body suggested that the primary tumor releases
anti-angiogenic factor(s) which suppress metastatic
growth. Lewis lung carcinoma (LLC)-bearing mice
from which the primary tumor has been removed
were injected intraperitoneally with serum or concen-
trated and dialyzed urine from mice still presenting a
primary LLC. Both serum and urine from these mice
were able to almost completely suppress metastatic
cell growth. Serum and urine were also able to spe-
cifically inhibit proliferation of endothelial cells of dif-
ferent origin, but fail to show this effect on other cell
types such as tumor cells. The anti-angiogenic activity
was isolated from mouse urine and serum and it co-
purifies with a 38 kDa protein which turned out to
be a fragment of plasminogen [105].

The mechanism by which angiostatin accomplishes
its anti-angiogenic effect is not exactly known but it
probably kills endothelial cells by inducing apoptosis
[106]. Systemic administration of human or recombi-
nant human angiostatin potently inhibits the growth
of human and murine primary carcinoma in mice,
showing nearly a complete inhibition of tumor
growth without detectable toxicity or resistance, a re-
sult which has never been obtained before with other

anti-cancer drugs [107,108]. Angiostatin makes en-
dothelial cells resistant to angiogenic stimuli and in-
duces ‘dormancy’ of metastases.

A second molecule has been isolated by the same
group using a similar approach. Culture medium of a
murine hemangioendothelioma cell line inhibits prolif-
eration of capillary endothelial cells. This effect has
been shown to be angiostatin-independent and the
anti-proliferative activity could be identified as a 20
kDa fragment of collagen XVIII, termed endostatin
[109]. Endostatin strongly inhibits endothelial cell pro-
liferation in vitro and angiogenesis in chicken allan-
toic membrane assays. Furthermore, it almost
completely stops the growth of metastases originating
from LLC carcinoma as well as primary tumors
(melanoma, fibrosarcoma, hemangioendothelioma, re-
nal cell carcinoma) [109,110]. The crystal structure of
endostatin has been resolved and the result suggests
that it might inhibit angiogenesis by binding to the
heparan sulphate proteoglycans implicated in growth
factor signaling [111]. Phase I trials have now been
initiated for endostatin to evaluate the usefulness of
this promising new angiogenesis inhibitor in humans.

Beside angiostatin and endostatin there are more
endogenous angiogenesis inhibitors which share the
common feature being a cleaved part of larger al-
ready known molecules. Restin is a 22 kDa human
collagen XV fragment which has been found by ho-
mology screening with endostatin [112]. It inhibits the
migration of endothelial cells in vitro and systemic
administration of restin suppressed the growth of tu-
mors in a xenograft renal carcinoma model. A poly-
clonal antibody against endostatin cross-reacted with
restin suggesting similar pathways of inhibition.

Vasostatin is a 180 amino acid NH2-terminal do-
main of calreticulin (a protein involved in calcium
homeostasis), which selectively inhibits proliferation
of endothelial cells and suppressed tumor growth of
human Burkitt lymphoma and human colon car-
cinoma in nude mice. Vasostatin may have applica-
tions in cancer therapy because it is easy to produce
and appears to be a stable protein [113]. Human pro-
lactin, growth hormone, placental lactogen and
growth hormone variant are angiogenic factors
whereas their 16-kDa N-terminal fragments are anti-
angiogenic [114].

The fact that vascular stimulatory and inhibitory
regions lie within one molecule suggests that this is part
of a tight control mechanism. Specific cleavage of small
parts of larger, ubiquitous proteins may thus be a
general mechanism by which the body supports or
restrains angiogenesis. It remains to be determined to
which extent these mechanisms play a physiological/
pathophysiological role in humans or to which extent
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these fragments could be used as therapeutics for
humans in the future.

2.8. Thrombospondin (TSP)

Extracellular matrix molecules play an important
role in maintaining tissue integrity and endothelial cell
viability. However, thrombospondin, one such extracel-
lular matrix molecule, first identified in 1979 from
platelets [115] is also a very powerful inhibitor of
endothelial cell adhesion, motility and proliferation
[116] and angiogenesis in vivo [117]. It is a relatively
large protein consisting of three identical disulfide-
linked 180 kDa chains which exists in two isoforms,
TSP-1 and TSP-2.

Interestingly, the anti-angiogenic importance of TSP-
1 can directly be linked to malignant pathology, since
expression of TSP-1 is downregulated in fibroblasts
when loss of the wild-type allele of the p53 tumor
suppressor gene occurs, a typical feature of malignant
cell growth [118]. Low expression of TSP and altered
p53 function has been correlated in samples from hu-
man bladder cancer with higher vascularized tumors
and consequently higher disease recurrence and lower
survival rates [119].

Injecting human skin carcinoma cells transfected with
an additional copy of chromosome 15, the gene locus of
TSP-1, into mice leads to the development of small
avascular cysts instead of tumors. This effect could be
reversed by the injection of TSP-1 antisense oligos,
underlining the importance of TSP-1 in tumor angio-
genesis [120]. TSP-1 is also implicated in the pathogen-
esis of retinal neovascularisation since its mRNA
expression correlates positively with the outgrowth of
new blood vessels on the retina in a murine model of
retinal neovascularisation. This upregulation is VEGF-
mediated and may be part of a negative feedback
mechanism for VEGF [121].

TSP-1 is a large multifunctional protein and there-
fore bears risks if used as a therapeutic agent in humans
(e.g. immunogenicity). Efforts have been made to map
the anti-angiogenic features of TSP-1 to smaller por-
tions of the molecule. Indeed, a 50 kDa proteolytic
fragment of TSP-1 contains the complete inhibitory
activity of the intact TSP-1. Several peptides originating
from this part ranging from seven to 19 amino acids in
length have been found to inhibit angiogenesis in the
rat cornea assay as well as vessel growth into wound
granulation tissue in mice [122]. The efficacy of those
peptides has been improved remarkably by replacing
one L-amino acid with its D-enantiomer. A seven amino
acid peptide derivate was able to inhibit the develop-
ment of corneal neovascularisation completely even if
injected intraperitoneally [123]. TSP-1 and derived pep-
tides hold therefore a substantial potential to be refined
into anti-angiogenic drugs for humans.

2.9. Integrins (���3 and ���5)

Integrins are heterodimeric transmembrane proteins
consisting of � and � subunits with large ectodomains
and short cytoplasmic tails. They control cell motility,
differentiation and proliferation via interactions with
extracellular matrix molecules. Nearly half of the more
than 20 integrins known so far recognizes the peptide
sequence RGD in their extracellular ligand and block-
ing of this site with synthetic RGD-peptides inhibits
this interaction.

Integrins �v�3 and �v�5 are upregulated on prolifer-
ating endothelial cells in angiogenic blood vessels dur-
ing wound healing [124], in retinal neovascularisation
[125] as well as in tumor vasculature [126]. Their activ-
ity can be triggered differently by two angiogenic
growth factors: angiogenesis induced by FGF-2 re-
quires the expression of �v�3 whereas VEGF-induced
angiogenesis appears to require �v�5 [127]. However,
more recent data show that plating human endothelial
cells on the �v�3 ligand vitronectin enhances tyrosine-
phosphorylation of VEGFR-2 stimulated by VEGF-
A165. This could be inhibited by an anti-�3 monoclonal
antibody. Furthermore, VEGFR-2 co-immunoprecipi-
tates with the �3 integrin subunit, but not with �1 or �5
[128]. This suggests that �v�3 integrin participates sig-
nificantly in the activation of VEGFR-2 by VEGF-
A165.

Both integrins can be detected in blood vessels in
samples of various human neovascular eye diseases
using the specific monoclonal antibodies LM609 (�v�3)
and P1F6 (�v�5) [125]. Blocking of �v�3 integrin using
specific peptides, antibodies or accutin, a disintegrin,
induces endothelial cell apoptosis [129,130] thus leading
to regression of retinal and tumoral neovascularisation
or inhibition of neointima formation after coronary
arterial stent injury in animal models [126,131–133].

It is not known to which ligands �v�3 and �v�5
integrins bind in angiogenesis in vivo, but one candi-
date might be osteopontin, a RGD-containing protein
which is expressed in injured blood vessels in a timely
coordinated pattern with �v�3 [134]. Another ligand
could be thrombospondin which has been found to
mediate cell attachment to endothelial cells via �3-inte-
grins, since attachment could be blocked by adding the
monoclonal anti-�v�3 antibody LM609 to the culture
medium [135].

FGF-2 mitogenic and adhesive activities require cell
surface �v�3 integrin because endothelial cell prolifera-
tion and attachment mediated by soluble FGF-2 can be
completely blocked by the LM609 antibody [136].

This finding and the fact that �v�3 associates also
with MMP-2 [137] (see MMP-chapter) makes this inte-
grin a particularly interesting target for anti-angiogenic
therapy: blocking of �v�3 could impair multiple signifi-
cant regulatory pathways of angiogenesis at a time.
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Table 5
MMP-classification

Substrate RemarkNumber Enzyme

Secreted MMPs
MMP-1 Interstitial collage- Fibrillar collagens –

nase
Gelatinase A, type Non-fibrillar collagensMMP-2 Knockout mice have delayed tumor growth [193], binds to �v�3-in-

tegrinIV collagenase
MMP-3 Stromelysin-1 Cartilage components, non-fibril- Very strong fibrinolytic activity

lar collagens
Matrilysin (Pump-MMP-7 Non-fibrillar collagen, fibronectin, Null mice have impaired intestinal tumor growth [194]

laminin1)
Neutrophil collage-MMP-8 Fibrillar collagens Predominant in healing wounds [195]
nase

MMP-9 Gelatinase B, type Basallaminae Knockout mice have delayed long bone growth [196]
IV collagenase

Proteoglycans, fibronectin, Implication in epithelial migration during intestinal inflammationStromelysin-2MMP-10
laminin [197]

MMP-11 �-1 AntitrypsinStromelysin-3 Null mice have poor response to chemical mutagenes [198]
Macrophage metal- Elastin, �-1 antitrypsin, myelinMMP-12 Implied in generating angiostatin in vivo [199]

basic proteinloelastase
Fibrillar collagens –Collagenase-3MMP-13

Membrane type metalloproteinases
Progelatinase AMMP-14 Activates MMP-2, strongest fibrinolytic activityMT1-MMP

MMP-15MT2-MMP ? –
MT3-MMP Progelatinase AMMP-16 –

Probably activates growth factors Isolated from breast cancer cDNA [200]MMP-17MT4-MMP

The importance of �v�3 in angiogenesis has led to
the development of Vitaxin, a humanized version of the
LM609 antibody which has been improved using phage
antibody library techniques [138]. This drug has passed
phase I clinical trials where 17 patients were treated
without any adverse effects. One patient had a partial
regression of tumor growth and seven others had dis-
ease stabilization [139].

The almost unique expression of �v integrins on
proliferating endothelial cells could be used as a target
to deliver toxic drugs or diagnostic probes. A small
synthetic peptide which is highly selective for �v inte-
grins has been identified during screens with random
peptide phage display libraries [140]. When this phage
carrying the peptide is injected into mice bearing hu-
man tumors, an antiserum against the phage reveals
exclusive homing of the phage to the endothelial walls
of the tumor vasculature, mediated by the peptide [141].
Similar angiogenesis-specific peptides have been recov-
ered after several rounds of in-vivo selection in animals
bearing human tumors. Coupling a cytostatic drug to
these peptides leads to concentration of the drug in the
tumor vessels and stroma, thereby causing tumor re-
gression and prolonged survival rate in a nude mice
tumor model [10]. This approach has the advantage
that the peptide–drug conjugate attacks both the new
blood vessels and the tumor cells itself. In addition, one
has the possibility to couple any other compound to the
peptide which makes it a multi-purpose vehicle to de-

liver drugs to tumors and other angiogenesis-dependent
diseases.

2.10. Matrix metalloproteinases (MMPs)

The big family of matrix metalloproteinases is an-
other class of molecules influencing angiogenesis. These
zinc-endopeptidases are either secreted or membrane-
bound enzymes and degrade almost any component of
the extracelullar matrix thus promoting cell motility
(see Table 5). The healthy body strictly controls the
expression of these potent matrix degrading proteases.
Gene expression only occurs at sites where cell motility
is required (e.g. wound healing) and the molecules are
secreted as non-active pro-enzymes with the necessity to
cleave off a fragment before initiation of proteolytic
activity. Besides, there are naturally occurring non-spe-
cific protease inhibitors such as �2-macroglobulin and
the group of specific tissue inhibitors of matrix metallo-
proteinases (TIMP) which can block the enzyme once
in its active state [142]. An imbalance between MMPs
and their TIMPs is responsible for the invasive pheno-
type of breast, colon and lung tumors [143] and a low
survival rate in urothelial cancers [144]. Intense MMP-
11 immunostaining in breast cancers specimens can be
directly related to shorter disease-free intervals and
reduced overall survival time [145] whereas MMP-1
expression predicts a low survival rate in colon cancers,
independent of Duke staging results [146].
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MMP-1, MMP-8 and MMP-13 preferentially degrade
fibrillar collagens, whereas the gelatinases MMP-2 and
MMP-9 express their proteolytic activity on basement
membranes (collagen IV). The latter is thought to be a
major prerequisite for the capacity of cancer cells to
intravasate, since only MMP-9 expressing cells can enter
blood vessels in-vivo [147]. The extracellular matrix is
also a storage place for VEGFs [148], which are able to
upregulate the expression of certain MMPs via the
VEGFR-1 receptor present on vascular smooth muscle
cells [149]. Degradation of the extracellular matrix by
MMPs could then liberate even more VEGF thus estab-
lishing a positiv feedback.

MMP-2 can bind directly to �v�3 integrin, a mecha-
nism which helps concentrating collagenase activity to
sites of endothelial cell proliferation [137]. PEX, a
C-terminal hemopexin-like domain of MMP-2 can in-
hibit the �v�3 interaction with MMP-2, suggesting that
it may be a part of a negative feedback loop in this
context [150].

An interesting finding is that MMP-7, MMP-9, [151]
and MMP-12 [152] may actually block angiogenesis by
converting plasminogen to angiostatin, one of the most
potent angiogenesis antagonists (for review see [153]). It
may be that endogenous production of angiostatin by
MMPs is a part of another negative feedback loop to
control MMP induced degradation of the extracellular
matrix and subsequent promotion of endothelial cell
motility and angiogenesis.

Important angiogenesis inhibitors in clinical trials
based on MMP-blocking are Metastat, Neovastat,
BMS-2752291, Mariamstat, AG3340, Bay 12-9556 and
CGS 27023A (see Table 6 for drug synonyms). First
Phase I clinical studies of the MMP inhibitors Marimas-
tat and AG3340 have indicated a good tolerability of

these compounds and high plasma concentrations after
oral administration [154,155]. Marimastat, AG3340 and
Bay 12-9556 have all entered Phase III testing for a large
variety of cancers, including pancreatic and small cell
lung cancer as well as breast and prostate cancers (see
Tables 7 and 8). Further trials using MMPs in combina-
tion with classical chemotherapy are also underway.

2.11. Plasminogen acti�ator (uPA) and its inhibitor
(PAI-1)

Proteases of the fibrinolytic cascade also contribute to
the regulation of angiogenesis. Expression of urokinase-
type plasminogen activator (uPA) by malignant cells
results in an aggressive phenotype with increased tumor
angiogenesis and metastatic invasion. PAI-1, the natural
uPA inhibitor, is paradoxically also upregulated in
human tumor samples [156]. In a clinical setting, expres-
sion of both, uPA and PAI-1 correlate with a poor
prognosis of breast cancers [157].

Stable transfection of PAI-1 into a human prostate
carcinoma cell line (PC-3) resulted in a less aggressive
phenotype of tumors after injection into athymic mice,
including decreased vascularity and metastasis [158].
The N-terminal fragment of prolactin (16K PRL) prob-
ably also mediates its anti-angiogenic effects via inhibi-
tion of FGF-2 induced expression of uPA by
upregulating PAI-1 [159]. Under certain conditions,
increased expression of PAI-1 could downregulate uPA
activity and consequently inhibit cell motility and
angiogenesis.

Results from another group add more complexity to
the possible role of the uPA/PAI-1 system in angiogen-
esis [160]: knock-out mice lacking PAI-1 are protected
against tumor vascularisation. No tumor angiogenesis
occurred at the transplantation site of malignant kerati-
nocytes whereas wildtype control animals form highly
vascularisized tumors. Injection of an adenovirus induc-
ing the production of PAI-1 in the tissue restored
invasiveness and tumor angiogenesis. The authors ex-
plain the contradiction with previous findings that un-
controlled proteolytic activity, as might occur in the
PAI-1 knockouts, can prevent normal evolution of
endothelial cells into capillary sprouts in vitro [161].
PAI-1 possibly also exerts its angiogenic or anti-angio-
genic properties depending on the time point and site of
expression or the interaction with additional factors (e.g.
�v�3-integrin and vitronectin). Taken together, inhibi-
tion of uPA rather than PAI-1 activity might be a
possible therapeutic target to treat human neovasculari-
sation-dependent diseases.

3. Conclusions

The discovery that angiogenesis plays a key role in a

Table 6
Synonyms for anti-angiogenic molecules

Synonym(s)Drug name

TNP 470 AGM-1470, O-(chloroacetyl-car-
bamoyl)fumagillol, a fumagillin-derivate
BB-94Batimastat

Metastat COL-3, CMT-3
Marimastat BB-2516
CAI NSC 609974 (carboxyamido-triazole)
Flavopiridol L86-8275, NSC 649890, HMR 1275

A.P.L.hCG (human chori-
onic go-
nadotropin)

PaclitaxelTaxol®

Leflunomide, N-[4-(Trifluoromethyl)-SU101
phenyl]5-methylisoxazole-4-carboxamide
LM609 antibody (humanized version)Vitaxin

Suradista FCE 26644 (Suramin-derivate)
Neovastat Æ 941
ZD0101 CM101, GBS toxin
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Table 7
Angiogenesis inhibitors in clinical trialsa

Sponsor and contactMechanism TrialDrug name

Phase III against pancreas, non small cell lung andSynthetic MMP-inhibitorMarimastat [154] British Biotech, Annapolis, MD, USA,
http://www.britishbiotech.combreast cancers
Agouron, La Jolla, CA, USA,Synthetic MMP-inhibitor Phase III clinical trials in combination withAG3340 [155,201]

paclitaxel/carboplatin for non-small cell lung www.agouron.com
cancer and mitoxantrone/prednisone for
hormone-refractory prostate cancer, ophtalmologic
trials for age-related macular degeneration are
planned

Metastat® (CMT-3, Collagenex, Newtown, PA, USA,Synthetic MMP-inhibitor, CMT molecule = Phase I in solid tumors refractory to standard
therapy (breast, lung, colon, prostate and brainCOL-3) [202] C� hemically M� odified T� etracycline http://www.collagenex.com; NCI, Bethesda,
cancers) and in patients with Kaposi’s sarcoma MD, USA, http://www.nci.nih.gov
Phase I Bristol-Myers Squibb, Wallingford, CT, USA,Synthetic MMP-inhibitorBMS-2752291

http://www.bms.com
MMP-inhibitor (MMP-2,-9,-12) and inhibition ofNeovastat (Æ-941) [203] Phase I/II for refractory lung, prostate and breast Aeterna Laboratories, Sainte-Foy, Québec,

Canada, http://www.aeterna.comVEGF action, protein derived from shark cartilage cancers in Canada and USA
Phase I/IICGS 27023A [204] Novartis, East Hannover, NJ, USA,Synthetic MMP-inhibitor

http://www.novartis.com
Bay 12-9566 Bayer, West Haven, CT, USA,International phase III clinical trials in patientsSynthetic MMP-inhibitor (MMP-2,-8,-9)

http://www.bayerus.comwith solid tumors including ovarian and pancreatic
cancer

EMD 121974 Merck KgaA, Darmstadt, Germany,Phase II/III against Kaposi’s sarcoma and brainChemical modified cyclic peptide antagonist to
http://www.merck.de�v�3-integrin tumors (planned for later 1999)
Ixsys, Inc., La Jolla, CA, USA, Tel.:Vitaxin [138] Phase II for various cancersHumanized version of LM609 antibody against
+619-597-4990, ext 106�v�3-integrin
Genentech, South San Francisco, CA, USA,Phase II/III against lung, breast, prostate,Monoclonal antibody to VEGFRhuMAb Anti-VEGF [27]
http://www.genentech.comcolorectal and renal cancers

Molecule that blocks VEGF receptor signalingSU5416 [39] Sugen, Inc., Redwood City, CA, USA,Phase I and Phase I/II for Kaposi’s sarcoma and
solid tumors http://www.sugen.com; NCI, Bethesda, MD,

USA, http://www.nci.nih.gov
Novartis, East Hannover, NJ, USA,Phase I against advanced cancers, glioblastoma,PTK787/ZK22584 Molecules that blocks VEGF receptor signaling

Kaposi’s sarcoma and von Hippel Lindau Disease http://www.novartis.com
Phase I in healthy volunteersAngiozyme™ [205] Ribozyme Pharmaceuticals, Boulder, CO, USA,Ribozyme targets specifically VEGFR-1 mRNA

http://www.rpi.com
Purlytin (SnET2) [206,207] Phase I/II study against metastatic cutaneous Miravant Medical Technology, Santa Barbara,Photodynamic therapy (Photopoint™) using

photoreactive purpurin CA, USA, http://www.miravant.comadenocarcinoma, Phase II/III against recurrent
cutaneous metastatic breast cancers

Farmitalia Carlo Erba, Milan, ItalySulphonated distamycine A derivate that blocks Phase I study in solid tumors, Phase II forSuradista (Suramin
binding of growth factors recurrent primary brain tumorsderivate)
Blocks PDGF receptor signalingSU101 [208] Phase III against glioblastoma, and brain cancers; Sugen, Inc., Redwood City, CA, USA,

Phase II combination against glioblastoma, and www.sugen.com
prostate cancer; and Phase II against ovarian
cancer, and non-small cell lung cancer
Phase I in refractory malignanciesFlavopiridol [209] NCI, Bethesda, MD, USA,Inhibition of cyclin-dependent kinases (CDK2/CDK4)

and induction of apoptosis http://www.nci.nih.gov
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Table 7 (Continued)

Mechanism Trial Sponsor and contactDrug name

Inhibits endotheliel cell proliferation, probably through TAP Pharmaceuticals, Deerfield, IL, USA,Phase II against advanced cancer for adults withTNP-470 [210,211]
http://www.tapholdings.comblocking of methionine aminopeptidase-2 solid tumors

Phase II against Kaposi’s sarcoma, breast, prostate Entremed, Inc, Rockville, MD, USA,Synthetic sedative with anti-angiogenic properties,Thalidomid® [7,212]
requires further species-dependent hepatic metabolisation and primary brain cancers http://www.entremed.com
to generate the active compound, exact mechanism
unknown

