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laboratoire, le LaBRI, et de l’enthousiasme des membres de l’équipe combinatoire. J’ai aussi

eu la chance de parcourir le monde pour partager connaissances et méconnaissances avec de
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Résumé

Cette thèse est constituée d’un chapitre préliminaire suivi de trois parties. Dans le chapitre

préliminaire nous introduisons les notions et outils fondamentaux, et en premier lieu les

cartes et le polynôme de Tutte. Une carte est un plongement sans intersection d’arêtes d’un

graphe dans une surface. Les cartes constituent une discrétisation naturelle des surfaces et,

à ce titre, apparaissent aussi bien en informatique (pour le codage d’informations visuelles)

qu’en physique (comme surfaces aléatoires de la gravitation quantique et de la physique

statistique). Les premiers travaux sur les cartes datent du début des années soixante lorsque

W.T. Tutte et ses disciples développèrent la méthode récursive pour l’énumération des

cartes. À la même époque, Tutte découvrit le polynôme qui porte aujourd’hui son nom. Le

polynôme de Tutte est un invariant fondamental de la théorie des graphes qui généralise à

la fois le polynôme chromatique et le polynôme des flots. Les résultats présentés dans cette

thèse mettent en lumière des propriétés énumératives et structurelles importantes des cartes

et établissent un lien profond entre les cartes et le polynôme de Tutte.

Dans la première partie de cette thèse, nous énumérons trois familles de triangulations

(cartes planaires dont les faces sont homéomorphes à des triangles) par une approche

récursive. Plus précisément, nous démontrons l’algébricité des séries génératrices des familles

de triangulations dont le degré des sommets est au moins égal à une certaine valeur d choisie

parmi {3, 4, 5}. Nous déterminons aussi le développement asymptotique du nombre de

triangulations dans chaque famille. L’originalité de nos résultats tient au fait que nos familles

de cartes sont définies par des restrictions de degrés portant simultanément sur les faces et

sur les sommets.

Dans la seconde partie, nous établissons deux bijections entre des familles de cartes et des

objets dont la combinatoire est plus simple. La première bijection établit un lien entre les

triangulations et les chemins de Kreweras, soit les chemins dans le quart de plan constitués

de pas Sud, Ouest et Nord-Est. Nous obtenons, par ce biais, la premier comptage bijectif des

chemins de Kreweras. La deuxième bijection établit un lien entre les cartes dont un arbre

couvrant est distingué et les couples formés d’un arbre et d’une partition non-croisée. Nous

établissons également un lien entre notre bijection et une construction récursive antérieure

v



due à Cori, Dulucq et Viennot et définie sur les mélanges de mots de parenthèses. Ces

bijections révèlent des propriétés structurelles importantes des cartes et permettent leur

comptage, leur codage et leur génération aléatoire.

Dans la troisième partie, nous établissons une caractérisation du polynôme de Tutte des

graphes basée sur la structure de carte. Plus précisément, nous définissons les activités de

plongement des arbres couvrants des cartes et nous montrons que le polynôme de Tutte est

égal à la série génératrice des arbres couvrants comptés selon leurs activités de plongement. La

caractérisation du polynôme de Tutte par les activités de plongement est mise à contribution

pour définir une bijection entre les sous-graphes et les orientations. En spécialisant cette bijec-

tion nous obtenons des interprétations combinatoires pour plusieurs évaluations du polynôme

de Tutte en termes d’orientations et de suites de degrés. Par exemple, nous obtenons une

bijection entre les arbres couvrants (comptés par l’évaluation TG(1, 1) du polynôme de Tutte)

et les suites de degrés racine-accessibles. Nous établissons également une nouvelle bijection

entre les arbres couvrants et les configurations récurrentes du modèle du tas de sable.
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Introduction

0.1 Les cartes

0.1.1 Les cartes planaires

La notion de carte est à la base de tous les travaux présentés dans cette thèse. En préalable

aux définitions concernant les cartes il faudrait rappeler les définitions classiques de la théorie

des graphes. Nous renvoyons le lecteur aux nombreux ouvrages de référence concernant les

graphes (par exemple [Boll 98] ou [Tutt 84]). Nous nous contenterons de définir les notions

dont le vocabulaire polymorphe est sujet à confusion.

Un graphe est formé d’un ensemble fini de sommets, d’un ensemble fini d’arêtes et d’une

relation d’incidence entre sommets et arêtes. Chaque arête est incidente à un ou à deux

sommets qui sont ses extrémités. On peut dessiner un graphe en représentant chaque sommet

par un point et chaque arête par une ligne reliant ses extrémités. Deux dessins d’un même

graphe sont représentés en figure 1. Dans le dessin de droite, les arêtes ne se rencontrent

qu’au niveau des sommets. Ce type de dessin est appelé plongement.

f
a

v

w
e

x

d

u

b

w

c

v

a

u
d

ex

f

c b

Figure 1: Deux dessins d’un même graphe dont les sommets sont u, v, w, x et les arêtes sont

a, b, c, d, e, f .

Seuls certains graphes admettent un plongement dans le plan. On les appellent planaires.

Alternativement au plan, il peut être agréable de plonger ces graphes dans la sphère. On peut

aisément passer d’un plongement dans la sphère à un plongement dans le plan et inversement

1



2 Introduction

par projection stéréographique (voir figure 2).

Figure 2: De la sphère au plan : la projection stéréographique.

Une carte planaire est un plongement d’un graphe planaire connexe sur la sphère. Un

exemple de carte est donné en figure 3. Pour être précis, une carte planaire définit la topologie

du plongement et non sa métrique. Ainsi nos cartes planaires sont définies à déformation

continue près. Malgré cela, un même graphe peut donner lieu à plusieurs cartes. Ainsi sur

la figure 4, la carte de gauche et celle du milieu sont identiques mais différentes de celle de

droite qui correspond pourtant au même graphe.

Figure 3: Ceci est une carte planaire.

u
u

u

wx v
c

e
b

d

ha
wx v

c

e
b

d

haf
z

y

yz
y

g g f
i

b

e

c
v

x

z

w
d

i

g

a h

f

i

Figure 4: La carte de gauche et celle du milieu sont identiques (on peut passer de l’une à

l’autre par déformation de la sphère) mais la carte de droite est différente.
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0.1.2 Cartes en genre supérieur

Considérons à présent d’autres surfaces. Nous nous limiterons aux surfaces bidimensionnelles,

compactes, orientables et sans bords que nous appellerons simplement surfaces (voir par

exemple [Moha 01] pour les définitions concernant les surfaces). Ces surfaces sont entièrement

caractérisées (à homéomorphisme près) par la donnée de leur genre (un entier positif). La

surface de genre 0 est la sphère et la surface de genre k est le tore à k trous. Les surfaces de

genre 0, 1 et 2 sont représentées en figure 5.

Figure 5: Surfaces de genre 0, 1 et 2.

Considérons le découpage d’une surface induit par le plongement d’un graphe. Les com-

posantes connexes de la surface après découpage, c’est-à-dire les composantes connexes du

complémentaire du graphe, sont appelées faces. Si les faces sont simplement connexes (i.e.

homéomorphes au disque unité ouvert de R2), le plongement est dit cellulaire. Par exemple,

le plongement de gauche dans la figure 6 est cellulaire mais celui de droite ne l’est pas (une

des faces est un tube). Une carte de genre g est un plongement cellulaire d’un graphe connexe

dans la surface de genre g. La carte est considérée à homéomorphisme (de la surface orien-

tée) près. Observons que tout plongement d’un graphe connexe (non vide) dans la sphère est

cellulaire. D’autre part, dans la sphère, une transformation est homéomorphe si et seulement

si elle s’obtient par déformation continue de la sphère. La notion de carte planaire coı̈ncide

donc avec la notion de carte de genre 0.

Figure 6: Un plongement cellulaire et un plongement non cellulaire du graphe complet K4.

La notion de face amène à compléter nos relations d’incidences. Notons que les relations

d’incidence entre arêtes et sommets peuvent se définir topologiquement : une arête a est

incidente à un sommet s si la frontière de a contient s. De même, une face f est incidente à



4 Introduction

une arête a (resp. un sommet s) si la frontière de f contient a (resp. s). Une arête qui n’est

incidente qu’à un seul sommet (resp. une seule face) est doublement incidente à ce sommet

(resp. cette face). Le degré d’un sommet ou d’une face est le nombre d’arêtes qui lui sont

incidentes, comptées avec multiplicité.

On peut également définir la notion de demi-arête. En supprimant un point intérieur

d’une arête, on obtient deux demi-arêtes, c’est-à-dire deux cellules de dimension 1, chacune

étant incidente à une des extrémités de l’arête. On définit un coin comme un couple de

demi-arêtes consécutives autour d’un sommet.

Notons que le nombre de faces, de sommets et d’arêtes sont conservés par homéomorphisme

de cartes, de même que les relations d’incidence. On définit la caractéristique d’Euler d’une

carte C par

χ(C) = s(C) + f(C) − a(C),

où s(C), f(C) et a(S) sont respectivement le nombre de sommets, de faces et d’arêtes de

la carte C. La caractéristique d’Euler d’une carte ne dépend en réalité que du genre de la

surface dans laquelle elle est plongée. En effet, pour toute carte de genre g la relation d’Euler

s’écrit :

χ(C) = 2 − 2g. (1)

Par exemple, la carte représentée en figure 6 (gauche) est de genre g = 1 et a s = 4 sommets,

f = 2 faces et a = 6 arêtes. On vérifie donc bien la relation d’Euler χ = s+f−a = 0 = 2−2g.

0.1.3 Représentation combinatoire

Jusqu’ici nous avons présenté les cartes de manière topologique : les plongements cellulaires

définis à homéomorphisme près. Nous allons maintenant définir les cartes de manière

combinatoire (discrète) et expliquer l’équivalence des deux définitions.