Phase II in a wide range of solid tumorsBacterial derived polysaccharide (GBS toxin) withZD0101 (formerly CM101) AstraZeneca PLC, (formerly Zeneca and Astra
AB), http://www.zeneca.comaffinity for tumor neovasculature, induces selective[213]

vascular inflammation
Tubulin-binding organic molecule derived from the stemCombretastatin A-4 [214] Phase I studies in Europe and the US for advanced Oxigene, Inc., Boston, MA, USA,

http://www.oxigene.comsolid tumorswood of the South African tree Combretum Caffrum
Phase II against refractory or recurrent ovarianInhibition of calcium-mediated signal transduction NCI, Bethesda, MD, USA,CAI
epithelial, fallopian tube, and primary peritoneal http://www.nci.nih.gov(Carboxyamido-imidazole)

[215,216] cancer; Phase I against refractory, recurrent or
advanced cancers

Aminosterol extracted from dogfish shark liver, inhibitsSqualamine [217] Magainin Pharmaceuticals Inc., PlymouthPhase I for solid tumors, Phase II to begin second
sodium-hydrogen exchanger Meeting, PA, USA, http://www.magainin.comquaerter 1999 in combination with cytotoxic

chemotherapeutic agents in non-small cell lung
cancer

Microtubule-stabilizing cytotoxic drug withTaxol® [6,216,218] Miami, FL, USA, http://www.ivax.com NCI,Phase I/II in advanced refractory Kaposi’s sarcoma;
phase I in children with refractory cancers, various Bethesda, MD, USA, http://www.nci.nih.govanti-angiogenic activity, exact mechanism of action

unknown, MMP-inhibitor? trials in combination with classical chemotherapy
SU6668 Synthetic molecule blocks VEGFR-2, PDGFR and Sugen, Inc., Redwood City, CA, USA,Phase I for advanced cancers (breast, soft tissue

FGFRs http://www.sugen.comsarcoma, colorectal, non-small cell lung, gastric,
pancreatic, renal or prostate cancer) who have failed
prior chemotherapy in the US and UK

EntreMed, Rockville, MD, USA,Endostatin [109] Phase I solid tumor study to begin later in 1999Inhibition of endothelial cell proliferation by unknown
http://www.entremed.com; University ofmechanisms, (inhibition of growth factor signaling?),
Wisconsin, Madison, WI, USA,collagen XVIII fragment
http://www.uwsa.edu; University of Texas, M. D.
Anderson Cancer Center, Houston, TX, USA,
http://www.mdanderson.org

Interleukin-12 [91,219] NCI, Bethesda, MD, USA,Via induction of Interferon-� and Interferon inducible Phase I/II against Kaposi’s sarcoma and solid
protein 10 (IP-10), which then blocks FGF-2 activity tumors http://www.nci.nih.gov; Genetics Institute,

Cambridge, MA, USA, http://www.genetics.com
Interferon-� [8,220] Phase II/III Commercially available. Tel.: +1-800-4-CANCERIn part via inhibition of FGF-2 expression [221]

Phase II against hormone refractive prostate cancerMechanism of action unknown Xanthine analogueCT-2584 (Apra) Cell Therapeutics, Inc., Seattle, WA, USA,
http://www.cticseattle.comand soft tissue sarcoma

IM-862 Cytran, Kirkland, WA, USA, Tel.:Dipeptide isolated from soluble thymus fractions, Phase III trial against AIDS-related Kaposi’s
+425-889-5808mechanism of action unknown sarcoma.
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Table 7 (Continued)

Drug name Mechanism Trial Sponsor and contact

BeneFin Purified shark cartilage proteins, mechanism of action NCI, Bethesda, MD, USA,Phase II Clinical Trials for late-stage brain, breast
unknown and prostate cancer, Phase III for advanced solid http://www.nci.nih.gov; Lane Labs Inc., Allendale,

NJ, USA, www.lanelabs.comtumors

a Although the authors have taken care to present the most recent data of the clinical trials versions and the actual sponsors, it is possible that by the time this paper will be printed one or
more clinical trials will have progressed to another phase or sponsors may have changed. Please refer to the sponsor of the drug or the NCI Cancer Trials Home Page to get the latest news on
clinical trials (see also Table 8 for more information).
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Table 8
Internet resources about angiogenesis and drug development

Page descriptionInternet address

http://cancertrials.nci.nih.gov/NCI NCI Cancer Trials

–CANCER–TRIALS
Clinical Trials Listing Servicehttp://www.centerwatch.com
Angiogenesis Weeklyhttp://www.newsfile.com

http://www.fda.gov Food and Drug Administration
Home Page

http://pharmacology.tqn.com Pharmacology and Legal Drugs
Home Page

http://www.actis.org AIDS Clinical Trials
Information Service

http://www.actis.org The Angiogenesis Foundation

tial to protect against the development of
angiogenesis-dependent diseases like cancer or ocular
neovascular disorders [162].

Reviewers

This paper was reviewed by Dr Roy Bicknell, Molec-
ular Oncology Laboratories, Institute of Molecular
Medicine, John Radcliffe Hospital, Headington, Ox-
ford, OX3 9DS, UK and Kari Alitalo, MD, PhD,
Research Professor of the Finnish Academy of Sci-
ences, Molecular/Cancer Biology Laboratory, Haart-
man Institute, University of Helsinki, P.O. Box 21,
Haartmaninkatu 3, SF-00014 Helsinki, Finland.

Acknowledgements

The authors would like to thank Professor I. Kramer
for helpful corrections. M.H. is supported by fundings
from the National Academy of Medicine and
ALFEDIAM.

References

[1] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and
other disease. Nat Med 1995;1(1):27–31.

[2] Risau W. Mechanisms of angiogenesis. Nature
1997;386(6626):671–4.

[3] Hanahan D. Signaling vascular morphogenesis and mainte-
nance [comment]. Science 1997;277(5322):48–50.

[4] Rivard A, Isner JM. Angiogenesis and vasculogenesis in
treatment of cardiovascular disease. Mol Med 1998;4(7):429–
40.

[5] Folkman J. Tumor angiogenesis: therapeutic implications. N
Engl J Med 1971;285(21):1182–6.

[6] Belotti D, Vergani V, Drudis T, et al. The microtubule-affect-
ing drug paclitaxel has antiangiogenic activity [In Process Ci-
tation]. Clin Cancer Res 1996;2(11):1843–9.

[7] D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is
an inhibitor of angiogenesis. Proc Natl Acad Sci USA
1994;91(9):4082–5.

[8] Ezekowitz RA, Mulliken JB, Folkman J. Interferon alfa-2a
therapy for life-threatening hemangiomas of infancy [see com-
ments] [published errata appear in N Engl J Med Jan
27;330(4):300 and 1995 Aug 31;333(9):595-6]. N Engl J Med
1992;326(22):1456–63.

[9] Huang X, Molema G, King S, et al. Tumor infarction in
mice by antibody-directed targeting of tissue factor to tumor
vasculature [see comments]. Science 1997;275(5299):547–50.

[10] Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by
targeted drug delivery to tumor vasculature in a mouse model
[see comments]. Science 1998;279(5349):377–80.

[11] Leung DW, Cachianes G, Kuang WJ, et al. Vascular en-
dothelial growth factor is a secreted angiogenic mitogen. Sci-
ence 1989;246(4935):1306–9.

[12] Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability
factor, an endothelial cell mitogen related to PDGF. Science
1989;246(4935):1309–12.

large number of severe human diseases has led to an
enormous expansion of our knowledge about normal
and pathological vascular development. More than
thirty angiogenesis inhibitors, currently tested in clinical
trials are a result of focused angiogenesis research over
the last three decades. The key targets of angio-in-
hibitory therapies are blocking of matrix metallo-
proteinases (seven trials), VEGF pathways (four trials)
and �v�3-integrin action (two trials).

Other trials evaluate the anti-angiogenic potential of
the signaling-inhibitors SU101 and SU6668 to block
growth factors receptors for PDGF and/or FGF-2. A
number of angiogenesis inhibitors act through mecha-
nisms which are not fully understood but which might
mimic endogenous angio-inhibitory systems. This in-
cludes endostatin, interleukin-12, and interferon �.
Shark cartilage seems to contain powerful angiogenesis
inhibitory substances, three clinical trials are based on
the use of shark-derived extracts namely Neovastat,
Squalamine and BeneFin.

The future will see the design of drugs based on Ties
and angiopoietins because the importance of this recep-
tor–ligand system for the development of blood vessels
is as unique as are VEGFs and their receptors. To
improve drugs based on natural proteins, researchers
will have to identify the active anti-angiogenic regions
of their candidates as it has been done for throm-
bospondin and PF-4. This is necessary to reduce the
molecular size of future drugs (thereby decreasing the
risk of immunogenecity) and to gain more insight into
the structure and function of anti-angiogenic factors.
Furthermore, strategies should be developed to target
different angiogenic pathologies with different drugs
(e.g. tumor angiogenesis versus ocular
neovascularisation).

Anti-angiogenic substances may also be naturally
present in parts of human nutrititon, since it has been
shown very recently that a substance in green tea
(epigallocatechin-3-gallate (EGCG)) significantly in-
hibits angiogenesis in vivo and has therefore the poten-



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110 105

[13] Ferrara N, Davis-Smyth T. The biology of vascular endothelial
growth factor. Endocr Rev 1997;18(1):4–25.

[14] Soker S, Gollamudi-Payne S, Fidder H, et al. Inhibition of
vascular endothelial growth factor (VEGF)-induced endothelial
cell proliferation by a peptide corresponding to the exon 7-
encoded domain of VEGF165. J Biol Chem
1997;272(50):31582–8.

[15] Olofsson B, Pajusola K, Kaipainen A, et al. Vascular endothe-
lial growth factor B, a novel growth factor for endothelial cells.
Proc Natl Acad Sci USA 1996;93(6):2576–81.

[16] Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular
endothelial growth factor, VEGF-C, is a ligand for the Flt4
(VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.
EMBO J 1996;15(7):1751.

[17] Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial
growth factor D (VEGF-D) is a ligand for the tyrosine kinases
VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc
Natl Acad Sci USA 1998;95(2):548–53.

[18] Yamada Y, Nezu J, Shimane M, et al. Molecular cloning of a
novel vascular endothelial growth factor, VEGF-D. Genomics
1997;42(3):483–8.

[19] Ogawa S, Oku A, Sawano A, et al. A novel type of vascular
endothelial growth factor, VEGF-E (NZ-7 VEGF), preferen-
tially utilizes KDR/Flk-1 receptor and carries a potent mitotic
activity without heparin-binding domain. J Biol Chem
1998;273(47):31273–82.

[20] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel
development and lethality in embryos lacking a single VEGF
allele. Nature 1996;380(6573):435–9.

[21] Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for
growth and survival in neonatal mice. Development
1999;126(6):1149–59.

[22] Salven P, Ruotsalainen T, Mattson K, et al. High pre-treatment
serum level of vascular endothelial growth factor (VEGF) is
associated with poor outcome in small-cell lung cancer. Int J
Cancer 1998;79(2):144–6.

[23] Eppenberger U, Kueng W, Schlaeppi JM, et al. Markers of
tumor angiogenesis and proteolysis independently define high-
and low-risk subsets of node-negative breast cancer patients. J
Clin Oncol 1998;16(9):3129–36.

[24] Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial
growth factor-induced angiogenesis suppresses tumour growth
in vivo. Nature 1993;362(6423):841–4.

[25] Borgstrom P, Bourdon MA, Hillan KJ, et al. Neutralizing
anti-vascular endothelial growth factor antibody completely
inhibits angiogenesis and growth of human prostate carcinoma
micro tumors in vivo. Prostate 1998;35(1):1–10.

[26] Lin YS, Nguyen C, Mendoza JL, et al. Preclinical pharmacoki-
netics, interspecies scaling, and tissue distribution of a human-
ized monoclonal antibody against vascular endothelial growth
factor. J Pharmacol Exp Ther 1999;288(1):371–8.

[27] Presta LG, Chen H, O’Connor SJ, et al. Humanization of an
anti-vascular endothelial growth factor monoclonal antibody
for the therapy of solid tumors and other disorders. Cancer Res
1997;57(20):4593–9.

[28] Arora N, Masood R, Zheng T, et al. Vascular endothelial
growth factor chimeric toxin is highly active against endothelial
cells. Cancer Res 1999;59(1):183–8.

[29] Hiratsuka S, Minowa O, Kuno J, et al. Flt-1 lacking the
tyrosine kinase domain is sufficient for normal development
and angiogenesis in mice. Proc Natl Acad Sci USA
1998;95(16):9349–54.

[30] Kendall RL, Wang G, Thomas KA. Identification of a natural
soluble form of the vascular endothelial growth factor receptor,
FLT-1, and its heterodimerization with KDR. Biochem Bio-
phys Res Commun 1996;226(2):324–8.

[31] Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expres-
sion of a native soluble vascular endothelial growth factor
receptor inhibits tumor growth, metastasis, and mortality rate.
Proc Natl Acad Sci USA 1998;95(15):8795–800.

[32] Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial
growth factor in ocular fluid of patients with diabetic retinopa-
thy and other retinal disorders [see comments]. N Engl J Med
1994;331(22):1480–7.

[33] D’Amore PA. Mechanisms of retinal and choroidal neovascu-
larization. Invest Ophthalmol Vis Sci 1994;35(12):3974–9.

[34] Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal
neovascularization in vivo by inhibition of vascular endothelial
growth factor (VEGF) using soluble VEGF-receptor chimeric
proteins. Proc Natl Acad Sci USA 1995;92(23):10457–61.

[35] Fairbrother WJ, Christinger HW, Cochran AG, et al. Novel
peptides selected to bind vascular endothelial growth factor
target the receptor-binding site. Biochemistry
1998;37(51):17754–64.

[36] Soker S, Takashima S, Miao HQ, et al. Neuropilin-1 is ex-
pressed by endothelial and tumor cells as an isoform- specific
receptor for vascular endothelial growth factor. Cell
1998;92(6):735–45.

[37] Piossek C, Schneider-Mergener J, Schirner M, et al. Vascular
endothelial growth factor (VEGF) receptor II-derived peptides
inhibit VEGF. J Biol Chem 1999;274(9):5612–9.

[38] Sun L, Tran N, Tang F, et al. Synthesis and biological evalua-
tions of 3-substituted indolin-2-ones: a novel class of tyrosine
kinase inhibitors that exhibit selectivity toward particular recep-
tor tyrosine kinases. J Med Chem 1998;41(14):2588–603.

[39] Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and
selective inhibitor of the vascular endothelial growth factor
receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis,
tumor vascularization, and growth of multiple tumor types.
Cancer Res 1999;59(1):99–106.

[40] SUGEN, http://www.sugen.com (Website Press releases 09/11/
1998), 1998.

[41] Dumont DJ, Yamaguchi TP, Conlon RA, et al. Tek, a novel
tyrosine kinase gene located on mouse chromosome 4, is ex-
pressed in endothelial cells and their presumptive precursors.
Oncogene 1992;7(8):1471–80.

[42] Iwama A, Hamaguchi I, Hashiyama M, et al. Molecular
cloning and characterization of mouse TIE and TEK receptor
tyrosine kinase genes and their expression in hematopoietic
stem cells. Biochem Biophys Res Commun 1993;195(1):301–9.

[43] Partanen J, Armstrong E, Makela TP, et al. A novel endothelial
cell surface receptor tyrosine kinase with extracellular epidermal
growth factor homology domains. Mol Cell Biol
1992;12(4):1698–707.

[44] Schnurch H, Risau W. Expression of tie-2, a member of a novel
family of receptor tyrosine kinases, in the endothelial cell
lineage. Development 1993;119(3):957–68.

[45] Sato TN, Tozawa Y, Deutsch U, et al. Distinct roles of the
receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel forma-
tion. Nature 1995;376(6535):70–4.

[46] Puri MC, Rossant J, Alitalo K, et al. The receptor tyrosine
kinase TIE is required for integrity and survival of vascular
endothelial cells. EMBO J 1995;14(23):5884–91.

[47] Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative
and targeted null mutations in the endothelial receptor tyrosine
kinase, tek, reveal a critical role in vasculogenesis of the em-
bryo. Genes Dev 1994;8(16):1897–909.

[48] Vikkula M, Boon LM, Carraway KL III, et al. Vascular
dysmorphogenesis caused by an activating mutation in the
receptor tyrosine kinase TIE2 [see comments]. Cell
1996;87(7):1181–90.

[49] Korhonen J, Partanen J, Armstrong E, et al. Enhanced expres-
sion of the tie receptor tyrosine kinase in endothelial cells
during neovascularization. Blood 1992;80(10):2548–55.



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110106

[50] Wong AL, Haroon ZA, Werner S, et al. Tie2 expression and
phosphorylation in angiogenic and quiescent adult tissues. Circ
Res 1997;81(4):567–74.

[51] Peters KG, Coogan A, Berry D, et al. Expression of Tie2/Tek
in breast tumour vasculature provides a new marker for evalua-
tion of tumour angiogenesis. Br J Cancer 1998;77(1):51–6.

[52] Stratmann A, Risau W, Plate KH. Cell type-specific expression
of angiopoietin-1 and angiopoietin-2 suggests a role in glioblas-
toma angiogenesis [see comments]. Am J Pathol
1998;153(5):1459–66.

[53] Lin P, Polverini P, Dewhirst M, et al. Inhibition of tumor
angiogenesis using a soluble receptor establishes a role for Tie2
in pathologic vascular growth. J Clin Invest 1997;100(8):2072–
8.

[54] Lin P, Buxton JA, Acheson A, et al. Antiangiogenic gene
therapy targeting the endothelium-specific receptor tyrosine ki-
nase Tie2. Proc Natl Acad Sci USA 1998;95(15):8829–34.

[55] Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-
1, a ligand for the TIE2 receptor, by secretion-trap expression
cloning [see comments]. Cell 1996;87(7):1161–9.

[56] Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-
1, a ligand for the TIE2 receptor, during embryonic angiogene-
sis [see comments]. Cell 1996;87(7):1171–80.

[57] Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a
natural antagonist for Tie2 that disrupts in vivo angiogenesis
[see comments]. Science 1997;277(5322):55–60.

[58] Valenzuela DM, Griffiths JA, Rojas J, et al. Angiopoietins 3
and 4: diverging gene counterparts in mice and humans [In
Process Citation]. Proc Natl Acad Sci USA 1999;96(5):1904–9.

[59] Gospodarowicz D. Purification of a fibroblast growth factor
from bovine pituitary. J Biol Chem 1975;250(7):2515–20.

[60] Maciag T, Mehlman T, Friesel R, et al. Heparin binds endothe-
lial cell growth factor, the principal endothelial cell mitogen in
bovine brain. Science 1984;225(4665):932–5.

[61] Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purifi-
cation of a tumor-derived capillary endothelial cell growth
factor. Science 1984;223(4642):1296–9.

[62] Prats H, Kaghad M, Prats AC, et al. High molecular mass
forms of basic fibroblast growth factor are initiated by alterna-
tive CUG codons. Proc Natl Acad Sci USA 1989;86(6):1836–
40.

[63] Seghezzi G, Patel S, Ren CJ, et al. Fibroblast growth factor-2
(FGF-2) induces vascular endothelial growth factor (VEGF)
expression in the endothelial cells of forming capillaries: an
autocrine mechanism contributing to angiogenesis. J Cell Biol
1998;141(7):1659–73.

[64] Montesano R, Vassalli JD, Baird A, et al. Basic fibroblast
growth factor induces angiogenesis in vitro. Proc Natl Acad Sci
USA 1986;83(19):7297–301.

[65] Karsan A, Yee E, Poirier GG, et al. Fibroblast growth factor-2
inhibits endothelial cell apoptosis by Bcl-2- dependent and
independent mechanisms. Am J Pathol 1997;151(6):1775–84.

[66] Hori A, Sasada R, Matsutani E, et al. Suppression of solid
tumor growth by immunoneutralizing monoclonal antibody
against human basic fibroblast growth factor. Cancer Res
1991;51(22):6180–4.

[67] Ueno H, Li JJ, Masuda S, et al. Adenovirus-mediated expres-
sion of the secreted form of basic fibroblast growth factor
(FGF-2) induces cellular proliferation and angiogenesis in vivo.
Arterioscler Thromb Vasc Biol 1997;17(11):2453–60.

[68] Ortega S, Ittmann M, Tsang SH, et al. Neuronal defects and
delayed wound healing in mice lacking fibroblast growth factor
2. Proc Natl Acad Sci USA 1998;95(10):5672–7.

[69] Friesel RE, Maciag T. Molecular mechanisms of angiogenesis:
fibroblast growth factor signal transduction. FASEB J
1995;9(10):919–25.

[70] Panek RL, Lu GH, Dahring TK, et al. In vitro biological
characterization and antiangiogenic effects of PD 166866, a
selective inhibitor of the FGF-1 receptor tyrosine kinase. J
Pharmacol Exp Ther 1998;286(1):569–77.

[71] Mohammadi M, Froum S, Hamby JM, et al. Crystal structure
of an angiogenesis inhibitor bound to the FGF receptor ty-
rosine kinase domain. EMBO J 1998;17(20):5896–904.

[72] Perollet C, Han ZC, Savona C, et al. Platelet factor 4 modu-
lates fibroblast growth factor 2 (FGF-2) activity and inhibits
FGF-2 dimerization. Blood 1998;91(9):3289–99.

[73] Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role
of the ELR motif in CXC chemokine-mediated angiogenesis. J
Biol Chem 1995;270(45):27348–57.

[74] Strieter RM, Polverini PJ, Arenberg DA, et al. Role of C-X-C
chemokines as regulators of angiogenesis in lung cancer. J
Leukoc Biol 1995;57(5):752–62.

[75] Arenberg DA, Polverini PJ, Kunkel SL, et al. In vitro and in
vivo systems to assess role of C-X-C chemokines in regulation
of angiogenesis. Methods Enzymol 1997;288:190–220.

[76] Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis.
Nature 1982;297(5864):307–12.

[77] Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis
by recombinant human platelet factor-4 and related peptides.
Science 1990;247(4938):77–9.

[78] Gengrinovitch S, Greenberg SM, Cohen T, et al. Platelet fac-
tor-4 inhibits the mitogenic activity of VEGF121 and VEGF165
using several concurrent mechanisms. J Biol Chem
1995;270(25):15059–65.

[79] Jouan V, Canron X, Alemany M, et al. Inhibition of in vitro
angiogenesis by platelet factor 4 derived peptides and mecanism
of action, Blood, 1999;94(3):984–93.

[80] Maione TE, Gray GS, Hunt AJ, et al. Inhibition of tumor
growth in mice by an analogue of platelet factor 4 that lacks
affinity for heparin and retains potent angiostatic activity.
Cancer Res 1991;51(8):2077–83.