Considérons une carte C de genre quelconque. La carte C est considérée à homéomor-

phisme près. Un homéomorphisme agit localement comme une déformation continue. Par

conséquent, l’ordre cyclique positif (ou anti-horaire) des arêtes autour de chaque sommet est

préservé par homéomorphisme (de la surface orientée). Ainsi toute carte définit un système

de rotation c’est-à-dire l’ordre cyclique des arêtes autour de chaque sommet. Pour la carte

de gauche en figure 4, le système de rotation autour du sommet x est (g, b, a, d).

Sur la figure 4, les plongements de gauche et du milieu correspondent à une même carte,

leur système de rotation sont identiques. Par contre le système de rotation de la carte de
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droite est différent ce qui prouve qu’il ne s’agit pas de la même carte. Nous voyons poindre

une propriété fondamentale des cartes : elles sont entièrement déterminées par leur système

de rotation. Cette propriété est à la base de la définition combinatoire des cartes.

Théorème 0.1 [Moha 01, Thm. 3.2.4] Il y a correspondance bijective entre les cartes et les

graphes connexes munis d’un système de rotation.

Le système de rotation est parfois appelée plongement combinatoire du graphe. Plutôt

que de travailler avec un graphe et un système de rotation, il est plus élégant de considérer un

ensemble de demi-arêtes, une permutation qui correspond à l’action de tourner autour d’un

sommet et une involution qui correspond à l’action de traverser une arête (de passer d’une

demi-arête à la demi-arête opposée). Ceci nous amène à la définition de carte combinatoire

telle qu’elle a été introduite par Cori et Mach̀ı [Cori 92]. Une carte combinatoire C = (H,σ, α)

est formée d’un ensemble de demi-arêtes H, d’une permutation σ et d’une involution sans

point fixe α sur H telles que le groupe engendré par σ et α agit transitivement sur H.

Étant donnée une carte combinatoire, on définit le graphe sous-jacent dont les sommets

sont les cycles de σ, les arêtes sont les cycles de α et la relation d’incidence est d’avoir une

demi-arête commune. La figure 7 représente le graphe sous-jacent à la carte combinatoire

C = (H,σ, α) où l’ensemble des demi-arêtes est H = {a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′}, la

permutation σ est (a, f ′, b, d)(d′)(a′, e, f, c)(e′, b′, c′) en notation cyclique et l’involution α

est (a, a′)(b, b′)(c, c′)(d, d′)(e, e′)(f, f ′). Le graphe sous-jacent à une carte combinatoire est

toujours connexe puisque le groupe engendré par les permutations σ et α agit transitivement

sur l’ensemble H des demi-arêtes. Graphiquement, on représente les cycles de σ par

l’ordre anti-horaire autour des sommets (et on représente les cycles de α par les arêtes). Par

conséquent, la carte combinatoire est entièrement déterminée par sa représentation graphique.

Une carte combinatoire C = (H,σ, α) définit un graphe (à réétiquetage des sommets

et des arêtes prés) et un système de rotation (les cycles de σ). Réciproquement, une carte

combinatoire est entièrement définie (à réétiquetage des demi-arêtes près) par la donnée

d’un graphe connexe et d’un système de rotation. D’après le théorème 0.1, il y a équivalence

entre la notion de carte topologique (un plongement cellulaire d’un graphe considéré à

homéomorphisme près) et la notion de carte combinatoire (une permutation et une involution

sans point fixe agissant transitivement sur un même ensemble). Lorsque cela est utile nous

parlerons de carte topologique ou de carte combinatoire pour préciser le point de vue adopté.

Considérons une carte combinatoire C = (H,σ, α). Les cycles de la permutation σα

décrivent le tour (dans le sens négatif) des faces de la carte topologique correspondant à C.

Ainsi, les faces de la carte combinatoire sont en bijection avec les cycles de la permutation

σα. De plus, la relation d’incidence entre faces et arêtes (resp. sommets) est d’avoir une
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Figure 7: Deux cartes combinatoires distinctes correspondant au même graphe.

demi-arête commune. La caractéristique d’Euler d’une carte combinatoire C = (H,σ, α) est

χ(C) = c(σ) + c(σα) − c(α)

où c(π) est le nombre de cycles de la permutation π. La relation d’Euler (1) permet de

connâıtre le genre de la surface sur laquelle est plongée la carte topologique correspondant à

C. Par exemple, une carte combinatoire C est planaire si et seulement si χ(C) = 2.

0.1.4 Cartes non-étiquetées et enracinements

Jusqu’à présent, nous avons considéré des cartes étiquetées. En effet, nos cartes portent des

étiquettes (sur les sommets et les arêtes pour les cartes topologiques, sur les demi-arêtes pour

les cartes combinatoires). Nous allons voir comment nous affranchir de l’étiquetage. Avant

cela, nous définissons l’enracinement des cartes.