[81] Kolber DL, Knisely TL, Maione TE. Inhibition of development
of murine melanoma lung metastases by systemic administra-
tion of recombinant platelet factor 4. J Natl Cancer Inst
1995;87(4):304–9.

[82] Tanaka T, Manome Y, Wen P, et al. Viral vector-mediated
transduction of a modified platelet factor 4 cDNA inhibits
angiogenesis and tumor growth. Nat Med 1997;3(4):437–42.

[83] Hansell P, Olofsson M, Maione TE, et al. Differences in
binding of platelet factor 4 to vascular endothelium in vivo and
endothelial cells in vitro. Acta Physiol Scand 1995;154(4):449–
59.

[84] Hansell P, Maione TE, Borgstrom P. Selective binding of
platelet factor 4 to regions of active angiogenesis in vivo. Am J
Physiol 1995;269(3 (Part 2):829–36.

[85] Borgstrom P, Discipio R, Maione TE. Recombinant platelet
factor 4, an angiogenic marker for human breast carcinoma.
Anticancer Res 1998;18(6A):4035–41.

[86] Belman N, Bonnem EM, Harvey HA, et al. Phase I trial of
recombinant platelet factor 4 (rPF4) in patients with advanced
colorectal carcinoma. Invest New Drugs 1996;14(4):387–9.

[87] Stearns ME, Rhim J, Wang M. Interleukin 10 (IL-10) inhibi-
tion of primary human prostate cell- induced angiogenesis:
IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and
inhibition of matrix metalloproteinase (MMP)- 2/MMP-9 secre-
tion. Clin Cancer Res 1999;5(1):189–96.

[88] Luca M, Huang S, Gershenwald JE, et al. Expression of
interleukin-8 by human melanoma cells up-regulates MMP-2
activity and increases tumor growth and metastasis. Am J
Pathol 1997;151(4):1105–13.

[89] Miller LJ, Kurtzman SH, Wang Y, et al. Expression of inter-
leukin-8 receptors on tumor cells and vascular endothelial cells
in human breast cancer tissue. Anticancer Res 1998;18(1A):77–
81.



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110 107

[90] Voest EE, Kenyon BM, O’Reilly MS, et al. Inhibition of
angiogenesis in vivo by interleukin 12 [see comments]. J Natl
Cancer Inst 1995;87(8):581–96.

[91] Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis
by interleukin-12 is mediated by the interferon-inducible
protein 10. Blood 1996;87(9):3877–82.

[92] Strieter RM, Kunkel SL, Arenberg DA, et al. Interferon
gamma-inducible protein 10 (IP-10), a member of the C-X-C
chemokine family, is an inhibitor of angiogenesis. Biochem
Biophys Res Commun 1995;210(1):51–7.

[93] Dias S, Boyd R, Balkwill F. IL-12 regulates VEGF and MMPs
in a murine breast cancer model. Int J Cancer 1998;78(3):361–
5.

[94] Vallee BL, Riordan JF. Organogenesis and angiogenin. Cell
Mol Life Sci 1997;53(10):803–15.

[95] Fett JW, Strydom DJ, Lobb RR, et al. Isolation and character-
ization of angiogenin, an angiogenic protein from human car-
cinoma cells. Biochemistry 1985;24(20):5480–6.

[96] Hu GF. Limited proteolysis of angiogenin by elastase is regu-
lated by plasminogen. J Protein Chem 1997;16(7):669–79.

[97] Shimoyama S, Gansauge F, Gansauge S, et al. Increased angio-
genin expression in pancreatic cancer is related to cancer ag-
gressiveness. Cancer Res 1996;56(12):2703–6.

[98] Hu GF, Strydom DJ, Fett JW, et al. Actin is a binding protein
for angiogenin. Proc Natl Acad Sci USA 1993;90(4):1217–21.

[99] Hu G, Riordan JF, Vallee BL. Angiogenin promotes invasive-
ness of cultured endothelial cells by stimulation of cell-associ-
ated proteolytic activities. Proc Natl Acad Sci USA
1994;91(25):12096–100.

[100] Hu GF, Riordan JF, Vallee BL. A putative angiogenin receptor
in angiogenin-responsive human endothelial cells. Proc Natl
Acad Sci USA 1997;94(6):2204–9.

[101] Olson KA, French TC, Vallee BL, et al. A monoclonal anti-
body to human angiogenin suppresses tumor growth in athymic
mice. Cancer Res 1994;54(17):4576–9.

[102] Piccoli R, Olson KA, Vallee BL, et al. Chimeric anti-angiogenin
antibody cAb 26-2F inhibits the formation of human breast
cancer xenografts in athymic mice. Proc Natl Acad Sci USA
1998;95(8):4579–83.

[103] Nobile V, Russo N, Hu G, et al. Inhibition of human angio-
genin by DNA aptamers: nuclear colocalization of an angio-
genin-inhibitor complex. Biochemistry 1998;37(19):6857–63.

[104] Hu GF. Neomycin inhibits angiogenin-induced angiogenesis.
Proc Natl Acad Sci USA 1998;95(17):9791–5.

[105] O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel
angiogenesis inhibitor that mediates the suppression of metas-
tases by a Lewis lung carcinoma [see comments]. Cell
1994;79(2):315–28.

[106] Lucas R, Holmgren L, Garcia I, et al. Multiple forms of
angiostatin induce apoptosis in endothelial cells [In Process
Citation]. Blood 1998;92(12):4730–41.

[107] O’Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces
and sustains dormancy of human primary tumors in mice. Nat
Med 1996;2(6):689–92.

[108] Sim BK, O’Reilly MS, Liang H, et al. A recombinant human
angiostatin protein inhibits experimental primary and
metastatic cancer. Cancer Res 1997;57(7):1329–34.

[109] O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endoge-
nous inhibitor of angiogenesis and tumor growth. Cell
1997;88(2):277–85.

[110] Dhanabal M, Ramchandran R, Volk R, et al. Endostatin: yeast
production, mutants, and antitumor effect in renal cell car-
cinoma. Cancer Res 1999;59(1):189–97.

[111] Hohenester E, Sasaki T, Olsen BR, et al. Crystal structure of
the angiogenesis inhibitor endostatin at 1.5 A resolution.
EMBO J 1998;17(6):1656–64.

[112] Ramchandran R, Dhanabal M, Volk R, et al. Antiangiogenic
activity of restin, NC10 domain of human collagen XV: com-
parison to endostatin [In Process Citation]. Biochem Biophys
Res Commun 1999;255(3):735–9.

[113] Pike SE, Yao L, Jones KD, et al. Vasostatin, a calreticulin
fragment, inhibits angiogenesis and suppresses tumor growth
[In Process Citation]. J Exp Med 1998;188(12):2349–56.

[114] Struman I, Bentzien F, Lee H, et al. Opposing actions of intact
and N-terminal fragments of the human prolactin/growth hor-
mone family members on angiogenesis: an efficient mechanism
for the regulation of angiogenesis [In Process Citation]. Proc
Natl Acad Sci USA 1999;96(4):1246–51.

[115] Lawler JW, Slayter HS, Coligan JE. Isolation and characteriza-
tion of a high molecular weight glycoprotein from human blood
platelets. J Biol Chem 1978;253(23):8609–16.

[116] Taraboletti G, Roberts D, Liotta LA, et al. Platelet throm-
bospondin modulates endothelial cell adhesion, motility, and
growth: a potential angiogenesis regulatory factor. J Cell Biol
1990;111(2):765–72.

[117] Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppres-
sor-dependent inhibitor of angiogenesis is immunologically and
functionally indistinguishable from a fragment of throm-
bospondin. Proc Natl Acad Sci USA 1990;87(17):6624–8.

[118] Dameron KM, Volpert OV, Tainsky MA, et al. Control of
angiogenesis in fibroblasts by p53 regulation of throm-
bospondin-1. Science 1994;265(5178):1582–4.

[119] Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-
1 expression in bladder cancer: association with p53 alterations,
tumor angiogenesis, and tumor progression. J Natl Cancer Inst
1997;89(3):219–27.

[120] Bleuel K, Popp S, Fusenig NE, et al. Tumor suppression in
human skin carcinoma cells by chromosome 15 transfer or
thrombospondin-1 overexpression through halted tumor vascu-
larization [In Process Citation]. Proc Natl Acad Sci USA
1999;96(5):2065–70.

[121] Suzuma K, Takagi H, Otani A, et al. Expression of throm-
bospondin-1 in ischemia-induced retinal neovascularization.
Am J Pathol 1999;154(2):343–54.

[122] Tolsma SS, Volpert OV, Good DJ, et al. Peptides derived from
two separate domains of the matrix protein thrombospondin-1
have anti-angiogenic activity. J Cell Biol 1993;122(2):497–511.

[123] Dawson DW, Volpert OV, Pearce SF, et al. Three distinct
D-amino acid substitutions confer potent antiangiogenic activ-
ity on an inactive peptide derived from a thrombospondin-1
type 1 repeat. Mol Pharmacol 1999;55(2):332–8.

[124] Brooks PC, Clark RA, Cheresh DA. Requirement of vascular
integrin �v� 3 for angiogenesis. Science 1994;264(5158):569–71.

[125] Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of
integrins �v�3 and �v�5 in ocular neovascular diseases. Proc
Natl Acad Sci USA 1996;93(18):9764–9.

[126] Brooks PC, Stromblad S, Klemke R, et al. Antiintegrin �v�3
blocks human breast cancer growth and angiogenesis in human
skin [see comments]. J Clin Invest 1995;96(4):1815–22.

[127] Friedlander M, Brooks PC, Shaffer RW, et al. Definition of
two angiogenic pathways by distinct � v integrins. Science
1995;270(5241):1500–2.

[128] Soldi R, Mitola S, Strasly M, et al. Role of �v�3 integrin in the
activation of vascular endothelial growth factor receptor-2.
EMBO J 1999;18(4):882–92.

[129] Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin
�v�3 antagonists promote tumor regression by inducing apop-
tosis of angiogenic blood vessels. Cell 1994;79(7):1157–64.

[130] Yeh CH, Peng HC, Huang TF. Accutin, a new disintegrin,
inhibits angiogenesis in vitro and in vivo by acting as integrin
�v�3 antagonist and inducing apoptosis. Blood
1998;92(9):3268–76.



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110108

[131] Luna J, Tobe T, Mousa SA, et al. Antagonists of integrin �v�3
inhibit retinal neovascularization in a murine model. Lab Invest
1996;75(4):563–73.

[132] Hammes HP, Brownlee M, Jonczyk A, et al. Subcutaneous
injection of a cyclic peptide antagonist of vitronectin receptor-
type integrins inhibits retinal neovascularization. Nat Med
1996;2(5):529–33.

[133] Srivatsa SS, Fitzpatrick LA, Tsao PW, et al. Selective �v�3
integrin blockade potently limits neointimal hyperplasia and
lumen stenosis following deep coronary arterial stent injury:
evidence for the functional importance of integrin �v�3 and
osteopontin expression during neointima formation. Cardiovasc
Res 1997;36(3):408–28.

[134] Liaw L, Lindner V, Schwartz SM, et al. Osteopontin and � 3
integrin are coordinately expressed in regenerating endothelium
in vivo and stimulate Arg-Gly-Asp-dependent endothelial mi-
gration in vitro. Circ Res 1995;77(4):665–72.

[135] Lawler J, Weinstein R, Hynes RO. Cell attachment to throm-
bospondin: the role of ARG-GLY-ASP, calcium, and integrin
receptors. J Cell Biol 1988;107(6 Part 1):2351–61.

[136] Rusnati M, Tanghetti E, Dell’Era P, et al. �v�3 Integrin
mediates the cell-adhesive capacity and biological activity of
basic fibroblast growth factor (FGF-2) in cultured endothelial
cells. Mol Biol Cell 1997;8(12):2449–61.

[137] Brooks PC, Stromblad S, Sanders LC, et al. Localization of
matrix metalloproteinase MMP-2 to the surface of invasive cells
by interaction with integrin �v�3. Cell 1996;85(5):683–93.

[138] Wu H, Beuerlein G, Nie Y, et al. Stepwise in vitro affinity
maturation of Vitaxin, an �v�3-specific humanized mAb. Proc
Natl Acad Sci USA 1998;95(11):6037–42.

[139] Gutheil J. Phase I study of vitaxin, an anti-angiogenic human-
ized monoclonal antibody to vascular integrin �v�3. in 34th
Annual Meeting of the American Society of Clinical Oncology.
1998. Los Angeles, CA.

[140] Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying
cyclic peptides with different ring sizes: ligand specificities of the
RGD-directed integrins. Biotechnology (NY) 1995;13(3):265–
70.

[141] Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as
receptors for tumor targeting by circulating ligands [see com-
ments]. Nat Biotechnol 1997;15(6):542–6.

[142] Gomis-Ruth FX, Maskos K, Betz M, et al. Mechanism of
inhibition of the human matrix metalloproteinase stromelysin-1
by TIMP-1. Nature 1997;389(6646):77–81.

[143] Kossakowska AE, Huchcroft SA, Urbanski SJ, et al. Compara-
tive analysis of the expression patterns of metalloproteinases
and their inhibitors in breast neoplasia, sporadic colorectal
neoplasia, pulmonary carcinomas and malignant non-
Hodgkin’s lymphomas in humans. Br J Cancer
1996;73(11):1401–8.

[144] Gohji K, Fujimoto N, Fujii A, et al. Prognostic significance of
circulating matrix metalloproteinase-2 to tissue inhibitor of
metalloproteinases-2 ratio in recurrence of urothelial cancer
after complete resection. Cancer Res 1996;56(14):3196–8.

[145] Chenard MP, O’Siorain L, Shering S, et al. High levels of
stromelysin-3 correlate with poor prognosis in patients with
breast carcinoma. Int J Cancer 1996;69(6):448–51.

[146] Murray GI, Duncan ME, O’Neil P, et al. Matrix metallo-
proteinase-1 is associated with poor prognosis in colorectal
cancer. Nat Med 1996;2(4):461–2.

[147] Kim J, Yu W, Kovalski K, et al. Requirement for specific
proteases in cancer cell intravasation as revealed by a novel
semiquantitative PCR-based assay. Cell 1998;94(3):353–62.

[148] Park JE, Keller GA, Ferrara N. The vascular endothelial
growth factor (VEGF) isoforms: differential deposition into the
subepithelial extracellular matrix and bioactivity of extracellu-
lar matrix-bound VEGF. Mol Biol Cell 1993;4(12):1317–26.

[149] Wang H, Keiser JA. Vascular endothelial growth factor upreg-
ulates the expression of matrix metalloproteinases in vascular
smooth muscle cells: role of flt-1. Circ Res 1998;83(8):832–40.

[150] Brooks PC, Silletti S, von Schalscha TL, et al. Disruption of
angiogenesis by PEX, a noncatalytic metalloproteinase frag-
ment with integrin binding activity. Cell 1998;92(3):391–400.

[151] Patterson BC, Sang QA. Angiostatin-converting enzyme activi-
ties of human matrilysin (MMP-7) and gelatinase B/type IV
collagenase (MMP-9). J Biol Chem 1997;272(46):28823–5.

[152] Cornelius LA, Nehring LC, Harding E, et al. Matrix metallo-
proteinases generate angiostatin: effects on neovascularization.
J Immunol 1998;161(12):6845–52.

[153] Sang QX. Complex role of matrix metalloproteinases in angio-
genesis. Cell Res 1998;8(3):171–7.

[154] Wojtowicz-Praga S, Torri J, Johnson M, et al. Phase I trial of
Marimastat, a novel matrix metalloproteinase inhibitor, admin-
istered orally to patients with advanced lung cancer. J Clin
Oncol 1998;16(6):2150–6.

[155] Collier MA, Yuen GJ, Bansal SK, et al. A Phase I study of the
matrix metalloproteinase (MMP) inhibitor AG3340 given in
single doses to healthy volunteers (Meeting abstract). in Proc
Annu Meet Am Assoc Cancer Res. 1997.

[156] Landau BJ, Kwaan HC, Verrusio EN, et al. Elevated levels of
urokinase-type plasminogen activator and plasminogen activa-
tor inhibitor type-1 in malignant human brain tumors. Cancer
Res 1994;54(4):1105–8.

[157] Grondahl-Hansen J, Christensen IJ, Rosenquist C, et al. High
levels of urokinase-type plasminogen activator and its inhibitor
PAI-1 in cytosolic extracts of breast carcinomas are associated
with poor prognosis. Cancer Res 1993;53(11):2513–21.

[158] Soff GA, Sanderowitz J, Gately S, et al. Expression of plasmi-
nogen activator inhibitor type 1 by human prostate carcinoma
cells inhibits primary tumor growth, tumor-associated angio-
genesis, and metastasis to lung and liver in an athymic mouse
model. J Clin Invest 1995;96(6):2593–600.

[159] Lee H, Struman I, Clapp C, et al. Inhibition of urokinase
activity by the antiangiogenic factor 16K prolactin: activation
of plasminogen activator inhibitor 1 expression. Endocrinology
1998;139(9):3696–703.

[160] Bajou K, Noel A, Gerard RD, et al. Absence of host plasmino-
gen activator inhibitor 1 prevents cancer invasion and vascular-
ization. Nat Med 1998;4(8):923–8.

[161] Montesano R, Pepper MS, Mohle-Steinlein U, et al. Increased
proteolytic activity is responsible for the aberrant morpho-
genetic behavior of endothelial cells expressing the middle T
oncogene. Cell 1990;62(3):435–45.

[162] Yihai C, Renhai C. Angiogenesis inhibited by drinking tea,
Nature 1999;398(6726):381.

[163] Folkman J, Haudenschild C. Angiogenesis in vitro. Nature
1980;288(5791):551–6.

[164] Brown KJ, Maynes SF, Bezos A, et al. A novel in vitro assay
for human angiogenesis. Lab Invest 1996;75(4):539–55.

[165] Nicosia RF, Tchao R, Leighton J. Histotypic angiogenesis in
vitro: light microscopic, ultrastructural, and radioautographic
studies. In Vitro 1982;18(6):538–49.

[166] Nicosia RF, Lin YJ, Hazelton D, et al. Endogenous regulation
of angiogenesis in the rat aorta model. Role of vascular en-
dothelial growth factor. Am J Pathol 1997;151(5):1379–86.

[167] Kusaka M, Sudo K, Fujita T, et al. Potent anti-angiogenic
action of AGM-1470: comparison to the fumagillin parent.
Biochem Biophys Res Commun 1991;174(3):1070–6.

[168] Gimbrone MA, Jr., Cotran RS, Leapman SB, et al. Tumor
growth and neovascularization: an experimental model using
the rabbit cornea, J Natl Cancer Inst, 1974;52(2):413–27.

[169] Fournier GA, Lutty GA, Watt S, et al. A corneal micropocket
assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci
1981;21(2):351–4.



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110 109

[170] Muthukkaruppan V, Auerbach R. Angiogenesis in the mouse
cornea. Science 1979;205(4413):1416–8.

[171] Lichtenberg J, Hansen CA, Skak-Nielsen T, et al. The rat
subcutaneous air sac model: a new and simple method for in
vivo screening of antiangiogenesis. Pharmacol Toxicol
1997;81(6):280–4.

[172] Rofstad EK. Orthotopic human melanoma xenograft model
systems for studies of tumour angiogenesis, pathophysiology,
treatment sensitivity and metastatic pattern. Br J Cancer
1994;70(5):804–12.

[173] Smith L, Wesolowski E, McLellan A, et al. Oxygen-induced
retinopathy in the mouse. Invest Ophthalmol Vis Sci
1994;35(1):101–11.

[174] Thompson WD, Harvey JA, Kazmi MA, et al. Fibrinolysis and
angiogenesis in wound healing. J Pathol 1991;165(4):311–8.

[175] Passaniti A, Taylor RM, Pili R, et al. A simple, quantitative
method for assessing angiogenesis and antiangiogenic agents
using reconstituted basement membrane, heparin, and fibrob-
last growth factor. Lab Invest 1992;67(4):519–28.

[176] Hanahan D. Heritable formation of pancreatic �-cell tumours
in transgenic mice expressing recombinant insulin/simian virus
40 oncogenes. Nature 1985;315(6015):115–22.

[177] Knighton D, Ausprunk D, Tapper D, et al. Avascular and
vascular phases of tumour growth in the chick embryo. Br J
Cancer 1977;35(3):347–56.

[178] Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis
and antiangiogenesis in the chick embryo chorioallantoic mem-
brane. Microvasc Res 1994;47(1):31–40.

[179] Auerbach R, Kubai L, Knighton D, et al. A simple procedure
for the long-term cultivation of chicken embryos. Dev Biol
1974;41(2):391–4.

[180] Suri C, McClain J, Thurston G, et al. Increased vascularization
in mice overexpressing angiopoietin-1. Science
1998;282(5388):468–71.

[181] Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous
embryonic lethality induced by targeted inactivation of the
VEGF gene. Nature 1996;380(6573):439–42.

[182] Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1
receptor tyrosine kinase in regulating the assembly of vascular
endothelium. Nature 1995;376(6535):66–70.

[183] Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-is-
land formation and vasculogenesis in Flk-1-deficient mice. Na-
ture 1995;376(6535):62–6.

[184] Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure
in mouse embryos deficient in VEGF receptor-3. Science
1998;282(5390):946–9.

[185] Bader BL, Rayburn H, Crowley D, et al. Extensive vasculogen-
esis, angiogenesis, and organogenesis precede lethality in mice
lacking all � v integrins. Cell 1998;95(4):507–19.

[186] Dickson MC, Martin JS, Cousins FM, et al. Defective haema-
topoiesis and vasculogenesis in transforming growth factor-� 1
knock out mice. Development 1995;121(6):1845–54.

[187] Lindahl P, Johansson BR, Leveen P, et al. Pericyte loss and
microaneurysm formation in PDGF-B-deficient mice. Science
1997;277(5323):242–5.

[188] O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a
circulating endothelial cell inhibitor that suppresses angiogene-
sis and tumor growth. Cold Spring Harb Symp Quant Biol
1994;59:471–82.

[189] Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with
a selective gelatinase inhibitor [In Process Citation]. Nat Bio-
technol 1999;17(8):768–74.

[190] Carron CP, Meyer DM, Pegg JA, et al. A peptidomimetic
antagonist of the integrin �(v)�3 inhibits Leydig cell tumor
growth and the development of hypercalcemia of malignancy.
Cancer Res 1998;58(9):1930–5.

[191] Prewett M, Li Y, Huber J, et al. VEGF receptor blockade by
an anti-Flk1 monoclonal antibody inhibits tumor associated
angiogenesis and tumor growth. in AACR 90th Annual Meet-
ing, Philadelphia, PA, USA, April 10-14. 1999.

[192] Taraboletti G, Belotti D, Borsotti P, et al. The 140-kilodalton
antiangiogenic fragment of thrombospondin-1 binds to basic
fibroblast growth factor. Cell Growth Differ 1997;8(4):471–9.

[193] Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis
and tumor progression in gelatinase A-deficient mice. Cancer
Res 1998;58(5):1048–51.

[194] Wilson CL, Heppner KJ, Labosky PA, et al. Intestinal tumori-
genesis is suppressed in mice lacking the metalloproteinase
matrilysin. Proc Natl Acad Sci U S A 1997;94(4):1402–7.

[195] Nwomeh BC, Liang HX, Cohen IK, et al. MMP-8 is the
predominant collagenase in healing wounds and nonhealing
ulcers. J Surg Res 1999;81(2):189–95.

[196] Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a
key regulator of growth plate angiogenesis and apoptosis of
hypertrophic chondrocytes. Cell 1998;93(3):411–22.

[197] Vaalamo M, Karjalainen-Lindsberg ML, Puolakkainen P, et al.
Distinct expression profiles of stromelysin-2 (MMP-10), collage-
nase-3 (MMP-13), macrophage metalloelastase (MMP-12), and
tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal
ulcerations. Am J Pathol 1998;152(4):1005–14.

[198] Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the
stromelysin-3 metalloproteinase contributes in a paracrine man-
ner to epithelial cell malignancy. J Cell Biol 1998;140(6):1535–
41.

[199] Dong Z, Kumar R, Yang X, et al. Macrophage-derived metal-
loelastase is responsible for the generation of angiostatin in
Lewis lung carcinoma. Cell 1997;88(6):801–10.

[200] Puente XS, Pendas AM, Llano E, et al. Molecular cloning of a
novel membrane-type matrix metalloproteinase from a human
breast carcinoma. Cancer Res 1996;56(5):944–9.

[201] Santos O, McDermott CD, Daniels RG, et al. Rodent pharma-
cokinetic and anti-tumor efficacy studies with a series of syn-
thetic inhibitors of matrix metalloproteinases. Clin Exp
Metastasis 1997;15(5):499–508.

[202] Seftor RE, Seftor EA, De Larco JE, et al. Chemically modified
tetracyclines inhibit human melanoma cell invasion and metas-
tasis. Clin Exp Metastasis 1998;16(3):217–25.

[203] Latreille J, Laberge F, Rivière M, et al. Phase I/II clinical trials
of escalating dose of Æ-941, an inhibitor of angiogenesis, in
patients with refractory lung cancer. in AACR 90th Annual
Meeting, Philadelphia, PA, USA, April 10-14. 1999.

[204] MacPherson LJ, Bayburt EK, Capparelli MP, et al. Discovery
of CGS 27023A, a non-peptidic, potent, and orally active
stromelysin inhibitor that blocks cartilage degradation in rab-
bits. J Med Chem 1997;40(16):2525–32.

[205] Sandberg JA. Pharmacology and toxicology of an antiangio-
genic ribozyme. in Angiogenesis: Novel Therapeutic Develop-
ment. 1999. Boston, MA, USA: IBC.

[206] Mang TS, Allison R, Hewson G, et al. A phase II/III clinical
study of tin ethyl etiopurpurin (Purlytin)- induced photody-
namic therapy for the treatment of recurrent cutaneous
metastatic breast cancer. Cancer J Sci Am 1998;4(6):378–84.

[207] Kaplan MJ, Somers RG, Greenberg RH, et al. Photodynamic
therapy in the management of metastatic cutaneous adenocar-
cinomas: case reports from phase 1/2 studies using tin ethyl
etiopurpurin (SnET2). J Surg Oncol 1998;67(2):121–5.

[208] Shawver LK, Schwartz DP, Mann E, et al. Inhibition of
platelet-derived growth factor-mediated signal transduction and
tumor growth by N-[4-(trifluoromethyl)-phenyl]5- methylisoxa-
zole-4-carboxamide. Clin Cancer Res 1997;3(7):1167–77.

[209] Brusselbach S, Nettelbeck DM, Sedlacek HH, et al. Cell cycle-
independent induction of apoptosis by the anti-tumor drug
Flavopiridol in endothelial cells. Int J Cancer 1998;77(1):146–
52.



M. Hagedorn, A. Bikfal�i / Critical Re�iews in Oncology/Hematology 34 (2000) 89–110110

[210] Ingber D, Fujita T, Kishimoto S, et al. Synthetic analogues of
fumagillin that inhibit angiogenesis and suppress tumour
growth. Nature 1990;348(6301):555–7.

[211] Griffith EC, Su Z, Turk BE, et al. Methionine aminopeptidase
(type 2) is the common target for angiogenesis inhibitors AGM-
1470 and ovalicin. Chem Biol 1997;4(6):461–71.

[212] Bauer KS, Dixon SC, Figg WD. Inhibition of angiogenesis by
thalidomide requires metabolic activation, which is species-de-
pendent. Biochem Pharmacol 1998;55(11):1827–34.

[213] Harris AL. Clinical trials of anti-vascular agent group B Strep-
tococcus toxin (CM101). Angiogenesis 1997;1(1):36–7.

[214] Dark GG, Hill SA, Prise VE, et al. Combretastatin A-4, an
agent that displays potent and selective toxicity toward tumor
vasculature. Cancer Res 1997;57(10):1829–34.

[215] Kohn EC, Felder CC, Jacobs W, et al. Structure-function
analysis of signal and growth inhibition by carboxyamido-tria-
zole, CAI. Cancer Res 1994;54(4):935–42.

[216] McGarvey ME, Tulpule A, Cai J, et al. Emerging treatments
for epidemic (AIDS-related) Kaposi’s sarcoma. Curr Opin
Oncol 1998;10(5):413–21.

[217] Sills AK, Jr., Williams JI, Tyler BM, et al. Squalamine inhibits
angiogenesis and solid tumor growth in vivo and perturbs
embryonic vasculature, Cancer Res 1998;58(13):2784–92.

[218] Westerlund A, Hujanen E, Hoyhtya M, et al. Ovarian cancer
cell invasion is inhibited by paclitaxel. Clin Exp Metastasis
1997;15(3):318–28.

[219] Majewski S, Marczak M, Szmurlo A, et al. Interleukin-12
inhibits angiogenesis induced by human tumor cell lines in vivo.
J Invest Dermatol 1996;106(5):1114–8.

[220] Chang E, Boyd A, Nelson CC, et al. Successful treatment of
infantile hemangiomas with interferon-�-2b. J Pediatr Hematol
Oncol 1997;19(3):237–44.

[221] Dinney CP, Bielenberg DR, Perrotte P, et al. Inhibition of basic
fibroblast growth factor expression, angiogenesis, and growth
of human bladder carcinoma in mice by systemic interferon-�
administration. Cancer Res 1998;58(4):808–14.

[222] Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of
lymphatic vessels in VEGF-C transgenic mice [published erra-

tum appears in Science Jul 25;277(5325):463]. Science, 276
1997;1997(5317):1423–5.

Biographies

Martin Hagedorn attended Medical School at the
University of Cologne from 1989 to 1995. He com-
pleted his Medical thesis in the Department of Retinal
and Vitreous Surgery, University Eye Clinic Cologne
(Director: Professor Dr Heimann) in January 1996.
From 1996 to 1998 he held a post doctoral fellowship in
the laboratory of Dr Erkki Ruoslahti (Burnham Insti-
tute, La Jolla, CA, USA). Since January 1999 he has
been working on a Scientific thesis in the LFCDC
laboratoy, University of Bordeaux I (Director: Andreas
Bikfalvi).

Andreas Bikfal�i attained his MD in Brest, France.
Between 1983 and 1986 he was a Resident in Internal
Medicine in Kiel, Germany. He completed a PhD at
INSERM U 150 (Professor J. Caen) in Paris, France,
from 1986 to 1989. He held post-doctoral fellowships at
INSERM U 118 (Dr Y. Courtois) in Paris, France
(1989–1990) and in the Department of Cell Biology
(Professor D.B. Rifkin), NYU Medical Center, New
York, USA. In 1995 he was a visiting CNRS researcher
at CNRS Unit 1813, Paris (Professor D. Barritault).
Since 1995 Andreas Bikfalvi has been a Professor in
Cell and Molecular Biology, University Bordeaux I and
Head of the Growth Factor and Cell Differentiation
Laboratory (LFCDC).

.



49

Introduction publication II

In this paper, we describe how a small portion of PF-4, the C-terminal fragment

containing the amino acids 47-70, inhibits angiogenesis induced by FGF-2. We

provide evidence that PF-447-70 is a competitor for 125I-FGF-2-binding to high and

low affinity sites on endothelial cells and that it inhibits FGF-2 internalization. The

peptide blocks microvascular EC proliferation in a dose-dependant manner. Anti-

proliferative effects seem to be independent of cell surface proteoglycans,

because proliferation of a GAG-deficient cell line (BaF3, Pro-B-lymphocytes)

transfected with FGFR-1 (125) is also inhibited by the peptide. Another important

event during early angiogenesis, EC motility, was tested in a monolayer-

wounding assay. EC migration is impaired in the presence of PF-447-70, whereas

a control peptide, PF-447-70S (C52 replaced by S) has no effect. Inhibition of cell

migration is paralleled by down-regulation of phosphorylated MAPK kinases

ERK-1/2, a phenomena that is also observed when cells are treated with the

angiogenesis inhibitor angiostatin (126).

We used the rat aortic ring model to further study the effects of PF-447-70 in a

more complex system. This assay permits the evaluation of angiogenesis

inhibitors without the addition of exogenous growth factors (127). Microvascular

vessel assembly is strongly inhibited in cultures treated with PF-447-70, whereas

the control peptide showed no effect at all.

To simulate a real treatment situation, the mouse sponge model was used.

Angiogenesis was induced in FGF-2-soaked foam sponges implanted on the

back of mice. PF-447-70 or control peptide was injected intra-peritonally. A single

dose of PF-447-70 strongly suppressed microvessel ingrowth into the sponges as

revealed by measuring erythrocyte-covered area and laminin-staining.

Circular dichroism comparison of the two peptides indicates that the substitution

C52S did not significantly alter the overall structure of the molecule at low

resolution. However, recent data support the thesis that the substitution C52S

induces a defined modification in the structure of PF-447-70, which is not apparent

at a low resolution (128). Taken together, the data presented in the following

paper show that a small portion of PF-4 is able to counteract FGF-2 induced

angiogenesis in various biochemical, in vitro and in vivo assays and that this

activity is dependant on a free cysteine at position 52.
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Figure 8: Mechanism of action of PF-447-70 on FGF-2-induced angiogenesis.

(Taken from Hagedorn et al., FASEB J. (January 5, 2001) 10.1096/fj.00–0285fje):

PF-447–70 consists of 23 amino acids compared with the tetrameric human PF-4 (280 amino

acids). It associates with FGF-2 and leads to a conformation change of the growth factor.

Alteration of the secondary structure impairs FGF-2-dimerization and binding to high- and low-

affinity receptors. A proper binding of the FGF-2 molecule is further necessary for receptor

dimerization and internalization, and for transducing a pro-angiogenic growth signal into the cell.

Blocking of FGF-2/FGFR-interaction leads to downregulation of MAPK phosphorylation, a major

downstream signaling pathway. Biological consequences of these interactions are inhibition of

endothelial cell proliferation, migration, microvessel assembly, and in vivo angiogenesis.
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Overview: Platelet factor 4

PF-4 belongs to the CXC cytokine family that consists of small chemotactic

polypeptides (<10 kDa). CXC-chemokines are, in general, pro-angiogenic when

the tripeptide ELR precedes the first CXC-domain, but are anti-angiogenic, when

this motif is absent (129). Exceptions are GRO- , which contains an ELR motif,

but inhibits angiogenesis in vitro and in vivo (130), and the ELR-negative stromal-

derived factor 1 (SDF-1), which shows pro-angiogenic effects in vitro and in vivo

(131, 132).Table 2 provides an overview of proteins of this family.

ELR+ CHEMOKINES ELR- CHEMOKINES

IL-8 (Interleukin 8)
PBP (Platelet basic protein),
contains: CTAP-III
(Connective-tissue activating
peptide III), LA-PF4 (Low-
affinity platelet factor IV),
BETA-TG (Beta-
thromboglobulin)
NAP-2 (Neutrophil-activating
peptide 2)
ENA-78 (Epithelial-derived
neutrophil-activating peptide
78)
GCP-2 (Granulocyte
chemotactic protein 2)
Gro , ,  (growth-regulated
protein)
MIP2- ,  (macrophage
inflammatory protein-2)
I-TAC (Interferon-inducible T
cell chemoattractant)
9E3/CEF4 (transformation-
induced protein)
Lungkine (expressed in lungs
only)

PF-4 (Platelet Factor 4)
IP-10 (Interferon-  induced
protein)
H174
MIG ( -interferon induced
monokine)
SDF-1 (stromal cell-derived
factor 1)
PBSF (pre-B cell growth
stimulating factor)
BRAK (isolated from Breast and
Kidney tissue)

Table 2: Members of the CXC-chemokine family.

Functions of the CXC-chemokines are mostly related to immunological processes or are

unknown. There is evidence that members of this family with biological activities related to

angiogenesis can be classified by the presence or absence of an ELR peptide motif at their N-

terminus (129) (presence of the motif = pro-angionenic, absence = anti-angiogenic).
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PF-4 can induce inflammation in vivo (133); it may form very immunogenic

complexes with heparin in patients treated with heparin, leading to the disease of

heparin-induced thrombocytopenia/thrombosis (HIT) (134). Administration of full-

length tetrameric (ELR-negative) PF-4 restrains tumor growth and metastasis in

mice models via inhibition of angiogenesis (135, 136). Survival of mice is

prolonged by transducing established intracerebral glioma with an adenoviral

vector encoding a secreted form of PF-4 (137). PF-4 exerts its effects most likely

via interfering with FGF-2 and VEGF binding to receptors (138, 139) an activity,

which is conserved in the C-terminal portion of the chemokine (140).

An important feature of PF-4, which may contribute to its anti-angiogenic effect,

is the selective binding to endothelial cells in vitro and to new blood vessels in

vivo. FITC-labeled PF-4 binds to proliferating endothelial cells of different origins

(veins and arteries) and is quickly internalized (141). It also stains blood vessels

undergoing angiogenesis in vivo as revealed by intravital microscopy (142).

Another study shows that PF-4 exhibits a selective binding to regions of active

angiogenesis, notably those in breast cancer tissue (143).

These data show that PF-4 is a potent inhibitor of angiogenesis. It might act as a

natural antagonist of FGF-2 and VEGF induced neovascularisation.

Ex vivo systems of angiogenesis: the rat aortic ring assay

Developed in the early 90s by Nicosia and co-workers, this assay consists of the

observation, that adequately cultured fragments of blood vessels give rise to

endothelial outgrowths, which are able to assemble into vascular sprouts (127).

The advantage of this system is that sprouts form without the addition of

exogenous growth factors. It regroups angiogenic events such as basement

membrane breakdown, EC proliferation, EC migration and even pericyte

stabilization of microvascular sprouts (144). ECs in microvessels express typical

EC markers like von Willebrand Faktor or VEGFR-2 (145) and can be stained by

lectins (144).

Factors, which stimulate the growth of these structures, are thought to originate

from injured ECs during preparation of rings (146). Classic angiogenic molecules

such as VEGF amongst others stimulate outgrowth of microvessels when added

to the serum-free cultures (147, 148). Recently, a monoclonal antibody against

TIE2 with receptor-activating properties has been generated and shown to
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stimulate growth of microvessels in a dose-dependent manner (149). On the

other hand, anti-VEGFR-2 antibodies (148), endostatin (150) or PF-4 derived

peptides inhibit this growth (publication I and III, this thesis). RGD-peptides also

cause regression of microvessel formation in this assay (151). Even though not

investigated by the authors, it might be that this inhibition is due to induction of

apoptosis as a direct effect of RGD peptides (152).

Interestingly, ECs isolated from human embryonic aortic explants express

molecules like CD34 but not CD31, suggesting a role of angiogenic precursors

(angioblasts) in the participation of vessel formation in a similar type of assay

(153).

Taken together, this model is very close to the in vivo situation of sprouting

angiogenesis and thus very well suited to screen for angiogenesis inhibitors.

Figure 9: Microvessels radiating from the edges of aortic rings embedded in collagen gels;

inhibition by PF-47-70ELR and –DLR.

Demonstration of a typical rat aortic ring experiment, numerous vessel-like structures emerge

from the edge of the aortic ring in collagen gel culture. The two lower panels demonstrate anti-

angiogenic activity of two peptides derived from PF-4 (described in publication III).
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Figure 10: Reconstruction of a single vessel-like sprout from an aortic ring.

Reconstruction of a microvessel emerging from an aortic ring demonstrating the vessel-like

assembly of endothelial cells after more than 7 days in culture (x100, 3 photos).
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ABSTRACT

Platelet factor 4 (PF-4) is a CXC-chemokine with strong anti-angiogenic properties. We have 
shown previously that PF-4 inhibits angiogenesis by associating directly with fibroblast growth 
factor 2 (FGF-2), inhibiting its dimerization, and blocking FGF-2 binding to endothelial cells. 
We now have characterized a small peptide domain (PF-447-70) derived from the C-terminus of 
PF-4, which conserves anti-angiogenic effects of the parent protein. PF-447-70 inhibited 
internalization of 125I-FGF-2 by endothelial cells in a time-dependent manner. The peptide 
reduced FGF-2-stimulated cell migration to control levels in wounded monolayers of bovine 
capillary endothelial cells. PF-447-70 also reduced FGF-2 induced phosphorylation of MAP 
kinases ERK-1 and ERK-2, which are essential for migration and survival of endothelial cells. In 
a serum-free ex vivo angiogenesis assay, the peptide blocked microvessel outgrowth by 89%. A 
single amino acid substitution within PF-447-70 abolished all inhibitory activities. To simulate a 
real anti-angiogenic treatment situation, we administered PF-447-70 systemically to mice 
implanted subcutaneously with FGF-2 containing gelatin sponges with the result of sparse, 
scattered, and immature vessel growth. The small peptide fragment derived from the angio-
inhibitory CXC-chemokine PF-4 might be used as a starting point to develop anti-angiogenic 
designer drugs for angiogenesis-dependent pathologies such as cancer, diabetic retinopathy, and 
rheumatoid arthritis. 
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ngiogenesis is the growth of new blood vessels out of established vessels. A large number 
of growth factors, extracellular matrix proteins, proteolytic enzymes, and chemokines act 
in concert to control new vessel growth tightly under physiological conditions (for 

reviews see Refs. 1, 2). During malignant tumor growth, the balance is biased so that pro-
A



angiogenic molecules like vascular endothelial growth factor (VEGF), FGF-2, and 
metalloproteinases dominate over endogenous inhibitors. This condition results in higher 
vascularized tumors, tumor dissemination, and poorer survival rates of patients (3, 4). Angiogenic 
molecules are also important mediators of disease progression in advanced stages of diabetic 
retinopathy and age-related macular degeneration, retinopathy of prematurity, rheumatoid 
arthritis, and several dermatological disorders (5, 6). 

Numerous endogenous angiogenesis inhibitors have been identified, many of which are generated 
by proteolytic cleavage from proteins originating from the hemostatic system, the extracellular 
matrix, or basement membranes. These include angiostatin (kringle 1-4 of plasminogen) (7), 
endostatin (part of collagen XVIII) (8), canstatin (9) (fragment of the α2 chain of collagen IV), 
troponin I (from cartilage) (10), the cytoplasmic domain of tissue factor (11), PEX (part of MMP-
2) (12), and aaAT (anti-angiogenic antithrombin) (13). 

Anti-angiogenic proteins, which are not cleavage products from larger molecules, are 
thrombospondin (14) and platelet factor 4 (PF-4) (15). Human PF-4 is a tetramer of four identical 
70-amino-acid polypeptide chains. It has potent antitumor efficacy and binds to regions of active 
angiogenesis in human breast carcinoma xenografted to nude mice, which suggests a 
physiological role in the regulation of new blood vessel growth (16, 17). 

PF-4 belongs to the CXC-chemokine group of proteins, which have attracted a lot of interest in 
the past decade because of their implication in a wide variety of biological events such as 
neutrophil activation, HIV infection, and angiogenesis. The presence of an ELR-peptide motif 
preceding the CXC domain at the N-terminus in this protein family generally determines pro-
angiogenic behavior (18). The ELR− chemokines PF-4 and interferon–gamma-inducible protein 
(IP-10) are angiostatic (18, 19), whereas ELR+ chemokines such as interleukin-8 (IL-8) are 
angiogenic (20). The ELR-motif is required for specific interaction with chemokine cell surface 
receptors CXCR1 and CXCR2 (formerly IL-8RA and IL-8RB). Grafting this sequence into PF-4 
converts it into a potent neutrophil-activating protein (21). CXC-chemokines also play an 
important role in vasculogenesis because mice defective for CXCR4, the receptor for stroma-
derived factor 1, have a lethal defective organization of the small intestine vessel network (22). 

No specific cell surface receptor has been identified yet for PF-4, which specifically transduces 
an anti-angiogenic signal. It is believed that the inhibitory properties of PF-4 are a result of 
interference with angiogenic growth factors. We have previously shown that human PF-4 can 
complex with FGF-2 and inhibit endogenous and heparin-induced FGF-2 dimerization (23). PF-4 
also blocks FGF-2 internalization and binding to its receptor. These data indicate that impairing 
the physiological interactions of FGF-2 with its receptors is one important way by which PF-4 
achieves anti-angiogenic activity. It has also been reported that PF-4 hinders VEGF165 binding to 
VEGFR-2 and blocks VEGF121-induced endothelial cell proliferation (24). PF-4 also interferes 
with cell cycle proteins and inhibits proliferation of endothelial cells induced by epidermal 
growth factor by blocking down-regulation of the cyclin-dependent kinase inhibitor 
p21(Cip1/WAF1) (25). Previous experiments showed that the anti-angiogenic activity of PF-4 
was conserved within peptides derived from the C-terminal region, which inhibited FGF-2 and 
VEGF-mediated angiogenesis in vitro by impairing ligand-receptor interactions, whereas central 
or N-terminal peptides were inactive (26). 



On the basis of these observations, we evaluated the anti-angiogenic potential of 
C-terminal amino acids 47-70 (PF-447-70) of human PF-4. By using a variety of different 
angiogenesis assays in vitro, ex vivo, and in vivo, we show that PF-447-70 fully retains the 
inhibitory features of the whole molecule by counteracting FGF-2-induced angiogenesis and that 
suppressing FGF-2 function is sufficient to nearly completely suppress new vessel growth. The 
anti-angiogenic effect depends on the presence of a cysteine at position 52 (C52), because its 
substitution by serine greatly affects inhibitory activity. This finding is the first well-
characterized anti-angiogenic peptide derived from a CXC-chemokine. Thus, PF-447-70 may be 
substantially beneficial for the treatment of angiogensis-dependent diseases like cancer, diabetic 
retinopathy and rheumatoid arthritis. 