On enracine une carte en distinguant une demi-arête comme étant la racine. De manière

équivalente, on peut définir l’enracinement d’une carte en distinguant un coin ou encore en

distinguant une arête racine et en l’orientant. C’est cette dernière convention qui est le plus

couramment utilisée pour représenter l’enracinement. Quatre enracinements d’une même

carte sont représentés en figure 8.

Figure 8: Quatre cartes enracinées.

Nous passons maintenant aux cartes non-étiquetées. Rappelons tout d’abord la notion

d’isomorphisme entre graphes. Un isomorphisme entre deux graphes G1 et G2 est formé

d’une bijection entre les sommets de G1 et ceux de G2 et d’une bijection entre les arêtes

de G1 et celles de G2 qui préservent les relations d’incidence (un sommet et une arête
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sont incidents si et seulement si leurs images le sont). Autrement dit, un isomorphisme

de graphes est un réétiquetage (ou renommage) des sommets et des arêtes. De même, un

isomorphisme de cartes est un réétiquetage de cette carte. Autrement dit, un isomorphisme

entre deux cartes combinatoires C1 = (H1, σ1, α1) et C2 = (H2, σ2, α2) est une bijection

φ entre H1 et H2 telle que σ2 = φ ◦ σ1 ◦ φ−1 et α2 = φ ◦ α1 ◦ φ−1. Un isomorphisme

de cartes combinatoires est représenté en figure 9. Un graphe non-étiqueté est un graphe

considéré à isomorphisme prés. De même, une carte non-étiquetée est une carte considérée

à isomorphisme prés. Dans la sous-section précédente nous avons vu que les notions de

cartes topologiques non-étiquetées et de cartes combinatoires non-étiquetées sont équivalentes.

a

cd
b

e

a

d
e

f g

C2C1 b
c

h h
fg

Figure 9: Un isomorphisme φ entre les cartes C1 et C2. L’isomorphisme φ associe respective-

ment aux demi-arêtes a, b, c, d, e, f, g, h de la carte C1, les demi-arêtes d, c, b, a, e, g, f, h de la

carte C2.

On s’intéresse maintenant aux relations entre le nombre de cartes étiquetées, non-

étiquetées, enracinées et non-enracinées. Ces relations dépendent des symétries des cartes,

ou encore de leur groupe d’automorphismes. Un automorphisme d’une carte étiquetée est

un isomorphisme de la carte sur elle-même, c’est-à-dire un réétiquetage qui laisse la carte

inchangée. Un automorphisme est représenté en figure 10. L’ensemble des automorphismes

d’une carte est un groupe (pour la composition) qui contient l’identité.

1
2

34

5

8

9107 1
5
6

78

10

12

11

3

42
9

6

11

12

Figure 10: L’automorphisme φ qui aux demi-arêtes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 associe les

demi-arêtes 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4 respectivement.

Soit C = (H,σ, α) une carte combinatoire étiquetée à n arêtes. On s’intéresse à l’action

du groupe SH des permutations de H interprétées comme des isomorphismes sur la carte C.

On rappelle un résultat classique de la théorie des groupes.



8 Introduction

Lemme 0.2 Soit S un ensemble et I un groupe. Le cardinal de l’orbite d’un élément x de S

par l’action du groupe I est égal au cardinal du groupe I divisé par le cardinal du sous-groupe

A ⊆ I des éléments laissant x invariant (i.e. le stabilisateur de x).

Le groupe SH des permutations de H a cardinal (2n)!. On note ξC le cardinal du groupe

d’automorphismes de la carte étiquetée C. Par exemple, le groupe d’automorphismes de la

carte représenté en figure 10 a cardinal 3 puisqu’il contient l’identité, l’automorphisme φ et

l’automorphisme φ2. D’après le lemme 0.2, le nombre de cartes différentes obtenues à partir

de la carte C par action du groupe SH est
(2n)!

ξC
. Puisque le paramètre ξC est invariant par

isomorphisme de la carte C, il n’y a pas de conflit à définir ce paramètre pour une carte

non étiquetée (comme étant le cardinal du groupe des automorphismes pour l’une de ses

représentantes étiquetées). Ainsi, une carte non-étiquetée C à n arêtes donne lieu à
(2n)!

ξC
cartes étiquetées sur l’ensemble H = {1, 2, . . . , 2n}. Par exemple, la carte de la figure 10

admet
(2n)!

ξC
=

(12)!

3
étiquetages différents sur H = {1, 2, . . . , 12}.

Il y a 2n façons d’enraciner une carte étiquetée à n arêtes. Par conséquent, une carte

C non-étiquetée à n arêtes donne lieu à 2n · (2n)!

ξC
cartes enracinées étiquetées sur H =

{1, 2, . . . , 2n}. Nous allons montrer (lemme 0.4) que les cartes enracinées n’ont pas d’autres

automorphismes que l’identité. Par conséquent, chaque carte enracinée non-étiquetée à n

arêtes donne lieu à (2n)! cartes enracinées étiquetées sur H = {1, 2, . . . , 2n}. On en déduit le

résultat suivant.

Proposition 0.3 Une carte C non-étiquetée non-enracinée à n arêtes donne lieu à
2n

ξC
cartes

non-étiquetées enracinées.