MATERIAL AND METHODS 

Peptide synthesis and growth factors 

C-terminal peptides of human PF-4 47NGRKICLDLQAPLYKKIIKKLLESS70 (PF-447-70) and 
47NGRKISLDLQAPLYKKIIKKLLESS70 (PF-447-70S) were synthesized by using standard solid-
phase methodology and were purified by high-performance liquid chromatography (HPLC) by 
using a C18 column and a 0%–80% linear acetonitrile gradient in 0.1% trifluoroacetic acid. 
Lyophilized peptides were dissolved in sterile ddH2O and stored at –20°C prior to use. 
Recombinant human FGF-2 used in this study was kindly provided by Dr. Hervé Prats (INSERM 
U 397, Toulouse, France). 

Endothelial cells 

Bovine capillary endothelial cells (BCE cells) were supplied by Dr. Daniel B. Rifkin (NYU 
Medical Center, New York). Cells were grown in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% newborn calf serum, 1% glutamine, 50 IU/ml penicillin, and 
50 µg/ml streptomycin (all from GibcoBRL Life Technologies, Cergy Pontoise, France) at 37°C
in a 5% CO2 atmosphere. All experiments were done between passage P14 and P18. Adrenal 
cortex capillary endothelial cells (ACE cells) were donated by Dr. Jean-Jacques Feige (CENG, 
Grenoble, France) and were grown in the same media as the BCE cells. ACE cells were used at 
passage 15. 

Blocking of 125I-FGF-2 binding to high- and low-affinity receptors 

FGF-2 was labelled with 125I-Na by using Iodogen (Pierce, Rockford, Ill.) as coupling agent, 
according to the manufacturer’s indications and according to Moscatelli (27). The specific 
activity of 125I-FGF-2 was 50,000 cpm/ng. FGF-2 binding experiments to high- and low-affinity 
sites were performed essentially as described by Moscatelli (27). Cells were seeded at 2.5 × 105

per cm2 and cultured in complete medium in 3.5 cm diameter dishes for two days. Cells were 
washed twice with ice-cold phosphate buffer saline (PBS) and incubated in the presence of 10 
ng/ml 125I-FGF-2 in DMEM and peptides PF-447-70 or PF-447-70S plus 20 mM Hepes (pH 7.4) and 
0.15% gelatin for 2 h at 4°C. Cells were washed again three times with ice-cold PBS, and 125I-
FGF-2 was dissociated from its cellular low-affinity binding sites by two 20-s washes with ice-
cold 20 mM Hepes (pH 7.4), 2 M NaCl and from its high-affinity sites by two 20 s washes with 
ice-cold 20 mM NaAc (pH 4.0), 2 M NaCl. Bound 125I-FGF-2 was quantified by using a Kontron 



MR250 γ-counter (Saint-Quentin-Yvelines, France). Nonspecific binding was determined by 
incubating separate dishes with 125I-FGF-2 and a 100-fold excess of unlabeled ligand. Specific 
binding was determined by subtraction nonspecific binding from total binding. 

FGF-2 internalization assay 

125I-FGF-2 internalization experiments were performed as described by Roghani and Moscatelli 
(28). Briefly, BCE cells were incubated with 10 ng/ml 125I-FGF-2 with or without 20 µM PF-447-

70 at 37°C in a 5% CO2 atmosphere (5 × 105 cells per 3.5 cm dish). The specific activity of 125I-
FGF-2 was 127,000 cpm/ng. At indicated timepoints, cells were washed three times with PBS 
and cell-surface bound material was extracted by washing the cells for 20 s twice with 2M NaCl 
in 20 mM Hepes buffer (pH 7.4) and twice with 2M NaCl in 20 mM acetic acid (pH 4). The 
amount of internalized radioactivity was determined by solubilizing the cells with extraction 
buffer containing 10% glycerol, 2% SDS, 1.6 mM EDTA in 125 mM Tris-HCl (pH 6.8), and 
subsequent gamma counting. 

Proliferation assay using a FGFR-1 transfected cell line (BaF3/FR1c-11) 

To further confirm that PF-447-70 acts in vitro via blocking of FGF-2 interaction with tyrosine 
kinase receptors, we performed proliferation assays by using the BaF3 cell line transfected with 
FGFR-1 (BaF3/FR1c-11) provided by D. M. Ornitz (St. Louis University, St. Louis, Mo.). Cells 
were cultured in RPMI 1640 media supplemented with 10% neonatal bovine serum, L-glutamine, 
penicillin-streptomycin/β-mercaptoethanol and conditioned media form AX63 plasmocytoma 
cells transfected with plasmid BMGNeo mIL3 as a source for interleukin-3 (29). During the 
proliferation assay, only serum-free medium containing only 60 ng/ml FGF-2 was used. 
Proliferation assays were performed as described previously by Ornitz et al., 1996 (30) except 
that cell proliferation was assessed by using a XTT colorimetric assay (Roche, Cell Proliferation 
Kit II) and that no heparin had been added to the culture medium. Peptides were added and cells 
were incubated for 48 h. XTT was added 6 h before the end of this period, absorbance was 
measured at A492 – A690 nm. The experiments were conducted in quadruplicates. 

Migration assay 

Migration of BCE cells was performed by using a method described by Sato and Rifkin (31), 
with modifications. Briefly, 1.5 × 105 BCE cells were seeded out in 35-mm culture dishes and 
were allowed to grow to confluence. Then complete medium was replaced with serum-free 
DMEM containing 1% glutamine, 50 IU/ml penicillin, and 50 µg/ml streptomycin and 
incubation was continued overnight. One linear scar per dish was drawn in the cell monolayer 
with a sterile pipette tip, and each scar was divided into several fields by scratching lines under 
the bottom of the dish for further analysis of individual scar fields during light microscopy. A set 
of digital photos was taken of each scar, and the border between cell and dish surface after 
induction of the scar was marked by a line on the computer by using the Biocom VisionL@b 
2000 software (Les Ulis, France). The dishes were washed carefully to remove detached cells 
and were further incubated for 18 h in fresh serum-free medium containing 0.1% BSA and 
peptides PF-447-70 or PF-447-70S at indicated concentrations. After that, we took a second set of 
photos, which matched the exact fields of the first set. Photos were superimposed on the 



computer screen, and nuclei of endothelial cells migrated across the line drawn at the border of 
the scar in the first photo set were counted. Statistical analysis was performed by using the 
Student’s t-test.

ERK-1 (p44) / ERK-2 (p42) phophorylation Western blot 

Antibodies for phospho-specific MAPK p42/p44 and MAPK p42/p44 were obtained from New 
England Biolabs (Ozyme, France). To detect primary antibodies in Western blots, we used 
horseradish peroxidase-conjugated mouse and rabbit IgG (Dako SA, Trappes, France)and 
detected immunoreactivity by enhanced chemoluminescence. Bovine capillary endothelial cells 
(BCE) were cultivated as described above, and subconfluent cultures were serum-deprived for 24 
h. Peptides PF-447-70 or PF-447-70S were then added for 5 min in the presence of 10 ng/ml FGF-2. 
Cells were carefully scraped off the dish and lysed for 20 min on ice in Nonidet P-40/SDS lysis 
buffer (50 mM Hepes, pH 7.4; 75 mM NaCl; 1 mM EDTA; 1% Nonidet P-40; 0.1% SDS) 
containing a mixture of protease inhibitors. The insoluble material was removed by 
centrifugation for 20 min at 12,000 g at 4°C. The cleared supernatant was stored at –80°C.
Protein concentration was measured by using the Bradford method (all reagents from Bio-Rad, 
Ivry-sur-Seine, France). The cytoplasmic extracts were resolved by SDS-PAGE on 12% gels 
under reducing conditions and electrotransferred onto a nitrocellulose membrane (Amersham 
Pharmacia Biotech, Orsay, France) by using a semi-dry blotting system (Bio-Rad, Ivry-sur-
Seine, France). The blocked membranes were then incubated with primary antibodies, washed, 
and incubated with secondary antibodies coupled to peroxidase. Blots were visualised by using 
the ECLplus Western blot detection system (Amersham Pharmacia Biotech, Orsay, France).  

Rat aortic ring assays 

Rat aortic ring cultures were prepared according to a method developed by Nicosia et al. (32), 
with modifications. Female Sprague Dawley rats, about 200 g, (Harlan, Gannat, France) were 
deeply anaesthetised with a mixture of ketamine (150 mg/kg), (Merial, Lyon, France) and 
xylazine (15 mg/kg), (Bayer Pharma, Puteax, France). Aortas were removed by using sterile 
microsurgical instruments and put directly on ice in MCDB131 medium supplemented with L-
glutamine, bicarbonate, and Pen-Strep (all cell culture media and supplements were from 
GibcoBRL Life Technologies, Cergy-Pontoise, France). Further preparation of aortic rings was 
performed under a dissection microscope in a sterile tissue culture hood. After cleaning the 
vessel from surrounding periadventitial tissue, about 15–20 rings each ~1-mm long were cut per 
aorta and washed 5 times in 15 ml ice-cold serum-free MCDB131. A collagen solution of pH 7.4 
was prepared on ice by mixing rat-tail collagen I solution (2 mg/ml, Serva Electrophoresis, 
Heidelberg, Germany) with bicarbonate, NaOH, 10x MEM, and Pen-Strep. To gel the collagen, 
24-well chambers were coated with 300 µl collagen solution and incubated in a tissue culture 
incubator at 37°C in a 5% CO2 atmosphere for 10 min. Rings were then placed with sterile 
forceps in the center of each well so that the lumen of the aorta was orientated parallel to the 
bottom of the dish. Another 300 µl of collagen solution was added on top of each ring, and 
cultures were incubated for another 10 min; 1 ml of serum-free MCDB131 was added to each 
well and replaced every two days. Rings were treated with different concentrations of PF-447-70

every two days; controls received no peptide or the mutated peptide PF-447-70S. After 5–6 days, 
we took photographs by using a Sony digital camera connected to a Nikon inverted microscope 
and microvessel length and number were measured by using the Biocom VisionL@b 2000 



software (Les Ulis, France). Statistical analyses of the differences in vessel length and number 
compared with untreated controls were analyzed by using the Student’s t-test.

Mouse sponge angiogenesis assays 

Sterile gelatin sponges, 10 mm3 (Curaspon Dental, Clinimed Holding, Zwanenburg, 
Netherlands), containing 200 µl of 10 ng/ml FGF-2 in PBS (n=20) or PBS alone (n=10, negative 
background control) were implanted subcutaneously in the back of C57/BI/6 mice (Charles 
River, Spain), and wounds were closed with sutures. Twenty-four hours after surgery, mice with 
sponges containing PBS alone (n=10) or PBS plus FGF-2 (n=10) were treated with a single 
intraperitoneal injection of 16 µM PF447-70 in PBS. All procedures in these experiments were 
performed under sterile conditions and in agreement with the animal welfare guidelines of the 
National Institutes of Health and the European Union. After 7 days, animals were killed and the 
gelatin sponges were removed, fixed in 10% neutral buffered formalin solution, and embedded in 
paraffin. Sponges were sectioned at 6 µm, and slides were stained with hematoxylin and eosin 
for histological examination. Ingrowth of neovessels was quantified by measuring surface area 
with erythrocyte content. Counts were performed in four predetermined visual fields by using an 
eyepiece graticule at 10-fold magnification. At this magnification, the graticule covered an area 
of 0.11 mm2. The average area occupied by erythrocytes in all the fields scanned by two 
observers was calculated. Statistical analyses were performed by using the Student’s t-test.

For immunhistochemical analysis, the same experiment as described above was performed, 
except that one additional control group (n=10 animals) received sponges incubated with 45 
µg/ml of PF447-70 in PBS. Gelatin sponges were fixed in 4% paraformaldehyde in PBS for 24 h 
and embedded in paraffin. Sections were mounted on aminopropytriethoxysilane-coated slides. 
Paraffin sections were deparaffinized and rehydrated prior to incubation with 0.1% trypsin 
(Sigma Chemical, St. Louis, Mo.) to unmask antigen before incubation with primary antibody. 
Vessels were detected by incubating the sections with a polyclonal anti-laminin antibody (Sigma 
Chemical). The primary antibody was used at a 1:25 dilution at 4ºC overnight. After rinsing, 
slides were incubated by a biotin-linked anti-rabbit secondary antibody (1:200) (Vector 
Laboratories, Burlingame, Calif.). The antigen was visualized with the Vector Laboratories ABC 
inmunoperoxidase kit, with 0.05% diaminobenzidine in 0.005% H2O2. Sections were 
counterstained with hematoxylin. Parallel sections served as negative control for the primary 
antibody and were processed identically except that no primary antibody was added. Three 
sections from all specimens, each 300-µm apart from one another, were used to count 
immunostained vessels. Microvessel density was confined to the periphery of sponges by 
counting all vessels under 40-fold magnification with the use of an eyepiece screen. Total 
microvessel density per treatment group was calculated by adding the numbers of all sections. 
Values were reported as the mean ± SE, and the difference between the groups was found to be 
statistically significant as evaluated by the Student’s t-test (**p<0.001).

Comparison of PF-447-70 and PF-447-70S by circular dichroism spectroscopy

Circular dichroism (CD) experiments were carried out in a Jasco J-720 spectropolarimeter fitted 
with a thermostated cell holder and interfaced with a Neslab RTE-110 water bath. Isothermal 
wavelength spectra were acquired at a scan speed of 50 nm/min. The response time was 2 s.  



RESULTS

PF-447-70 inhibits FGF-2 binding to high- and low-affinity receptors, FGF-2 internalization, and 
FGF-2-dependent cell proliferation 

We first investigated the ability of the PF-4 peptides to interfere with FGF-2 binding to its 
tyrosine kinase receptors (FGFRs) or low-affinity receptors (heparan sulfate proteoglycans, 
HSPGs), because both receptor types are required for normal FGF-2 function. We found 
previously that recombinant PF-4 inhibited binding of 125I-FGF-2 to both classes of receptors 
(23). Peptide PF-447-70, but not PF-447-70S, blocked binding of 125I-FGF-2 to high- and low-
affinity receptors on BCE cells. Concentrations necessary for half-maximal inhibition (IC50)
were calculated as ~2 µM for high- affinity receptors and ~4 µM for HSPGs-type receptors. 
Inhibition was complete between 10 and 20 µM (Fig. 1A). In this range, PF-447-70 also inhibited 
internalization of 125I-FGF-2 in BCE cells, with the first effect after 1–2 h and reaching a plateau 
after 12 h. The rate of internalization in the presence of PF-447-70 decreased by 4.6-fold compared 
with untreated controls (Fig. 1B).

We also checked the effects of PF-447-70 and PF-447-70S on endothelial cell proliferation. The 
number of adrenocortical endothelial cells (ACE) or BCE cells stimulated with 10 ng/ml FGF-2 
and 1% serum was counted after 6 days in culture. At 10 µM, the anti-proliferative effects of PF-
447-70 became evident; at 20 µM, cell proliferation was suppressed below levels of 1% serum 
treated cells (negative control). PF-447-70S had no significant effect on proliferation (data not 
shown).

To assess the specificity of the interaction of the peptide with FGF-2 in vitro, we used the FGFR-
1 transfected cell line BaF3/FR1c-11, which does not express HSPGs on its surface (30). FGF-2-
induced proliferation was suppressed strongly in these cells between 10 and 15 µM PF-447-70

with an IC50 of 3.6 µM. PF-447-70S showed a greatly reduced inhibitory effect at these 
concentrations (Fig. 1C). These results suggest that PF-447-70 inhibits FGF-2-induced cell 
proliferation by a mechanism independent of cell-surface HSPGs. 

Endothelial cell migration is blocked in presence of PF-447-70

ERK activation by growth factor receptors or integrins has been linked recently to a migratory 
program in COS-7 and FG carcinoma cell lines (33), and blocking of the ERK pathway with the 
specific inhibitor PD 98059 leads to a decrease of cell motility in a wounding assay and on 
vitronectin (34, 35). When we induced a single scar in BCE cell monolayers with a pipette tip, 
very few BCE cells migrated into the wounded scar area after 18 h of serum deprivation (Fig.
2A). Cells from the positive control, which received 10 ng/ml FGF-2, migrated towards the scar 
field in serum-free media (Fig. 2B).

During the 18 h period, the cell number was not increased by FGF-2 compared with unstimulated 
cultures, as determined by cell counting with a Coulter counter (data not shown). The mutated 
peptide control PF-447-70S did not counterbalance the stimulatory effects of FGF-2 (Fig. 3C),
whereas PF-447-70 at the same dose (20 µM) nearly completely blocked cell migration (Fig. 2D).
In some experiments, PF-447-70S did enhance FGF-2 induced endothelial cell migration (20%–
50%), but no inhibitory effects were observed. The inhibitory effects of PF-447-70 on FGF-2 (10 



ng/ml)-stimulated BCE cell migration are dose-dependent. Inhibition started around 10 µM and 
reached a plateau at 20 µM, where migration was suppressed to control levels (Fig. 2E).

PF-447-70 inhibits the activation of mitogen-activated kinases ERK-1 (p44) and ERK-2 (p42) 

Binding of FGF-2 or VEGF to its high-affinity receptors induces rapid phosphorylation of ERK-
2 in vivo (35) and endogenous angiogenesis inhibitors like the 16-kDa fragment of prolactin or 
angiostatin can block FGF-2 induced phosphorylation of ERK isoforms p42/p44 in vitro (36, 
37). We therefore investigated whether this important signalling event in the angiogenic cascade 
was affected by PF-447-70. BCE cells stimulated by 10 ng/ml FGF-2 for 5 min showed a strong 
increase in phosphorylation of ERK-isoforms. If co-incubated with 20 µM of peptide PF-447-70,
ERK activation decreased markably, whereas PF-447-70S did not influence ERK phosphorylation. 
Similar data have been obtained in several independent experiments, and one representative 
Western blot is shown (Fig. 2F).

Microvessel assembly in aortic ring cultures embedded in collagen gels is hindered in 
presence of PF-447-70

To investigate microvessel assembly, thus the first step towards formation of a blood vessel after 
endothelial cell migration and proliferation, the rat aortic ring angiogenesis assay was used (32). 
When living aortic ring cultures were treated every 2 days with 20 µM of PF-447-70, a profound 
effect on spontaneous microvascular sprouting was observed. In control cultures where no 
peptide had been added, numerous vessels developed after 4–6 days. The vessels grew into the 
collagen matrix originating from the cut edges of the ring, which was placed parallel with its 
lumen to the bottom of the culture dish (Figs. 3A, C). When rings were placed with the lumen 
parallel to the walls of the dish, no reproducible, quantifiable growth of vessels could be 
observed (data not shown). In cultures treated with 20 µM peptide PF-447-70 vessels, formation 
was strongly inhibited, whereas cellular (fibroblastic and/or endothelial) outgrowth was less 
affected (Figs. 3B, D). If vessels developed, they were much thinner and shorter than vessels in 
control cultures. Branching microvessels with lumina became clearly visible in untreated 
cultures, whereas PF-447-70-treated rings are surrounded mainly by cells that did not assemble 
into microvessels (Fig. 3D). PF-447-70 reduced the mean vessel length by 89% and the vessel 
number by 86% (four rings per group in three independent experiments, Fig. 3E). The inhibiton 
of angiogenesis at 20 µM PF-447-70 measured by the length and number of microvessels was 
statistically significant (Student’s t-test, p<0.001). Inhibitory effects of PF-447-70 were dose-
dependent, with a narrow therapeutic range between 10 and 20 µM. Adding 20 µM of mutant 
peptide PF-447-70S to cultures did not inhibit formation of vessels, and they resembled those of 
the untreated controls (Fig. 3F). Dose-response results were repeated twice with similar findings.  

Systemic treatment with PF-447-70 in mice reduced vessel ingrowth in FGF-2-containing 
subcutaneous sponges 

To simulate a more realistic treatment situation, we injected a single dose of PF-447-70 (16 µM) in 
PBS or PBS alone into mice with subcutaneous implants of FGF-2-containing gelatin sponges. 
One week later, animals were killed, and sponges were examined histologically or by 
immunhistochemistry with an anti-laminin antiserum. No new capillaries were found in sponges 
incubated with PBS alone or in that with peptide PF447-70 in PBS (4A+B). In contrast, sponges 



with 10 ng/ml FGF-2 developed neovessels; neutrophils and macrophages were present (4C+E). 
When mice received a single intraperitoneal injection of PF447-70 24 h after implantation of FGF-
2 sponges, vessel number decreased markedly, vessels were scattered, were of immature nature, 
and had smaller diameters, whereas slightly more inflammatory cells were present. 

The angiogenic response was quantified by calculating the areas that contained erythrocytes or 
by counting laminin-positive vessels. Statistical analyses were done by using the Student’s t-test,
and the difference between PF-447-70-treated and control groups was considered significant 
(**p<0.001). The histogram further illustrates that PF447-70 treatment blocked angiogenesis 
compared with control groups by 86% when assessed by calculating areas with erythrocytes and 
by 81% when laminin was used as a marker for angiogenic vessel growth in an independant 
experiment (Fig. 4G).

Low-resolution structural characterization o PF-447-70 and PF-447-70S

As shown in Figure 5, the far-UV circular dichroism spectrum of PF-447-70S (dotted line) is quite 
similar to that PF-447-70 (solid line). These sorts of spectra are typical for polypeptides in which 
the α-helix is the only defined element of secondary structure. Estimation of the α-helix contents 
of those structures, on the basis of the molar ellipticity of the spectrum at 222 nm (38), yields 
values of approximately 28% for PF-447-70S and 36% for PF-447-70. The effect of TFE addition on 
the circular dichroism spectra of PF-447-70S undoubtedly confirms its propensity to fold almost 
exclusively in α-helix conformation. According to the molar ellipticity of the spectrum at 
222 nm, the α-helix content increased to almost 100% with the addition of TFE (30% v/v). As 
demonstrated in Figure 5, this finding is also the case for PF-447-70. These results suggest that the 
substitution C52S does not modify the secondary structure of PF-447-70 peptides at low resolution. 

DISCUSSION

The anti-angiogenic activity of recombinant human PF-4 was first described in 1990 by using the 
chick allantoic membrane (CAM) assay (15). PF-4 was described further to be an effective 
inhibitor of metastatic melanoma growth if administered systemically (16). Furthermore, 
adenoviral vector-mediated delivery of a secreted form of PF-4 to established intracerebral 
glioma leads to hypovascular tumors and increased survival rates in nude mice (39). 

As anti-angiogenic therapy may require long-term treatment with protein drugs, it is useful to 
identify small active regions of endogenous inhibitors to reduce production costs and 
immunogenicity and eventually to increase bioavailability. We recently screened a series of 
overlapping peptides of PF-4 for their anti-angiogenic potential and identified the C-terminal 
domain 47-70 (PF-447-70) as the major inhibitory region, which interferes with the activity of the 
angiogenic growth factors FGF-2 and VEGF by blocking several ligand-receptor interactions 
(26). We have now characterized the potency of PF-447-70 as an inhibitor of FGF-2-induced 
angiogenesis in various in vitro, ex vivo, and in vivo angiogenesis models. 

The inhibitory effects observed with PF-447-70 are based on the defined interaction of the peptide 
with FGF-2 and its receptors. 125I-FGF-2-binding to high- and low-affinity receptors on the 
surface of bovine capillary endothelial cells is reduced strongly in the presence of PF-447-70, but 
not by the C52S mutant PF-447-70S. Blocking the high-affinity FGF receptors alone by the 



synthetic compound PD 166866 leads to inhibition of microvessel outgrowth from cultured 
artery fragments of human placenta (40). Low-affinity sites (HSPGs) modulate binding of FGF-2 
to high-affinity receptors and influence the availability of the growth factor on the cell surface 
(for reviews see Ref. 41). RG-13577, a synthetic molecule that mimics heparan sulfate 
proteoglycans biological properties, can FGF-2 angiogenic effects in vitro and in the ex vivo rat 
aortic ring angiogenesis assay (42). These experiments show that selected compounds 
sufficiently interfer with high- or low-affinity FGF-receptors to block important events of the 
angiogenic cascade but that PF-447-70 impairs both the high- and low-affinity receptor systems. 

After binding, the FGF/FGFR complex is internalized and intracellular signaling mechanisms are 
activated. We investigated the effect of PF-447-70 on these post-receptor events. PF-447-70 strongly
inhibited the rate of 125I-FGF-2 internalization in BCE cells in a time-dependent manner. This 
effect of the peptide is likely to contribute to its inhibition of endothelial cell proliferation, 
because it has been shown that internalization and nuclear translocation of FGF-2 enhances 
endothelial cell proliferation (43, 44). Proliferation of endothelial cells is a key event during the 
initial phase of new blood vessel growth, and FGF-2 is a well-known and potent endothelial 
mitogen. Treatment of ACE cells with micromolar concentrations of PF-447-70 strongly inhibited 
FGF-2 induced cell proliferation (26), whereas mutant PF-447-70S did not show any inhibitory 
effects (data not shown). Proliferation of BaF3/FR1c-11 cells is also inhibited by PF-447-70 but 
not by PF-447-70S. These findings suggest that cell surface HSPGs are not essential for the 
inhibitory action of PF-447-70 and that anti-proliferative effects are due to a specific interaction of 
PF-447-70 with the FGF/FGFR system. 

In BCE cells, binding of FGF-2 to its high-affinity receptors FGFR-1/2 initiates activation of the 
Ras/mitogen-activated protein (MAP) kinase pathway, with subsequent phosphorylation of 
extracellular signal-regulated kinases ERK-1/2 (45). VEGF also activates the phosphorylation of 
ERK-1/2 in a time- and concentration- dependent manner, thus preventing apoptosis of 
endothelial cells under serum-free conditions (46). The endogenous angiogenesis inhibitor 
angiostatin diminishes ERK activation in human dermal microvascular endothelial cells 
stimulated by FGF-2 and VEGF, and this effect might contribute to the inhibition of collagen gel 
invasion by these cells (37). The efficacy of an angiogenesis inhibitor should therefore ideally be 
reflected by an inhibition of ERK-1/2 phosphorylation. When FGF-2-stimulated BCE cells were 
treated with various concentrations of PF-447-70, a strong inhibition of ERK-1/2 phosphorylation 
occured at 20 µM. The related mutant peptide PF-447-70S did not show any effect on ERK-1/2 
phosphorylation.

We next checked whether endothelial cell motility, an important pre-requisite for angiogenesis, 
was affected by PF-447-70. When BCE cell monolayers were injured with a pipette tip, PF-447-70

completely abolished FGF-2-induced cell migration in serum-free media in a dose-dependent 
manner, whereas the control peptide PF-447-70S did not inhibit cell migration mediated by FGF-2. 
It is likely that inhibition of wound repair-associated migration of endothelial cells by PF-447-70 is 
a result of impaired ERK phosphorylation. This finding would be in accordance with the results 
of Pintucci et al., who found that migration of endothelial cells after wounding of endothelial cell 
monolayers requires ERK-1/2 phosphorylation, because PD 98059 a specific blocker of ERK, 
inhibits cell migration after injury (34). Accordingly, Klemke et al. recently have proposed a 
model by which both growth receptors and integrins can activate directly the RAS/MEK/ERK 
pathway leading to phosphorylation of myosin light chain kinase (MLCK) and myosin light 



chains (MLC) with activation of myosin and actin resulting in cell migration (33). It must be 
noted at this point, however, that these experiments were done by using non-endothelial cells, 
namely cancer cells (FG carcinoma) and fibroblasts (COS-7).  

Further assembly of endothelial cells into a functional vessel requires chord organization and 
lumen formation, a process known as sprouting (47). The aortic ring assay is a serum-free ex vivo
model, which mimics this important step of the angiogenic cascade. Microvessel growth in this 
assay is promoted by endogenous release of FGF-2 and VEGF from injured aortic endothelial 
and smooth muscle cells (48, 49). PF-447-70 inhibits almost all the microvessel outgrowth in this 
assay, but affects cellular outgrowth around rings less efficiently. Miao et al. have found similar 
results by treating ring cultures with a synthetic heparin/heparansulfate compound (RG-13577) 
that mimics activity of normal heparin and impairs interaction of FGF-2 with one of its high-
affinity receptors (42). RG-13577 caused a profound reduction in the number of microvessels, 
whereas cellular outgrowth around the rings was not affected. These data suggest that blocking 
FGF-2 function is essential for microvessel assembly but is not sufficient to inhibit completely 
stroma cell proliferation in this assay. It is possible, that other growth factors such as epidermal 
growth factor (EGF) or platelet-derived growth factor (PDGF), which are not blocked by RG-
13577 or PF-447-70, may be present in small amounts in the injured aortic vessel wall and 
promote cellular outgrowth around the rings. Recently, murine endostatin has been evaluated by 
using this method and was found to block vessel sprouting around concentrations of 500 µg/ml. 
Peptide PF-447-70 reaches maximal anti-angiogenic activity at 55 µg/ml (20 µM), thus at 9 times 
lower concentrations. The therapeutic range for PF-447-70 is relatively small in this assay, 
between doses from 10 µM (inhibition starts) to 20 µM (nearly complete inhibition). One 
explanation for this effect might be that a large percentage of FGF-2 must be inactivated by the 
peptide before an anti-angiogenic effect can be seen, an alternative explanation may be that other 
pro-angiogenic molecules can compensate a decrease of FGF-2 activity for a certain time. 

The optimal lead drug for anti-angiogenic therapy should be a substance that exerts its anti-
angiogenic effects at the remote site of vascular vessel growth if delivered systemically. Using 
the mouse sponge assay of FGF-2 induced angiogenesis, we showed that a single injection of PF-
447-70 (16 µM/mouse) is sufficient to suppress the angiogenic response in the FGF-2 containing 
sponge compared with mice treated with PBS alone by 81% or 86%, depending on the 
quantification method used. There were slightly more inflammatory cells present in sponges 
from animals treated with PF-447-70 (Fig. 4F). One reason for this result might be a possible pro-
inflammatory motif in PF-447-70, because it has been shown that a peptide termed C-41 (derived 
from the C-terminus of PF-4) has neutrophil-recruiting activity in vivo (50). 

It is tempting to speculate that the N-terminal NGR sequence of PF-447-70 enhances biological 
effects in vivo by targeting the peptide to sites of active angiogenesis. This speculation would be 
in accordance with the work of Borgstrom and co-workers, who found that recombinant PF-4 
accumulates at sites of active angiogenesis (17). Further support for this hypothesis comes from 
Arap et al., who identified the NGR peptide motif by phage display technologies as a 
neovascular homing domain, which enhances the in vivo anti-tumor toxicity of doxorubicine if 
coupled to it (51). Work is underway in our laboratory to investigate these interactions. 

The C-terminal region contains a lysine-rich heparin-binding domain (KKIIKK) and originally 
has been described as responsible for the anti-angiogenic activity of PF-4 (15). But changing the 



KKIIKK motif to QEIIQE yields a PF-4 mutant devoid of heparin-binding properties, which 
fully retains anti-angiogenic activity (52). This finding suggests that this heparin-binding motif is 
not sufficient for anti-angiogenic effects of PF-4. NMR analysis has revealed an additional, even 
stronger, heparin-binding region in PF-4, consisting of a group of arginines (R 20, 22, 49), which 
can interact tightly with a heparin-derived dodecasaccharide (53). PF-447-70 contains only one of 
those arginines, which may not be sufficient for a strong interaction with heparin. Furthermore, 
previous results have shown that peptides 47–58 (containing R49) and 58–70 (containing the 
KKIIKK motif) of PF-4 did not have anti-angiogenic effects in vitro (26). 

Recently, we have revealed the structure of PF-447-70 and have studied its interaction with FGF-2 
by using several biophysical methods (Lozano et al., unpublished results). PF-447-70 in aqueous 
solution adopts a structure that contains two helical regions approximately between residues 50–
53 and 57–67, separated by a spacer of three amino acids. Gel filtration and equilibrium 
sedimentation studies have shown that PF-447-70 associates with FGF-2 at a stochiometric ratio of 
1:1. Shorter sequences of PF-447-70 did not show this effect. That PF-447-70S is devoid of any anti-
angiogenic activity indicates that a free cysteine (C52) must be present for angiogenesis 
inhibition. Circular dichroism data presented in Figure 5 indicate that the substitution C52S did 
not significantly alter the overall structure of the molecule at a low resolution. One possible 
explanation for the loss of activity of the mutant might be that PF-447-70 exerts its anti-angiogenic 
effects by dimerization with itself or target molecules through disulfide bonding. However, 
preliminary data support the thesis that the substitution C52S induces a defined modification in 
the structure of PF-447-70, which may not be apparent at a low resolution. Further studies are 
underway to solve this issue. 

Other angiogenesis inhibitors also act by impairing FGF-2 function. Thrombospondin (TSP) and 
its 140-kDa fragment inhibit binding of FGF-2 to endothelial cells at nanomolar concentrations 
and block endothelial cell proliferation, but not cell motility. The inhibition of binding of FGF-2 
to low-affinity sites by TSP is more prominent than it is for tyrosine kinase receptors (54). The 
anti-angiogenic activity could be mimicked by a small C-terminal peptide derivative, peptide 
4N1K. It exerts similar effects as PF-447-70; like inhibition of FGF-2 stimulated in vitro tube 
formation of a murine brain capillary endothelial cell line and it also blocked neovascularization 
in vivo in the mouse cornea assay (55). Binding of TSP-1 to its receptor CD36 and activation of 
p59fyn, caspase-3-like proteases and p38 mitogen-activated protein kinases may also contribute 
to the anti-angiogenic properties of the molecule (56). The well-known angiogenesis inhibitor, 
suramin, blocks FGF-2-binding to BCE cells, to high- and low-affinity receptors and inhibits 
BCE cell proliferation and migration, but at >5 (proliferation) to 10-fold (migration) higher 
doses as PF-447-70 (57). These observations suggest that blocking the FGF-2 pathway is an 
effective way to suppress angiogenesis in vitro and in vivo. It may not be ruled out, however, that 
down-regulation of VEGF as a result of decreased FGF-2 action contributes to the anti-
angiogenic effects of PF-447-70, because it has been shown that VEGF expression can depend on 
FGF-2 release via an autocrine pathway (58). 

Taken together, our results show that the fragment PF-447-70 regroups most of the important 
features of potent angiogenesis inhibitors. These features include inhibition of FGF-2 binding to 
high- and low-affinity receptors, internalization of FGF-2, downstream ERK-signalling, 
endothelial cell proliferation, migration, ex vivo vessel assembly in collagen gels, and in vivo 
angiogenesis. It therefore acts as an inhibitor on some of the main biological events of the 



angiogenic cascade. Further studies should investigate its effects on vessel maturation and 
arteriogenesis. Because of the small size of the peptide and its ability to affect many aspects of 
the angiogenic cascade, PF-447-70 is a very promising candidate for further development as an 
anti-angiogenic drug for treatment of cancer and other angiogenesis-dependent diseases. 
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Fig. 1 

              

Figure 1. Inhibition of FGF-2 binding to low-affinity (LA) and high-affinity (HA) receptors, FGF-2 internalization 
and proliferation by PF-447-70. BCE cells are incubated with 10 ng/ml 125I-FGF-2 and peptides at indicated 
concentrations. Peptide PF-447-70 but not PF-447-70S blocked binding of 125I-FGF-2 to HA and LA receptors on BCE cells 
with half-maximal inhibition (IC50) at ~2���������	��
�
�
�������������������������
�
�
�������
���������
��������

achieved at 20 µM (A). At this concentration, PF-447-70 also inhibited internalization of 125I-FGF-2 in BCE cells 4.6-fold 
(B). Effects of PF-447-70 and PF-447-70S on the proliferation of a cell line transfected with FGFR-1 (BaF3/FR1c-11) in the 
presence of FGF-2 measured by the XTT colorimetric assay at an OD at A492-A690 (C). Cells were stimulated at a mitogen 
concentration of 60 ng/ml, which elicits a cell-proliferation response 85% of the maximum stimulation obtained in FGF-2-
concentration proliferation-dependency assays of BaF3/FR1c-11 cells in the absence of heparin. 



Fig. 2 

                 

Figure 2. Photographs of a representative endothelial cell-migration experiment. After serum deprivation for 20 h, no 
BCE cells migrated into the scar drawn in the cell monolayer (A). In the positive control (10 ng/ml FGF-2), numerous 
cells migrate into the denuded scar area (B). PF-447-70S cannot counteract the stimulatory effects of FGF-2 (C), whereas 
PF-447-70 at the same dose nearly completely blocks migration (D). Effects with the dose of 20 µM PF-447-70 have been 
reproduced in five independent experiments. Black bar equals 130 µm on all photos. Inhibition of FGF-2-induced 
migration by PF-447-70 in a dose-dependent manner is demonstrated in (E), with first effects starting around 10 µM and 
reaching a plateau already at 20 µM, where migration reaches control levels. Data are expressed in percentage of the mean 
number of migrated cells of seven fields over background cell migration of negative controls (without FGF-2). Dose-
dependency experiments were performed in duplicates with similar results; data of one experiment are shown. Statistical 
analysis showed a significant difference in the migration response of untreated versus treated cells at 15 and 20 µM PF-
447-70 (Student’s t-test; *p<0.05; **p<0.001). PF-447-70, but not PF-447-70S, diminishes phosphorylation of MAPK ERK-1 
and ERK-2 in BCE cells. Cells were stimulated with 10 ng/ml FGF-2 for 5 min and co-incubated with 20 µM of peptide 
(F). The lower panel shows stripped probes incubated with total anti-MAPK p44/42 antibody, which demonstrates that 
same amounts of proteins were loaded on the gel. 



Fig. 3 
          

         
Figure 3. Inhibitory effects of PF-447-70 on spontaneous microvascular sprouting in the serum-free rat aortic ring 
model. Photographs from control (A, C) and PF-447-70-treated (B, D) living aortic ring cultures. In control cultures, 
numerous vessels are visible after 4-6 days. In ring cultures treated with 20 µM peptide PF-447-70, vessel formation is 
strongly inhibited, whereas cellular (fibroblastic) outgrowth is less effected (B, D). If vessels developed, they were much 
thinner and shorter than vessels in control cultures (B). At higher magnification, branching microvessels with formed 
lumina become clearly visible in untreated cultures, whereas PF-447-70 treated rings are surrounded mainly by stroma cells, 
which do not assemble to vascular sprouts. Magnification ×40 (A, B; bar equals 1 mm) and ×200 (C, D; bar equals 130 
µm). As demonstrated in (E), PF-447-70 reduces vessel length by 89% and vessel number by 86%. Each bar represents 
mean values and standard errors from four rings per group from three independent experiments. Difference of vessel 
length and number was analyzed by using the Student’s t-test and was considered significant (**, p<0.001) (E). The 
inhibitory effects of PF-447-70 are dose-dependent, with a narrow treatment window between 10 and 20 µM per culture
(F). A control peptide, where the cysteine in position 52 had been replaced by a serine (PF-447-70S), showed no effect.
The experiment was repeated twice with similar results. 



Fig. 4 

                                  
Figure 4. Inhibition of in vivo angiogenesis by PF447-70 in the mice gelatin sponge assay. Photomicrographs (original 
magnification x40) of 6-µm-thick sections of sponges pre-incubated with 200 µl of PBS alone (A), 45 µg/ml of PF447-70 in 
PBS (B), 10 ng/ml FGF-2 in PBS plus an injection of PBS 24 h after surgery (C+E) or 10 ng/ml FGF-2 plus one injection 
of 16 µM PF447-70 (D+F). Note the absence of neovessels in sponges embedded with PBS or PF447-70 alone (A+B). Arrows 
indicate neovessels, counterstaining by Hematoxylin and Eosin (E+F) or Hematoxylin (A-D). Quantification of the 
angiogenic response in sponges containing FGF-2 from animals treated intraperitoneally with PF447-70 or vehicle (PBS) 
was done either by calculating the area covered by erythrocytes or by counting new vessels identified by 
immunohistochemistry by using a polyclonal anti-laminin antibody (G). The data are presented as mean ± SE, and 
differences were considered significant (Student’s t-test, **p<0.001). 



Fig. 5 
                         

Figure 5. Molar ellipticity of PF447-70 (solid line) and PF447-70S (dotted line) solutions at 298 K. Protein (72 µM) 
was in 10 mM Na-phosphate, NaCl 80 mM buffered at pH 7.2. A considerable increase to almost 100% in the α-helix
content was observed when 30% v/v TFE was added.
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Introduction publication III

As we have shown in the previous publication, anti-angiogenic activity of a

fragment derived from the CXC-chemokine PF-4 can be used to suppress

angiogenesis in vivo. The PF-447-70 peptide contains a DLQ motif, previously

described as essential for inhibition of myeloid progenitor proliferation of full-

length PF-4 (154). When we replaced this motif by the ELR tripeptide, present in

pro-angiogenic chemokines like IL-8 or NAP-2, we expected to produce a

molecule with pro-angiogenic activity. The advantage would have been to have a

system consisting of three peptides, very similar in structure, with opposing

effects on angiogenesis. In contrast, anti-angiogenic activity of PF-447-70ELR was

enhanced compared to PF-447-70. An even stronger effect was observed with

peptide PF-447-70DLR (Q56 to R), which had initially been designed as a control

for peptide PF-447-70ELR, because the ELR to DLR mutation in the N-terminus of

IL-8 greatly diminishes its function (154).

We show that FGF-2 as well as VEGF-induced angiogenesis can be blocked by

these peptides using various in vitro and in vivo assays. Binding of iodinated

FGF-2 and VEGF to ECs is strongly inhibited in the presence of both peptides.

EC proliferation induced by FGF-2 or VEGF is also suppressed by the peptides

but the growth of two glioma cell lines, U87 and C6 is not affected. Both, PF-447-

70ELR and –DLR, can block FGF-2 or VEGF-mediated EC migration at lower

doses as the original peptide. In the serum-free rat aortic ring assay, only PF-447-

70DLR showed stronger anti-angiogenic activity than PF-447-70, but capillary

angiogenesis induced by VEGF165 on the day 13 CAM was strongly inhibited by

both peptides at a dose, where PF-447-70 was inactive. Finally we show that the

growth of established intracerebrellar glioma in nude mice is greatly reduced by

PF-447-70DLR compared to the same dose of PF-447-70.

Modified C-terminal peptides of PF-4 are potent inhibitors of VEGF- and FGF-2-

induced angiogenesis in vitro and in vivo. They might be especially useful in the

treatment of tumors expressing high levels of these growth factors, like

glioblastoma.
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In vivo systems to evaluate angiogenesis inhibitors: The chick

chorio-allantoic membrane assay

The development of anti-angiogenic drugs requires effective and realistic

screening techniques to test for biological activity. The CAM assay is one of the

oldest and most widely used animal models to study embryology and more

recently, angiogenesis. The physiological function of the CAM includes gas

exchange, calcium adsorption for bone development and absorption of waste

products.

The allantois forms around day 3.5 (stage 18, Hamilton & Hamburger) as an

evagination from the ventral wall of endodermal hind gut, and protrudes in the

extraembryonic coelem. During day 6 and 7, it fuses with the adjacent

mesodermal layer of the chorion to form the chorio-allantoic membrane (155).

From day 5 to 6, the CAM surface expands 20-fold (156). During day 5 to 7,

sprouting angiogenesis prevails, thereafter the capillary meshwork is remolded

by intussusceptive growth and around day 13 the CAM reaches a developmental

state where small further changes occur in vessel morphology (16). Accordingly,

cell proliferation studies using radioactive thymidine incorporation or BrdU

labeling have shown that the CAM endothelium displays a high mitotic rate until

day 10 which decreases several-fold at day 11 and thereafter (157, 158). This

demonstrates endogenous angiogenesis and high susceptibility of endothelial

cells during early CAM development. Additionally, non-specific carrier effects

often render interpretation of effects of anti- or pro-angiogenic molecules difficult

before day 13 (159).

We therefore chose to test the modified PF-4 peptides using a modified version

of the previously described day-13 CAM assay so that we repeatedly could

stimulate and/or inhibit angiogenesis and reduce unspecific carrier effects. For

that purpose, Thermanox plastic rings were produced and placed on the CAM.

Because of the high adhesiveness of the CAM surface, liquid placed in the center

of these rings remains in place and is absorbed by the CAM within one hour. This

assay allowed us for the first time to demonstrate by bio-microscopy and semi-

thin sectioning of the CAM area covered by the ring, the efficacy of an

angiogenesis inhibitor on VEGF-induced capillary growth (see figure 5,

publication III).
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Abstract

A few peptide residues in structurally important locations often determine biological

functions of proteins implicated in the regulation of angiogenesis. We have recently shown

that the short C-terminal segment PF-447-70 derived from platelet factor 4 (PF-4) is the smallest

sequence that conserves potent anti-angiogenic activity in vitro and in vivo. Here we show

that modified C-terminal PF-4 peptides containing the sequence ELR (or related DLR), a

critical domain present in pro-angiogenic chemokines, surprisingly elicit several times greater

anti-angiogenic potential than the original peptide. The modified peptides inhibit binding of

iodinated vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2)

to endothelial cell (EC) receptors, EC proliferation, migration and microvessel assembly in

the rat aortic ring model at lower doses than PF-447-70. On the differentiated chick chorio-

allantoic membrane (CAM), topical application of 40 µg of modified peptides potently

reduces capillary angiogenesis induced by VEGF165, a dose were peptide PF-447-70 was

inactive. Established intracranial glioma in nude mice decreased significantly in size when

treated locally with a total dose of 250 µg of peptide PF-447-70DLR (n=10) compared to the

same dose of the original PF-447-70 peptide (n=10) or controls (n=30). Tailored PF-4 peptides

represent a new class of anti-angiogenic agents with a defined mode of action and a strong in

vivo activity.