Par exemple, la carte de la figure 10 donne lieu à
2n

ξC
=

12

3
= 4 cartes non-étiquetées

enracinées différentes. Ces cartes sont représentées en figure 8. Il ne nous reste qu’à prouver

que les cartes enracinées n’ont pas d’autres automorphismes que l’identité.

Lemme 0.4 Le groupe d’automorphismes d’une carte combinatoire étiquetée enracinée est

réduit à l’identité.

Preuve : Soit C = (H,σ, α) une carte combinatoire étiquetée dont h0 est la demi-arête

racine. Soit φ un automorphisme de C. Par définition, les permutations σ et α commutent

avec φ : pour toute demi-arête h, on a φ ◦ σ(h) = σ ◦ φ(h) et φ ◦ α(h) = α ◦ φ(h). Donc si

une demi-arête h est telle que φ(h) = h, alors φ(σ(h)) = σ(h) et φ(α(h)) = α(h). Puisque

l’automorphisme φ préserve la demi-arête racine h0 (φ(h0) = h0) et que les permutations σ et

α agissent transitivement sur l’ensemble H des demi-arêtes, on obtient φ(h) = h pour toute

demi-arête h.
�
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Dans cette thèse, nous énumérons plusieurs familles de cartes. Nous ne considérerons que

des familles de cartes enracinées et non-étiquetées. Nous venons de voir que le nombre de

cartes étiquetées (enracinées ou non-enracinées) à n arêtes (dont l’ensemble des demi-arêtes

est H = {1, 2, . . . , 2n}) est proportionnel au nombre de cartes non-étiquetées enracinées à

n arêtes. Comme le suggère la proposition 0.3, le passage d’un résultat d’énumération du

cas enraciné au cas non-enraciné est délicat. Cependant, pour la plupart des familles de

cartes, la probabilité qu’une carte de taille n ait un groupe d’automorphismes qui ne soit pas

réduit à l’identité décrôıt exponentiellement vite avec n [Rich 95]. Ainsi, pour la plupart des

familles de cartes, le rapport du nombre cn de cartes non-enracinées de taille n au nombre

c′n de cartes enracinées de taille n vérifie
cn
c′n

=
1 + o(εn)

2n
où 0 < ε < 1.

0.1.5 Cartes enrichies

Dans cette thèse nous étudions plusieurs familles de cartes. Les familles de cartes sont

souvent définies par des critères portant sur le degré des faces ou celui des sommets. Par

exemple, les triangulations (resp. cartes cubiques) sont les cartes dont les faces (resp.

sommets) ont degré 3. Les quadrangulations (resp. cartes tétravalentes) sont les cartes dont

les faces (resp. sommets) ont degré 4. Enfin, les cartes biparties (resp. eulériennes) sont

les cartes dont les faces (resp. sommets) ont degré pair. Des exemples sont donnés en figure 11.

Figure 11: La carte de gauche est une triangulation (qui est aussi tétravalente), la carte du

milieu est une quadrangulation (qui est aussi cubique) et la carte de droite est bipartie.

Il existe de nombreuses relations entre les différentes familles de cartes. Une relation

fondamentale est la dualité. Étant donnée une carte C, on construit la carte duale C ∗ en

plaçant un sommet de C∗ dans chaque face de C et une arête de C∗ à travers chaque arête de

C. Sur la figure 12, la carte duale est indiquée en traits discontinus. La dualité peut aussi se

définir de manière combinatoire : la carte duale de la carte C = (H,σ, α) est C ∗ = (H,ασ, α).

Les sommets d’une carte correspondent aux faces de sa carte duale et vice-versa. Ainsi, la

dualité envoie la famille des triangulations (resp. quadrangulations, cartes biparties) sur la

famille des cartes cubiques (resp. tétravalentes, eulériennes).

Les cartes peuvent servir de support à d’autres structures combinatoires, une coloration

ou un arbre couvrant par exemple. D’une certaine manière, l’ajout d’un arbre couvrant

simplifie souvent la combinatoire des cartes. C’est ce que démontrent les approches bijectives
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Figure 12: Une triangulation (traits continus) et la carte cubique duale (traits pointillés).

initiées par Gilles Schaeffer et basées sur les conjugaison d’arbres [Scha 98]. Au chapitre 2,

nous verrons que l’ajout d’un arbre d’exploration en profondeur sur les cartes cubiques permet

de les mettre en bijection avec une classe de chemins planaires appelés chemins de Kreweras.

Au chapitre 3, nous verrons que l’ensemble des cartes boisées (cartes dont un arbre couvrant

est distingué) est en bijection avec les couples formés d’un arbre et d’une partition non-croisée.

Les cartes peuvent aussi servir de support à des modèles de physique statistique. D’un

point de vue physique, les cartes sont des espaces bidimensionnels discrets. Sur ces surfaces,

on peut placer des particules occupant les sommets et interagissant à travers les arêtes. Un

modèle simple consiste à considérer que chaque particule (sommet) peut être dans l’un des

états 1, 2, . . . , q mais que deux particules adjacentes ne peuvent pas être dans le même état.