Introduction

VEGFs and FGFs are amongst the most important angiogenic factors. FGF-2 binds to tyrosine

kinase receptors on endothelial cells in a heparan-sulfate-dependant manner (1). FGF-2 and

its receptors play a critical role during normal development and maintenance of the

embryonic vasculature (2, 3); monoclonal antibodies against FGF-2 inhibit tumor growth in

nude mice through blocking of angiogenesis (4). Impairing FGFR-1 signaling by pyrimidine

derivates or dominant negative receptors leads to angiogenesis inhibition in vitro and in vivo

(3, 5, 6). A peptide derived from PF-4 interacts with FGF-2 in a defined manner (7) and

counteracts its biological activity in vitro and in vivo (8, 9). FGF-2 also induces production of

VEGF via an autocrine feedback loop (10) and blocking antibodies against FGF-2 can

counteract angiogenic effects of VEGF in vitro (11).

In growing tumors and the ischemic retina, hypoxia is the main regulator of VEGF expression

through induction of transcription factor HIF-1α (12). Five VEGF isoforms are thus generated

by alternative splicing that exhibit different biochemical properties; variant VEGF165

represents the most abundant form and is one of the strongest angiogenic growth factors (13,

14). The biological response of VEGF is mediated by two endothelial cell-specific tyrosine

kinase receptors, both essential for normal development and tumor angiogenesis (15-17).

Different strategies have been applied to block VEGF/VEGFR interactions; these include

monoclonal antibodies (17, 18), tyrosine kinase inhibitors (19), inhibitory peptides (20) as

well as soluble dominant-negative receptors (21).

PF-4 belongs to the CXC-chemokines, which, in general, are pro-angiogenic when the

tripeptide ELR precedes the first CXC-domain, but are anti-angiogenic, when this motif is

absent (22). Exceptions are growth-related protein beta (GRO-beta), which contains an ELR

motif, but inhibits angiogenesis in vitro and in vivo (23), and the ELR-negative stromal-

derived factor 1 (SDF-1), which shows pro-angiogenic effects in vitro and in vivo (24, 25).

Administration of full-length tetrameric (ELR-negative) PF-4 restrains tumor growth and

metastasis in mice models via inhibition of angiogenesis (26, 27). Survival of mice is

prolonged by transducing established intracerebral glioma with an adenoviral vector encoding

a secreted form of PF-4 (28). PF-4 exerts its effects most likely via interfering with FGF-2

and VEGF binding to receptors (29, 30). This activity is conserved in a C-terminal portion of

the chemokine (9).



Domain swapping experiments between chemokines implicated in angiogenesis and

hematopoiesis have revealed regions of importance for their biological functions. Replacing

the N-terminal DLQ domain of PF-4 with the corresponding ELR motif of the angiogenic

CXC-chemokines IL-8 or neutrophil activating protein 2 (NAP-2) confers CXCR-2-

dependent neutrophil activation of these proteins to PF-4 (31, 32). On the other hand,

mutation of ELR to DLQ or DLR in IL-8 greatly reduces its biological activity (33). Thus, the

ELR motif plays a decisive role in defining biochemical behavior in this family of proteins.

For that reason we tried to reverse biological activities of PF-447-70, recently described as the

smallest anti-angiogenic portion of PF-4 (8) by inserting ELR or DLR mutations. The

modified peptides surprisingly inhibited binding of iodinated VEGF or FGF-2 to cellular

receptors at several times lower concentrations as the unmodified peptide and abrogated

VEGF or FGF-2-induced EC proliferation but not glioma cell growth. Using a newly

developed anti-angiogenesis assay on the differentiated CAM, where capillary angiogenesis is

induced in the stroma by VEGF, we show anti-angiogenic effects of the modified peptides at

a dose where the unmodified peptide was inactive. Enhanced inhibitory effects on tumor

growth at lower doses than with the original peptide were observed in an intracranial glioma

model. Taken together, our results show that a few amino acid residues within an anti-

angiogenic peptide can determine to a great extend biological activity in vitro and in vivo.

Modified PF-4 peptides represent good candidates for the development of peptide-based anti-

angiogenic drugs for cancers with high expression of VEGF and FGF-2.



Material and Methods

Synthetic peptides

C-terminal PF-4 peptides (PF-44 7 - 7 0:  NGRKICLDLQAPLYKKIIKKLLES;

PF-447-70ELR: NGRKICLELRAPLYKKIIKKLLES; PF-447-70DLR: NGRKICL-

DLRAPLYKKIIKKLLES; PF-447-70S: NGRKISLDLQAPLYKKIIKKLLES) were purchased

from ThermoHybaid, Ulm, Germany or were donated by Rhône-Poulenc Rorer, Paris, France.

All peptides were purified by HPLC to more than 95% and calculated molecular weight was

confirmed by mass spectroscopy.

Growth factors

Recombinant human FGF-2 was kindly provided by Dr. Hervé Prats (INSERM U397,

Toulouse, France) and stored in sterile, double-distilled water at -80°C. Recombinant human

VEGF165 was produced in insect cells and purified as described elsewhere (34, 35). Human

VEGF165-encoding baculovirus was a kind gift of Dr. Jean Plouët (Institut de Pharmacologie

et de Biologie Stucturale, UMR 5089, Toulouse, France).

Cells

Bovine capillary endothelial (BCE) cells were a kind gift of Dr. Daniel B. Rifkin (NYU

Medical Center, New York, USA). Bovine aortic endothelial (BAE) cells were from Dr.

Georg Breier (Department of Molecular Biology, Max-Planck-Institut fur physiologische und

klinische Forschung, Bad Nauheim, Germany). Adrenal cortex capillary endothelial (ACE)

cells were donated by Dr. Jean-Jacques Feige (INSERM EPI 0105, CEA-Grenoble, France).

All endothelial cells were grown at 37°C, 5% CO2 in DMEM, 10% new born calf serum

(NBCS), 1% glutamine and antibiotics (GibcoBRL Life Technologies, Cergy Pontoise,

France) and were used up to passage 25. BCE and ACE cells were grown in the presence of 2

ng/ml FGF-2. C6 rat glioma cells (a kind gift from Dr. Paul Canioni, CNRS UMR 5536,

Université Bordeaux II, Bordeaux, France) were grown in DMEM, 10% fetal bovine serum

(FBS) and antibiotics. U87 glioma cells (ATCC) were grown in MEM alpha medium, 10%

FBS plus antibiotics. HI5 insect cells were a kind gift of Dr. Jean Plouët and were cultured

without CO2 at 28ºC in IPL41 insect cell medium (GibcoBRL Life Technologies, Cergy

Pontoise, France) containing 10% FBS, L-glutamine and antibiotics.



Binding assays

VEGF165 and FGF-2 were labeled with 125I-Na using Iodogen (Pierce, Rockford, IL, USA) as

coupling agent according to the manufacture’s instructions and (36). ACE cells were seeded

at 2.5 x 105 density in gelatin-coated 6-well plates and cultured in complete medium for two

days. Cells were washed twice with ice cold PBS and incubated with 10 ng/ml 125I-FGF-2 and

peptides at indicated concentrations in binding medium (DMEM, 20 mM Hepes, pH 7.4;

0.15% gelatine) for 2 h on a shaker at 4°C. 125I-FGF-2 from high and low affinity binding sites

was recovered and quantified as described earlier (8). 125I-VEGF-binding was evaluated

essentially in the same manner, except that cells were detached (2% triton, 10% glycerol, 1

mg/ml BSA) prior to gamma counting. Each condition was tested in duplicates. Data are

expressed as percentage of total radioactivity and IC50 for every peptide was calculated from

smooth curve fits.

Proliferation assays

ACE cells were seeded in 6-well culture plates overnight in 10% NBCS at 5000-7500 cells

per well. Medium was changed to 1% NBCS, 10 ng/ml FGF-2 and peptides at indicated

concentrations were added to duplicate wells. FGF-2-stimulated controls were not treated.

After 48 h, medium was changed and stimulation with FGF-2 and peptide treatment repeated.

One day later, cells were counted on a Coulter counter. For VEGF165-induced cell

proliferation (10 ng/ml), BAE cells were used in conditions similar to ACE cells. IC50’s were

determined from smooth curve fits. U87 (C6) glioblastoma cells were seeded at 5000 (25000)

cells/well in 10% FBS, treated with peptides at the same concentrations as ECs and counted

72 h (48 h) later.

Migration assay

Migration tests with BAE or BCE cells were performed using a method described earlier (8,

37). In brief, ECs were seeded in 35 mm culture plates and were allowed to grow to

confluence. Complete medium was replaced with serum-free DMEM and incubation was

continued overnight. One linear scar was drawn in the monolayer and divided into five equal

fields. A set of digital photos was taken of each scar and the denuded area was marked using

digital image analysis software (Lucia G, www.lim.cz). The dishes were washed and fresh

serum-free medium containing 0.1% BSA, 10 ng/ml FGF-2 (BCE migration) or 10 ng/ml of



VEGF165 (BAE migration) and peptides were added. Peptide concentration was 5 µM for BAE

cells and 10 µM for BCE cells. After 18 h, cells were fixed in 1% glutaraldehyde,

counterstained (GIEMSA) and a second set of photos was taken. Photos were superposed and

endothelial cells migrated across the line drawn at the border of the scar in the first photo set

were counted. Each condition was tested in duplicates in two independent experiments.

Means for all fields of each group were calculated; background migration subtracted, and

plotted as percentage of the mean of untreated stimulated control.

Rat aortic ring model

Cultures of rat aortic rings were prepared as described earlier (8). Briefly, aortic rings from

male or female Sprague Dawley rats, between 200 and 500 g, (IFFA CREDO, L’Arbresle,

France or HARLAN, Gannat, France) were placed in 24-well dishes in collagen gel and

serum-free MCDB131 medium. Rings were treated with peptides on day 0, 2 and 4 and

photos were taken on day 7; controls received no peptide or peptide PF-447-70S. Microvessel

length and number were measured using digital image analysis software (Lucia G,

www.lim.cz). Statistical analysis of the differences in vessel length and vessel number

between the treatment groups was performed by the ANOVA analyses of variance followed

by Student’s Newman-Keul pair wise comparison (CRUNCH software corporation, Oakland,

CA, USA).



CAM anti-angiogenesis assay

Fertilized chicken eggs (Gallus gallus) (E.A.R.L. Morizeau, Dangers, France) were incubated

at 37ºC and 80% humidified atmosphere. On day 4 of development, a window was made in

the eggshell after punctuating the air chamber and sealed with Durapore® tape. On day 13,

plastic rings (made from Nunc Thermanox® coverslips) were put on the CAM. 3 µg of

VEGF165 was pre-mixed with 20 µg of peptides or with the equivalent volume of sterile water

alone, and deposed in the center of the plastic ring. Treatment was repeated the following day.

On day 17, the CAMs were fixed in vivo with 4% paraformaldehyde for 30 minutes at room

temperature and the area containing the ring was cut out for further analysis. Photos of each

CAM were taken under a stereomicroscope (Nikon SMZ800) using a digital camera (Nikon

Coolpix 950). Two observers scored the inhibition of VEGF165-induced angiogenesis from 0

to 2 (0 = none, 1 = medium, 2 = high). Means of the obtained scores were analyzed by the

Kruskal-Wallis one-way analysis of variance and pair wise comparisons of the different

treatment groups (CRUNCH software corporation, Oakland, CA, USA). For histological

studies, samples were fixed in 3% glutaraldehyde and 2% formaldehyde in 0.12 M sodium

cacodylate buffer, post-fixed in 1% osmium solution, immersed with uranyl acetate and

embedded in Epon resin (Serva, Germany). Semithin sections (0.75 µm) were cut from

samples using an Ultracut S microtom (Leica, Bensheim, Germany) and stained with 1%

methylene blue and 1% azure II (Fluka, Buchs, Switzerland). Photos (x200 magnification)

were taken using a Leica DMR microscope.

Intracranial glioma model

Groups of 10 six weeks old nude mice (Charles Rivers Italia, Monza, Italy) were implanted

intracranially with 50.000 human U87 glioma cells using an open window technique (38).

After 15 days, animals were implanted with 2004 Alzet osmotic minipumps (ALZET,

Cupertino, CA, USA). The pump reservoir was connected to an intracranial catheter, placed

slightly posterior to the tumor cell injection site, in the same hemisphere. The pump reservoir

was filled with 0.25 mg, 0.5 mg or 1 mg of the peptides in PBS. Control groups received

pumps containing PBS or no pumps at all. Animals were sacrificed 30 days after pump

implantation. Brains were removed, immediately frozen in liquid nitrogen, and embedded in

OCT. Sections (5 µm) were made and processed for histology. Tumor volumes were

measured from histology sections using the ellipsoid formula (width2 x length/2) (38).

Statistical analysis of tumor volumes was performed with a two-way ANOVA (peptide x



dose) followed by analyses of simple main effects to compare the effects of the 3 peptides at

each dose. Pairwise comparisons between peptides at each dose were performed by the

Newman-Keuls post-test. Immunhistochemistry was carried out using the Vectastain® Elite

kit (Vector Laboratories, CA, USA). Anti-CD31 antibody (Pharmingen USA) was used at

1:100 dilution. Signal was visualized with DAB chromogen and sections were counterstained

with hematoxylin. Microvessel counts and density were scored as previously reported (39).

Apoptotic cells were detected with the ApopTag™ plus kit (Intergen, MS, USA) and

quantified as described earlier (39).



Results

Modified PF-4-derived peptides inhibit binding of VEGF and FGF-2 to their receptors.

First, peptides were tested for their ability to interfere with binding of 125I-FGF-2 and 125I-

VEGF165 to capillary ECs, which express receptors for both families of growth factors (36,

40). A concentration-dependent inhibition of binding was observed with modified peptides.

Half-maximal concentrations (IC50) necessary to inhibit 125I-VEGF165 binding to its receptors

were 0.4 µM for PF-447-70DLR, 0.56 µM for PF-447-70ELR and 1.58 µM for PF-447-70 (figure 1

A). IC50 for inhibition of FGF-2 binding to low or high (in brackets) affinity sites were 0.75

µM (0.46 µM) for PF-4 47-70DLR, 1.51 µM (0.53 µM) for PF-447-70 ELR and 3.47 µM (2.06

µM) for peptide PF-447-70 (figure 1 B, C). Control peptide PF-447-70S at the highest

concentration tested in this assay did not compete for receptor binding.

Inhibition of EC, but not glioma cell proliferation. EC proliferation is a key step in the

angiogenic process and strongly inducible by VEGF165 (35) and FGF-2 (41). When BAE

cells were stimulated by VEGF, PF-447-70DLR showed the strongest inhibitory activity (IC50

1 . 5 7  µ M )  ( f i g u r e  2  A ) ,  f o l l o w e d  b y

PF-447-70 (2.15 µM) and PF-447-70ELR (2.91 µM). The differences were more pronounced for

FGF-2 induced ACE cell proliferation: PF-447-70ELR and PF-447-70DLR exhibited IC50 values

of 1 µM and 2.34 µM in comparison to 11.17 µM for PF-447-70  (figure 2 B). In contrast to ECs,

proliferation of two glioma cell lines, human U87 and rat C6 cells, was not inhibited by

normal or modified PF-4 peptides at all doses (figure 2 C).

Inhibition of micro- and macrovascular EC migration. Without stimulation, some random

background migration occurred (figure 3 A). BAE cells migrated into the denuded scar area

when stimulated with VEGF165 (figure 3 B) and, in a very similar way, when FGF-2 was

added to BCE cells (not shown). We tested the modified peptides at a concentration, where

PF-447-70 was inactive or much less active (5 µM on BAE cells, 10 µM on BCE cells). PF-447-70

ELR strongly inhibited EC migration (figure 3; E, G); PF-447-70DLR induced complete

inhibition of VEGF-induced migration (figure 3; F, G), PF-447-70S showed no effect (figure 3

C) and PF-447-70 only a small one (figure 3; D, G). One representative BAE migration

experiment is shown; modified peptides showed a similar increase in activity compared to PF-

447-70 in FGF-2-induced BCE migration (data not shown).



Blocking of microvessel assembly in the rat aortic ring model. In the absence of peptides,

aortic rings develop an extensive network of sprouting microvessels after 5-7 days (figure 4

A). PF-447-70S at the highest concentration tested in this assay did not show any effects on

vessel length or number (figure 4; E, F). A strong reduction of the mean microvessel length

was observed only for peptide PF-447-70DLR at 10 µM compared to the same dose of PF-447-70

(p<0.05) or PF-447-70ELR (p<0.002; Newman-Keul post-hoc test after ANOVA analysis of all

groups: F(7.79) = 11.23; p<0.001) (figure 4; D, E, F).

Statistical analysis of peptide effects on microvessel number showed that groups differed

significantly from each other (One-way ANOVA: F(7,79) = 28.37; p<0.001). 40% inhibition

was observed in cultures treated with 5 µM PF-447-70 and 63.5% at 10 µM compared to PF-447-

70S. Mean vessel number was reduced by 33% at 5 µM (40% at 10 µM) in cultures treated

with PF-447-70ELR compared to control peptide PF-447-70S. 50% inhibition was reached at 5

µM and 90% inhibition was achieved at 10 µM in cultures treated with PF-4 47-70DLR (figure 4

F). Thus, in this assay, only peptide PF-447-70DLR showed a clear increase in inhibitory

activity in comparison to PF-447-70. Post-hoc pairwise comparison between PF-447-70DLR and

PF-447-70 or PF-447-70ELR proved the difference in activity to be significant (p<0.001;

Newman-Keul: F(7,79) = 11.23).

Inhibition of VEGF-induced angiogenesis on the CAM. 3 µg of recombinant human

VEGF165 applied in the center of a plastic ring on the surface of the CAM induced strong

capillary formation (figure 5, B). The effect of VEGF is also present around the site of

application, due to diffusion. Water alone had no effect (figure 5, A). When pre-mixed with

the growth factor and deposed on the CAM, a clear anti-angiogenic effect of peptide PF-447-

70ELR and PF-447-70DLR was visible inside the ring (figure 5; C, D). PF-447-70ELR also causes

a hyperplasia of the chorionic epithelium, comparable to hyperosmolar effects (insert of

figure 5, C).

Control peptide PF-447-70S did not inhibit VEGF-induced capillary growth in the CAM stroma

(figure 5, E). At the low dose tested, PF-447-70 failed to stop capillary growth in this assay

(figure 5, F) and did not differ from the control peptide (p<0.05; after analysis of differences

between all treatment groups, Kruskal-Wallis test: H (4) = 28.27, p<0.0001). The modified

peptides PF-447-70ELR and PF-447-70DLR both showed an equally strong anti-angiogenic effect

at the dose tested compared to PF-447-70S (** = p<0.002 for both peptides) (figure 5, G). In

semi-thin sections of control CAMs treated with sterile water, the capillary layer stays within



the chorionic epithelium (arrow, insert in A); larger conduit vessels are present in the stroma,

filled with erythrocytes. VEGF165 induces a strong de novo growth of capillaries, which are

present throughout the stroma (arrows, insert in B). Control peptide PF-447-70S does not

neutralize the capillary angiogenesis induced by VEGF165 (insert in E). PF-447-70 at the low

dose tested (2 x 20 mg) also does not inhibit capillary angiogenesis (insert in D). PF-447-70ELR

(insert in C) as well as PF-447-70DLR (insert in D) markedly decreases angiogenesis nearly to

control levels.

Inhibition of intracerebral tumor growth. Animals treated with control peptide PF-447-70S,

with PBS, or those without pumps developed large tumors (figure 6 A, upper panel). Animals

receiving different doses of peptide PF-447-70DLR or PF-447-70 showed a strong reduction of

tumor volumes (figure 6 A, lower panel). Immunohistochemical analysis with CD31 antibody

revealed that inhibition of tumor growth in animals treated with PF-447-70DLR or PF-447-70 is

associated with a decreased vessel density (figure 6 B) and an increased number of apoptotic

cells (figure 6 C). Statistical analysis of tumor volumes of animals treated with the equal dose

of active peptides (PF-447-70 and PF-447-70DLR) revealed a significant difference in anti-tumor

efficacy and showed a clear advantage of peptide PF-447-70DLR, especially at the lowest dose

tested, 0.25 mg (**p<0.005).



Discussion

PF-447-70 is the smallest anti-angiogenic fragment of PF-4 with strong activity in vitro and in

vivo (8). The peptide contains a DLQ motif, essential for inhibition of myeloid progenitor

proliferation by full-length PF-4 (33). When we replaced it by the ELR tripeptide, present in

pro-angiogenic chemokines like IL-8 or NAP-2, we expected a peptide with pro-angiogenic

activity. In contrast, anti-angiogenic activity was enhanced compared to PF-447-70 in a number

of assays. An even stronger effect was observed with PF-447-70DLR (Q56 to R), which had

initially been designed as a control for PF-447-70ELR, because the ELR to DLR mutation in the

N-terminus of IL-8 greatly diminishes its function (33). FGF-2 and VEGF165 binding to

tyrosine kinase receptors on ECs is strongly suppressed by PF-447-70ELR and -DLR.

Endostatin also inhibits VEGF165 binding to VEGFR-2, but the effect seems to depend greatly

on pre-incubation of endostatin with cells prior to addition of iodinated VEGF165 (42).

Disturbing VEGF and FGF-2 functions at the receptor level leads to impairment of

fundamental angiogenic events such as EC proliferation and migration. Modified peptides

inhibited both micro- and macrovascular EC proliferation and migration induced by VEGF165

or FGF-2 in the low micromolar range. Comparable results have been obtained with a

designed peptide inhibitor termed “Anginex”, a 33-mer beta-sheet-forming peptide containing

sequences from PF-4, IL-8 and bactericidal-permeability increasing protein (43). However,

Anginex doses necessary for inhibition of EC migration where several times higher than those

of PF-447-70ELR or –DLR, and only FGF-2-induced angiogenesis has been studied. C-terminal

PF-4 peptides inhibit EC proliferation below 1% serum controls from a certain concentration

on, which suggests that residual VEGF and/or FGF-2 (or other mitogenic factors) present in

serum were also inhibited. Peptide PF-447-70DLR was a strong inhibitor of vascular sprouting,

but growth of fibroblastic cells was not affected, which suggests that the peptide antagonizes

preferentially factors supporting EC growth and organization. PF-447-70ELR did not very well

inhibit microvessel sprouting in this assay. Since the ELR motif is crucial for receptor

activation of the pro-angiogenic chemokine IL-8 (44), it is possible that PF-447-70ELR

stimulates chemokine receptors on residual leukocytes and ECs (45) present in the aortic wall,

which may partially overcome the direct inhibitory effects on endogenous VEGF and FGF-2.