On obtient ainsi les coloriages de la carte en q couleurs. Au chapitre 9, nous amorcerons le

comptage des cartes munies d’un coloriage. Le modèle de Potts [Baxt 82] correspond à la

situation plus générale où toutes les configurations (attributions d’un état parmi {1, 2, . . . , q}
à chaque particule) sont possibles et où leur probabilité d’apparition dépend du nombre

d’arêtes unicolores, c’est-à-dire dont les deux extrémités ont même état. Plus précisément,

dans le modèle de Potts la probabilité d’une configuration θ est proportionnelle à

W (θ) = exp(K · u(θ)) (2)

où K est un paramètre et u(θ) est le nombre d’arêtes unicolores. Le modèle de Potts est un

modèle important en physique statistique [Baxt 01, Baxt 82, Bonn 99, Daul 95]. Le modèle

d’Ising (sans champ extérieur) qui correspond au modèle de Potts à q = 2 états est lui-même

largement étudié [Boul 87, Bous 03b]. Nous verrons en section 0.3.2 que la fonction de

partition du modèle de Potts sur une carte C est équivalent au polynôme de Tutte de cette

carte [Fort 72].

Étant donné un modèle de physique statistique, le modèle de Potts par exemple, on cherche

à en déterminer le comportement moyen. Le modèle fournit une mesure de probabilité W non

normalisée (dont la somme des poids n’est pas égale à 1) sur l’ensemble des configurations.

On appelle fonction de partition le facteur de renormalisation, c’est-à-dire la somme des poids
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des configurations :

Z =
∑

θ configuration

W (θ). (3)

Cette fonction de partition dépend en général d’un ou plusieurs paramètres K1, . . . ,Ki

contrôlant le comportement moyen du modèle. Afin d’étudier ce comportement il faut aussi

enrichir la fonction de partition afin de prendre en compte de nouveaux paramètres comme,

par exemple, le nombre de particules dans chaque état. On obtient une fonction de partition

à plusieurs variables Z(K1, . . . ,Ki, x1, . . . , xj) dont on peut (théoriquement) déduire les

propriétés moyennes du système. Les principales questions concernent l’existence et la nature

des transitions de phase. Une transition de phase est un changement non-analytique des

propriétés moyennes du système (considérées comme fonctions des paramètres K1, . . . ,Ki).

Pour l’instant nous avons considéré des modèles de physique statistique à carte fixée.

Cependant, l’étude d’un modèle sur une carte fixée est rarement instructive (en particulier,

il ne peut y avoir de transitions de phase). En réalité, les phénomènes que l’on cherche à

appréhender ne se produisent que lorsque l’on approche la limite thermodynamique, c’est-à-

dire quand la taille du système (le nombre de particules) tends vers l’infini. Pour étudier

ce comportement limite, on considère généralement une carte régulière (le réseau carré par

exemple) que l’on fait grossir. La fonction de partition du modèle limite est donné par

Zlim = lim
n→∞

Z1/n
n ,

où Zn est la fonction de partition du modèle sur la carte régulière de taille n. Alternativement,

on peut considérer une famille de cartes et faire la moyenne sur les cartes de taille n. On

cherche alors à évaluer la fonction de partition

Zn =
∑

C

ZC

où la somme porte sur les cartes de taille n et ZC est la fonction de partition du modèle

sur la carte C. On fait ensuite tendre la taille n des cartes vers l’infini afin d’étudier le

comportement limite du modèle. Cet objectif n’est pas dépourvu de sens physique puisque

les réseaux physiques sont rarement (sinon jamais) totalement réguliers. Même les structures

cristallines contiennent des défauts et il convient de faire la moyenne sur ces défauts. Faire

la moyenne d’un modèle sur une famille de cartes constitue l’extrême opposé à l’étude de ce

modèle sur un réseau régulier. On parle alors de modèle sur une surface aléatoire. Il semble

qu’il existe une sorte de dualité entre le comportement d’un modèle sur un réseau régulier

et le comportement du même modèle sur une surface aléatoire (en particulier, une relation

liant les exposants critiques d’un modèle par rapport à l’autre). Cette dualité est connue en

physique sous le nom de relation KPZ d’après les initiales des physiciens Knizhnik, Polyakov

et Zamolodchikov qui l’ont découverte.



12 Introduction

0.2 Comptons!

La combinatoire énumérative est l’art de compter des objets. En toute généralité, on

considère un ensemble d’objets (des graphes, des arbres, des mots, . . .) muni d’une fonction

taille. L’ensemble est dit gradué s’il existe un nombre fini d’objets de taille n. Un ensemble

gradué est aussi appelé classe combinatoire. L’énumération d’une classe combinatoire

consiste à déterminer le nombre d’objets de chaque taille.