Endostatin completely inhibits vascular sprouting in the aortic ring assay at 500 µg/ml (46),

whereas PF-447-70DLR shows maximal activity between 14 and 28 µg/ml (5-10 µM), thus at



18 to 35 times lower concentrations. This strong activity is probably due to the fact that the

peptide interferes with both, VEGF and FGF-2, by inhibition of binding to their receptors.

We tested effects of C-terminal PF-4 peptides for their ability to interfere with VEGF165-

induced angiogenesis on the differentiated day 13 CAM (47); to our knowledge the first

attempt to study angiogenesis inhibitors in this modified and rigorous type of assay. The

typical brush-like formation of capillaries in the stroma of the day 13 CAM induced by

human recombinant VEGF165 is strongly reduced by PF-447-70DLR and –ELR. In some eggs,

PF-447-70 and PF-447-70S also showed some minor activity, but this may result from inter-

individual variations, the high sensitivity of the assay system or the difficulty to exactly

quantify differences between low inhibitory effects. Metastatin, a recently described

angiogenesis inhibitor, was active in the day 10 CAM assay at a two times higher dosage.

Additionally, angiogenesis was induced with VEGF at a 300-fold lower dose as in our assay

(48). Cyclic peptide antagonists for alphaVbeta3-integrin showed strong anti-angiogenic

effects in the day 10 CAM at 300 µg; again, the angiogenic response was induced by VEGF

or FGF-2 at doses less than 1 µg (49). These comparisons indicate that modified C-terminal

PF-4 peptides inhibit VEGF-induced angiogenesis in vivo in a very efficient way. Both

peptides start with the NGR tripeptide, a motif, which has recently been shown to be a

homing sequence to angiogenic blood vessels (50). This might also contribute to their strong

in vivo activity. Glioma growth is strongly promoted via up-regulation of angiogenesis by

VEGF and FGF-2. U87 glioma cells produce high levels of these growth factors in culture

(51). 250 µg of peptide PF-447-70DLR were already sufficient to reduce tumor growth to one

half compared to PF-447-70-treated animals. This effect is paralleled by an increased reduction

of blood vessels within the tumor and elevated tumor and/or EC cell apoptosis. Increased

apoptosis in tumors is commonly observed after treatment with angiogenesis inhibitors (52-

54). Similar results have been obtained previously by systemic treatment of U87 glioma-

bearing mice with the anti-angiogenic molecule PEX; alone or in combination with low-dose

chemotherapy. When PEX was included in the treatment, animals survived significantly

longer and showed no measurable side effects (38, 39).

Binding of FGF-2 or VEGF165 to tyrosine kinase receptors is facilitated by heparan sulfate

proteoglycans on the cell surface and is essential for their pro-angiogenic activities (55). It is

possible that the peptides, which contain the C-terminal heparin-binding motif of PF-4

consisting of two double lysine cluster (56), operate in part via inhibition of this interaction.

Three positively-charged arginines within full-length PF-4 (R20, R22, R49) contribute to its



particularly high heparin-binding capacity (57). This might explain the improved anti-

angiogenic activity, since both PF-447-70ELR and -DLR contain an additional arginine (R56)

together with the internal R49. Similar observations have been made with peptides mimicking

the surface of endostatin: an increase of arginine residues enhances their anti-angiogenic

effects probably due to an increased affinity for heparin (58).

It has been shown recently that unmodified PF-447-70 associates directly with FGF-2,

independently of GAG-binding (7), leading to a conformational change of the growth factor.

It is possible that the increase in activity observed with the modified peptides is also due to an

increase in affinity for FGF-2 and perhaps, VEGF too. Taken together, modified C-terminal

peptides of PF-4 are potent inhibitors of VEGF- and FGF-2-induced angiogenesis in vitro and

in vivo. They might be especially useful in the treatment of tumors expressing high levels of

these growth factors; like glioblastoma.
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Figure 1

ACE cells were incubated with 10 ng/ml of 125I-VEGF165 (A) or 125I-FGF-2 (B, C) and
peptides at indicated concentrations. Control peptide PF-447-70S at the highest dose
tested (20 µM) had no effect. Half-maximal inhibitory concentrations (IC50) were
calculated from smooth curve fits. Peptide PF-447-70ELR inhibited 125I-VEGF binding
to VEGFRs at approximately 3 times lower concentrations and PF-447-70DLR at four
times lower concentrations than peptide PF-447-70 (A). FGF-2 binding to low affinity
receptors (LA FGFR) was affected in a similar way: PF-447-70ELR-induced inhibition
of binding was 2 times stronger and PF-447-70DLR-induced inhibition nearly 5 times
stronger than that of PF-447-70 (B). FGF-2 binding to high affinity receptors (HA
FGFR) was inhibited at approximately 4 times lower concentrations by peptides PF-
447-70ELR and PF-447-70DLR than by peptide PF-447-70 (C).



Figure 2

Proliferation was stimulated with VEGF165 using BAE cells (A) or FGF-2 and ACE
cells (B). PF-447-70, PF-447-70ELR and PF-447-70DLR inhibited cell proliferation in a
concentration-dependent manner, peptide PF-447-70S did not show any effects at all
concentrations tested. Horizontal line at 0 indicates conditions were 100% inhibition
of VEGF- or FGF-2-induced proliferation is reached. IC50’s were determined from
smooth curve fits and were in the micromolar range, with following order of activity
(highest to lowest): PF-447-70DLR, PF-447-70, PF-447-70ELR for VEGF-induced
proliferation and PF-447-70DLR, PF-447-70ELR, PF-447-70 for FGF-2-induced
proliferation. In contrast, serum-induced U87 or C6 glioma cell proliferation was not
affected by the peptides (C).



Figure 3

Endothelial cell migration was stimulated with 10 ng/ml VEGF165 on BAE cells.

During the 18 h period in serum-free medium, some random cell migration occurs

(A). VEGF165 induces cell migration into the denuded area of the scar (B). At 5 µM,

control peptide PF-447-70S (C, G) had no effects. PF-447-70 (D, G) does only slightly

antagonize pro-migratory effects of VEGF165. PF-447-70ELR (E, G) had profound

effects on VEGF165-induced migration; PF-447-70DLR (F, G) suppressed it below

control levels.



Figure 4

Rat aortic rings were incubated in MCDB131 medium without serum and growth

factors (A) or treated with PF-4-derived peptides at 10 µM (B-D) or at indicated doses

(E, F). Peptide PF-447-70S did not interfere with microvessel growth, whereas peptides

PF-447-70 (B) and its derivates PF-447-70ELR (C) and PF-447-70DLR (D) impaired this

process; with different efficacy at the same dose (E, F). Mean vessel length (E) is

strongly reduced under treatment with 10 µM PF-447-70DLR compared to the same

dose of PF-447-70 (p<0.05) or PF-447-70ELR (p<0.002). When comparing mean vessel

number, PF-44 7 - 7 0 showed a dose-dependent inhibition, whereas

PF-447-70ELR displayed only a moderate, not dose-dependent effect.

PF-447-70DLR strongly reduced mean vessel number in a dose-dependent manner (PF-

447-70DLR vs. PF-447-70 or PF-447-70ELR: p<0.001). Data for statistical analysis were

pooled from three independent experiments and are plotted as mean ±SEM. Photos



Figure 5

Sterile water and plastic rings alone did not interfere with CAM vasculature (n = 8)
(A). A mixture of VEGF165 and water (n = 17) (B) or VEGF165 and 20 µg of peptides
PF-447-70S (n = 13) (E), PF-447-70 (n = 12) (F), PF-447-70ELR (n = 14) (C) and PF-447-

70DLR (n = 13) (D) was placed in the center of the rings. VEGF165 induces brush-like
capillary formation surrounding pre-capillary arterioles (B). Control peptide PF-447-70S
(E) and peptide PF-447-70 (F) were not able to counterbalance growth of new
capillaries. Both modified peptides PF-447-70ELR (C) and –DLR (D) had a strong anti-
angiogenic effect in the CAM; statistical analysis proved the difference compared to
PF-447-70S to be significant (**p<0.002) (G).
Semi-thin sections of controls show that the capillary layer stays within the chorionic
epithelium (arrow, insert in A); larger conduit vessels are present in the stroma, filled
with erythrocytes. VEGF165 induces a strong de novo growth of capillaries, which are
present throughout the stroma (arrows, insert in B). Control peptide PF-447-70S does
not neutralize the capillary angiogenesis induced by VEGF165 (insert in E). PF-447-70 at
the low dose tested (2 x 20 µg) also does not inhibit capillary angiogenesis (insert in
F). PF-447-70ELR and -DLR both markedly decreases angiogenesis nearly to control
levels (inserts in C, D).



Figure 6

Locally administered peptide PF-447-70 or PF-447-70DLR strongly reduced tumor

volumes of established intracerebral tumors in nude mice at all three doses (A, lower

panel). PF-447-70DLR displayed a greater anti-tumor activity than PF-447-70 at all doses.

This difference was more pronounced at the lowest dose (0.25 mg) than at the two

higher doses (Two-way ANOVA followed by the Newmann-Keuls post-test: 0.25 mg:

**p<0.005; 0.5 mg: *p<0.02; 1 mg: *p<0.03). PBS-treated animals or animals

without pump (controls) had several times greater tumor volumes and the two groups

did not differ significantly from each other (Student’s t-test; t = 30, df = 18; NS) (A,

upper panel). Control peptide PF-447-70S did not have any influence on tumor growth

and volumes differed significantly from peptide-treated animals at all doses

(p<0.0001). Reduced microvessel numbers and elevated apoptosis indices suggest

inhibition of angiogenesis as the pathophysiological mechanism of action in animals

treated with PF-447-70 or PF-447-70DLR (B, C).
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Final conclusions: Biological activities of modified PF-4

peptides

The work presented here has shown that the small fragment PF-447-70, composed

of 23 amino acids, can conserve an important biological activity of its parent

protein: inhibition of angiogenesis. Full-length PF-4 is a monomer of 70 amino

acids, which is thought to assemble into a tetramer under physiological

conditions. PF-447-70 shows defined activities against FGF-2-induced angiogenic

events: inhibition of receptor binding, EC proliferation and migration and MAPK

kinase phosphorylation. It also blocks assembly of microvessels in the rat aortic

ring assay and in vivo blood vessel growth in a mouse model of FGF-2-induced

angiogenesis. Modifying the model peptide PF-447-70 resulted in one peptide with

loss of activity (PF-447-70S) and two peptides with enhanced anti-angiogenic

activity: PF-447-70ELR and –DLR.

FGF-2 and VEGF165 binding to their tyrosine kinase receptors on ECs is strongly

suppressed by the modified peptides PF-447-70ELR and -DLR in the low

micromolar range. This effect is most likely the reason for their strong anti-

angiogenic activities. Disturbing VEGF and FGF-2 functions at the receptor level

leads to impairment of crucial angiogenic events such as EC proliferation and

migration. Another peptide containing PF-4 sequences has recently described.

“Anginex”, a 33-mer -sheet-forming peptide containing sequences from PF-4,

IL-8 and bactericidal-permeability increasing protein (160). However, Anginex

doses necessary for inhibition of EC migration where several times higher than

those of PF-447-70ELR or –DLR, and only FGF-2-induced angiogenesis has been

studied.

Assembly of EC into microvessels in serum-free cultures of aortic rings was

differently affected by the peptides. Peptide PF-447-70DLR was a strong inhibitor

of vascular sprouting, but growth of fibroblastic cells was not affected, which

suggests that the peptide antagonizes preferentially factors supporting EC

growth and organization. PF-447-70ELR did not very well inhibit microvessel

sprouting in this model. It is possible that the ELR motif which is crucial for

receptor activation of the pro-angiogenic chemokine IL-8 (161), is presented in

PF-447-70ELR in a way that chemokine receptors on residual leukocytes and ECs
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(162) are activated, partially overcome the direct inhibitory effects on

endogenous VEGF and FGF-2. Endostatin completely inhibits vascular sprouting

in the aortic ring assay at 500 µg/ml (150), whereas PF-447-70DLR shows

maximal activity between 14 and 28 µg/ml (5-10 µM), thus at 18 to 35 times lower

concentrations. This strong activity is probably due to the fact that the peptide

interferes with both VEGF and FGF-2 by inhibition of binding to their receptors.

We tested effects of C-terminal PF-4 peptides for their ability to interfere with

VEGF165-induced angiogenesis in the differentiated CAM (day 13); to our

knowledge the first attempt to study angiogenesis inhibitors in this modified type

of assay. The typical brush-like formation of capillaries into the stroma of the day

13 CAM is strongly reduced by co-application of PF-447-70DLR and –ELR with

human recombinant VEGF165. In some eggs, PF-447-70 and PF-447-70S also

showed some minor anti-angiogenic activity, but this may result from inter-

individual variations, the high sensitivity of the assay system or the difficulty to

exactly quantify differences between low inhibitory effects. The doses necessary

to achieve considerable VEGF-inhibition were relatively low with PF-447-70DLR

and –ELR; CAMs received a total of 40 µg of peptide accompanied by 6 µg of the

growth factor. Metastatin, a recently described angiogenesis inhibitor, was active

in the day 10 CAM assay at a two times higher dosage, and additionally,

angiogenesis was induced with VEGF at a 300-fold lower dose compared to our

assay (163). Cyclic peptide antagonists for v 3-integrin showed strong anti-

angiogenic effects in the day 10 CAM at 300 µg; again, the angiogenic response

was induced by VEGF or FGF-2 at doses less than 1 µg (21). These

comparisons suggest that modified C-terminal PF-4 peptides display a very high

affinity for VEGF in vivo, and that their binding leads to a functionally relevant

inactivation of the angiogenic factor.

Encouraged by these results, the C-terminal PF-4 peptides were tested for their

ability to block tumor angiogenesis 1. We did not test the PF-447-70ELR peptide in

this assay because of the somewhat uncertain results in the rat aortic ring assay.

Glioma growth is strongly promoted via up-regulation of angiogensis by VEGF

and FGF-2; especially the U87 cell line we used in our model produces high

levels of these growth factors in culture (164). 250 µg of peptide PF-447-70DLR

were already sufficient to reduce tumor growth to one half compared to PF-447-70-

1 Lorenzo Bello and colleagues at the University of Milano, Italy carried out these experiments.
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treated animals. This effect is paralleled by a reduction of blood vessels within

the tumor and elevated EC and/or tumor cell apoptosis. Increased apoptosis in

tumors is commonly observed after treatment with angiogenesis inhibitors (111,

165, 166). Similar results have been obtained previously by systemic treatment

using the anti-angiogenic molecule PEX; alone or in combination with low-dose

chemotherapy. Animals bearing U87 glioma survived significantly longer and

there were no measurable side effects (167, 168).

The reason why C-terminal PF-4 peptides are such potent angiogenesis

inhibitors in vivo and why their activity is enhanced by the replacement of a few

amino acids is perhaps related to arginine residues. Three positively-charged

arginine residues within full-length PF-4 (R20, R22, R49) contribute to its

particularly high heparin-binding capacity (169). This may in general explain the

augmented anti-angiogenic activity, since both, PF-447-70ELR and -DLR contain

an additional arginine (at position 56) in company with the internal R49, leading

to an increased net charge of the peptides. This could lead to an augmented

capacity to derange interactions of FGF-2 and VEGF with heparin. Binding of

FGF-2 or VEGF165 to tyrosine kinase receptors is facilitated by heparin sulfate

proteoglycans on the cell surface and is essential for their pro-angiogenic

activities (for review see (105)). Similar observations have been made with

peptides mimicking the surface of endostatin: an increase of arginine residues

enhances their anti-angiogenic effects probably due to an increased affinity for

heparin (170).

These findings might be of importance for the future design of anti-angiogenic

drugs. If one considers treatment of patients with protein angiogenesis inhibitors,

some important issues are associated with this kind of pharmacological

approach: 1) production of recombinant human proteins is time consuming and

expensive, 2) some structural features of more complex proteins important for

activity (e.g. glycolysation) is dependent on the production system used (yeast,

bacteria, fungi, plants or insect cells) and can raise immunogeneity problems,

and 3) purification can be very complicated and contaminations have to be

eliminated. In contrast, short synthetic peptides with a strong activity like PF-447-

70DLR could be produced at large scale without most of the above-mentioned

drawbacks.
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Taken together, modified C-terminal peptides of PF-4 represent a new class of

potent angiogenesis inhibitors due to dual inhibition of VEGF and FGF-2

pathways and might be especially useful in the treatment of tumors expressing

high levels of these growth factors.

Perspectives – Anti-angiogenesis assay in the CAM and

SNA-1 lectin staining

During the characterization of the different PF-4-derived peptides we have come

across a general problem in biological sciences related to the development of

treatment strategies: finding an appropriate model for screening of in vivo effects.

Because VEGF plays an exclusive role in tumor angiogenesis, it is of primary

importance to show activity of an angiogenesis inhibitor against that growth

factor. Therefore we developed a new anti-angiogenesis model on the

differentiated chick CAM based on the earlier work of Wilting et al. (171, 172),

which shows that a strong capillary angiogenesis can be induced by application

of recombinant VEGF. Bio-microscopy and semi thin section analysis of treated

CAMs showed that both modified peptides have strong anti-VEGF activity at a

dose at which the unmodified peptide is inactive.

One important drawback of the chicken CAM system is the relative difficulty of

visualizing the entire vascular network. The growth of new blood vessels on the

CAM can be analyzed by bio-microscopy, confocal laser scanning microscopy,

corrosion casts or classical histology (semi thin and ultra thin sectioning) as well

as electron microscopy and in-situ hybridization. All these methods are relatively

labor-intense and not well suited to do screening studies. In addition, few or no

EC specific markers are available for the chicken CAM, whereas the quail

vasculature can be identified using the QH1 antibody (173). In addition, receptor

homologues to VEGFR-2 (Quek-1) and VEGFR-3 (Quek-2) have been cloned

and characterized in the quail embryo (174, 175). Proteins known to be

expressed in the chick endothelium which have served as markers for

endothelium include the TGF-beta receptor II (176), endoglin (177) and integrin

v 3 (21), but so far no specific antibody or other marker has been developed for

identification of the entire chick vascular endothelium.
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Different lectins have selectivity towards either chick or quail tissues and

difference in binding were sometimes dependent on developmental stage of the

embryo (178). We have now shown that sambucus nigra lectin (SNA-1) can be

used to stain the whole vascular network of the chick chorio-allantoic membrane

at different developmental stages with high selectivity, no other structures except

the vascular walls were stained (see figure 11). Newly formed capillaries induced

by VEGF165 can be visualized equally well. This lectin can be used in

combination with other cellular markers to study vascular morphology during

development, for example, to elucidate the contribution of mural cells (eg.

pericytes and vascular smooth muscle cells) during physiological and VEGF-

induced angiogenesis (179).

Combining the anti-angiogenesis model of VEGF-induced capillary growth on the

differentiated day 13 CAM with the newly discovered staining method described

above, will provide a powerful tool to study effects of molecules, which interfere

with vascular growth and morphogenesis.



120

Figure 11: Sambucus nigra lectin and desmin staining of the capillary bed of the day 17

CAM.

Three-dimensional reconstructed confocal microscopy image (magnification x600) of the day 17

CAM capillary bed. The whole mount tissue was stained with FITC-coupled sambucus nigra lectin

(green) and a mouse-anti human desmin antibody revealed by a secondary antibody coupled to

Alexa Fluor® 488 (red). Note that the entire capillary bed is stained and capillaries are associated

with pericytes, to a varying degree. From the right bottom to the center, a pre-capillary vessel

merges into the capillary layer. (Image generated by Dr Benoît ROUSSEAU using Bitplane AG

IMARIS® software).
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RESUME

L’angiogenèse joue un rôle important dans de nombreuses pathologies telles que le cancer, la

rétinopathie diabétique, l’arthrite rhumatoïde et certaines maladies de la peau.

Elle est définie par la croissance de nouveaux vaisseaux sanguins à partir de vaisseaux

préexistants. L’angiogenèse est contrôlée par un équilibre entre des facteurs stimulants et

inhibiteurs endogènes. Les stimulateurs les mieux connus sont le facteur de croissance de

l’endothélium vasculaire (VEGF) et le facteur de croissance des fibroblastes 2 (FGF-2). Parmi

les inhibiteurs, on trouve l’endostatine, l’angiostatine, certaines interleukines, la

thrombospondine et le facteur plaquettaire 4.

Nous avons caractérisé dans la région C-terminale du facteur plaquettaire 4, la séquence

peptidique essentielle à son activité. Ce peptide de 23 acides aminés (PF-447-70) montre des

effets anti-angiogéniques dans de multiples tests d’angiogenèse in vitro et in vivo. La liaison du

VEGF et du FGF-2 iodés aux récepteurs présents sur des cellules endothéliales est fortement

inhibée par ce peptide. Le changement d’un acide aminé dans sa séquence supprime son

activité (C5 2 S = PF-44 7 - 7 0S) alors que l’introduction d’un autre la potentialise

(Q56R = PF-447-70DLR et D54E/Q56R = PF-447-70ELR). Ces peptides modifiés montrent une

activité supérieure au peptide PF-447-70 dans des tests de prolifération et de migration des

cellules endothéliales. La prolifération des cellules tumorales de type gliome n’est pas affectée.

Dans un modèle de bourgeonnement angiogénique sur des anneaux d’aorte de rats, seul le

peptide PF-447-70DLR montre une plus forte action anti-angiogénique.

Pour confirmer ces résultats in vivo, nous avons développé un nouveau test d’angiogenèse sur

la membrane chorio-allantoïdienne chez le poulet. La croissance des capillaires est induite par

le VEGF déposé dans un anneau de plastique à la surface de la membrane et les peptides à

tester sont appliqués avec le VEGF dans cet anneau. Les résultats obtenus ont montré que les

deux peptides modifiés bloquent presque à 100% l’angiogenèse induite par le VEGF, à une

dose où les deux autres peptides ne montrent pas d’effet.

Des souris « nudes » avec des gliomes intracérébraux, traitées avec le peptide PF-447-70DLR

présentent des tumeurs deux fois plus petites que celles qui sont traitées avec le peptide non

modifié PF-447-70. Des souris contrôles (traitées avec le peptide PF-447-70S ou avec du PBS) ont

des tumeurs 4 à 5 fois plus grandes.

Ces travaux ont identifié et caractérisé des peptides provenant du PF-4 comme étant des

candidats possibles pour le développement de futures drogues à action anti-angiogénique. La

double inhibition de FGF-2 et du VEGF est très probablement la raison de leur forte activité in

vivo.

Des patients avec des maladies dépendantes de l’angiogenèse pourraient éventuellement

profiter d’un traitement par ces peptides ou par des dérivés synthétiques (peptidomimétiques)

qui pourraient être produits par l’industrie pharmaceutique.
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