Considérons, par exemple, l’ensemble des mots de Dyck. Les mots de Dyck (ou mots de

parenthèses) sont les mots sur l’alphabet {x, x} ayant autant de lettres x que de lettres x et

tels que tout préfixe a au moins autant de lettres x que de lettres x. Par exemple, xxxxxx est

un mot de Dyck. Alternativement, on peut considérer les mots de Dyck comme des chemins

unidimensionnels fait de pas +1 et -1 qui partent de 0, restent positifs et retournent en 0 (on

parle aussi de chemins de Dyck). Les premiers mots de Dyck sont représentés en figure 13.

L’ensemble (infini) des mots de Dyck est muni de la fonction taille définie comme étant la

demi longueur du mot. Il est clair que le nombre Cn de mots de Dyck de taille n est fini. La

suite (Cn)n∈N est appelée suite de Catalan. Une exploration rapide (voir figure 13) permet

de montrer que C0 = C1 = 1, C2 = 2 et C3 = 5. Le travail de l’énumérateur consiste à

déterminer la valeur de la suite (Cn)n∈N ou, à défaut, son comportement asymptotique. Il

existe des techniques générales pour réaliser ce travail et dont nous traçons les grandes lignes

ci-dessous. Nous verrons, en particulier, comment montrer que le nombre de mots de Dyck

de taille n est

Cn =
1

n+ 1

(

2n

n

)

. (4)

Auparavant, nous allons tenter de répondre à la légitime question pourquoi compter?

n=1

n=0

n=2

n=3

Figure 13: Les chemins de Dyck de taille 0, 1, 2 et 3.

0.2.1 Pourquoi compter ?

L’énumération est avant tout un moyen de calculer des probabilités dans des systèmes

discrets. Les techniques d’énumération sont donc essentielles aussi bien en mathématique
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qu’en informatique (pour l’étude de la complexité moyenne d’un algorithme) ou en physique

statistique.

Avant cela, le comptage est une première étape naturelle dans l’appréhension une classe

combinatoire. En effet, les similitudes numériques constituent souvent des pistes précieuses

pour comprendre la structure des objets étudiés. Considérons, par exemple, l’ensemble des

arbres binaires à n noeuds ou encore l’ensemble des triangulations d’un polygone à n + 2

sommets. L’analyse des premiers cas (figure 14) montre que le nombre d’objets de taille n

cöıncide avec la suite de Catalan: 1,1,2,5,14,. . . . Cette coı̈ncidence n’en est pas une puisqu’il

existe des bijections bien connues entre les mots de Dyck, les triangulations d’un polygone

et les arbres binaires. Par exemple, on passe des triangulations d’un polygone aux arbres

binaires par dualité (voir figure 15). L’énumération permet donc de découvrir des relations

entre plusieurs classes combinatoires sans rapport évident. Ces découvertes sont facilitées par

l’existence d’encyclopédies de nombres répertoriant les suites connues et leurs interprétations

combinatoires [Sloa].

n=1

n=0

n=2

n=3

Figure 14: Les arbres binaires et les triangulations du polygone de taille 0, 1, 2 et 3.

Figure 15: Bijection entre arbres binaires et les triangulations de polygone par dualité.

Comme le suggère l’exemple précédent, le comptage exact d’une classe combinatoire est

un bon moyen d’acquérir des informations sur sa structure. De fait, les similitudes numériques

ont constitué le point de départ de deux bijections présentées dans cette thèse.
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Énumération exacte dans cette thèse. Au chapitre 2, nous définissons

une bijection entre les cartes cubiques de taille n (il y en a 2n

(n+1)(2n+1)

(

3n
n

)

)

munies d’un arbre d’exploration (il y en a 2n) et les mots de Kreweras de taille

n (il y en a 4n

(n+1)(2n+1)

(

3n
n

)

). Au chapitre 3, nous définissons une bijection

entre les cartes boisées de taille n (il y en a CnCn+1) et les couples formés d’un

arbre binaire de taille n (il y en a Cn) et d’une partition non-croisée de taille

n+ 1 (il y en a Cn+1). Une bijection entre deux classes combinatoires facilite

bien souvent l’étude de ces classes puisque certains paramètres seront plus

facilement accessibles avec l’une ou l’autre des représentations. D’autre part,

nos bijections donnent lieu à des algorithmes de génération aléatoire efficaces.

Un algorithme de génération aléatoire pour une classe combinatoire prend

en paramètre une taille et retourne un objet de taille n avec une distribution

uniforme sur l’ensemble des objets de cette taille. Ces algorithmes sont

utiles pour l’étude expérimentale des propriétés statistiques de la classe

combinatoire.

Revenons maintenant aux motivations probabilistes du comptage. Voici quelques ques-

tions auxquelles on peut être confronté :

1. Quelle est la probabilité pour un mot de longueur n sur l’alphabet {A,C,G, T} d’éviter

le motif TAC?

2. Quelle est la distance moyenne de la racine à une feuille dans un arbre binaire de taille n?

3. Quelle est le nombre de bits nécessaire au codage d’une carte planaire de taille n?

4. Quelle est la distance moyenne entre deux sommets dans une triangulation? Quelle loi

de probabilité suit le degré d’un sommet?

5. Comment varie le nombre d’arêtes unicolores dans le modèle de Potts sur réseau aléatoire

en fonction du paramètre K?

Ces questions se ramènent toutes à des problèmes d’énumération d’une classe combinatoire

(dont les objets sont éventuellement pondérés). Elles ont des applications évidentes en

biologie, en informatique ou en physique statistique. Ainsi, savoir que le nombre d’arbres

binaires de taille n est donné par la formule (4), implique que le nombre de bits nécessaire à

leur codage est log(Cn) = 2n − 3
2 log(n) + o(1). Ainsi le codage direct par un mot de Dyck

est asymptotiquement optimal (2 bits par noeud).

Les questions probabilistes que nous venons d’évoquer ne nécessitent pas toujours un

comptage exact. En pratique, le comptage asymptotique (le développement asymptotique du

nombre d’objets de taille n lorsque n tend vers l’infini) est souvent suffisant. Nous allons
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maintenant présenter quelques outils et méthodes pour le comptage exact ou asymptotique

d’une classe combinatoire.

0.2.2 Comment compter ?

L’approche la plus systématique pour l’énumération d’une classe combinatoire est basée

sur l’utilisation des séries génératrices. Cette approche, dite analytique (ou symbolique)

sera effective dès lors que la classe combinatoire admet une description récursive (en terme

d’opérations élémentaires comme l’union, le produit cartésien etc.) [Flaj].

Considérons une classe combinatoire S comptée par la suite (sn)n∈N (sn est le nombre

d’objets de taille n). À la classe S on associe la série génératrice (ordinaire1)

S(z) =
∑

n∈N

snz
n.

En notant |.| la fonction taille de la classe S, la série génératrice se définit de manière

équivalente par S(z) =
∑

s∈S z
|s|. Pour l’instant, la série génératrice S(z) est une série

formelle en la variable z et on ne se soucie pas des questions de convergence de cette série

lorsqu’un nombre complexe est substitué à z. On notera [zn]S(z) le coefficient de zn dans la

série S(z). L’approche analytique pour l’énumération de la classe S consiste à traduire une

description récursive de la classe S en une équation vérifiée par la série génératrice S(z).

Prenons l’exemple de la classe D des mots de Dyck comptée par la suite de Catalan

(Cn)n∈N. On cherche d’abord une description récursive de la classe D. Les mots de Dyck

partent de 0, restent positifs et retournent en 0. En considérant le premier retour en 0, on

peut décomposer le mot de Dyck D sous la forme D = xD1xD2 où D1 et D2 sont deux mots

de Dyck. Cette décomposition est illustrée par la figure 16. On obtient une bijection entre les

mots de Dyck de taille n+1 et les couples de mots de Dyck de taille k et n−k respectivement,

où k est un entier compris entre 0 et n. Par conséquent la classe D des mots de Dyck admet

la description récursive

D = {ε} ∪ {x} ×D × {x} ×D, (5)

où ε est le mot vide.

La description récursive (5) implique la relation de récurrence

C0 = 1 et Cn+1 =

n
∑

k=0

CkCn−k, (6)

1Il existe d’autres séries génératrices : exponentielles, de Dirichlet etc. mais nous nous limiterons aux séries

génératrices ordinaires qui sont adaptées à l’énumération des cartes non-étiquetées
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D1

D2

Figure 16: Décomposition récursive des mots de Dyck.

qui définit la suite de Catalan. On peut écrire (et résoudre) cette relation de récurrence à

l’aide des séries génératrices. Rappelons que la série génératrice C(x) =
∑

n∈N
Cnz

n est une

série formelle, c’est-à-dire que la série génératrice n’est guère plus qu’une autre façon d’écrire

la suite (Cn)n∈N. L’avantage de cette écriture est que l’on dispose des opérations somme,

produit et substitution définies de façon usuelle sur les séries. Par exemple, le produit de

deux séries formelles F (z) =
∑

n∈N
fnz

n et G(z) =
∑

n∈N
gnz

n est la série formelle H(z) =

FG(z) =
∑

n∈N
(
∑n

k=0 fkgn−k) z
n. Ainsi, la relation de récurrence (6) se traduit par l’équation

C(z) = 1 + zC(z)2. (7)

Puisque l’équation (7) est équivalente à la relation de récurrence (6), elle définit la suite de

Catalan de manière unique. Autrement dit, cette équation admet une unique solution dans

l’espace des séries formelles. Nous verrons plus tard comment résoudre cette équation, c’est-à-

dire en déduire la forme close Cn = 1
n+1

(2n
n

)

. Notons pour l’instant que l’équation (7) capture

de façon élégante la description récursive (5) de la classe D des mots de Dyck. Cette propriété

est l’un des atouts majeurs de l’approche analytique: toute description récursive d’une classe

combinatoire s’appuyant sur les opérations usuelles (union, produit cartésien, etc.) se traduit

de manière automatique en une équation satisfaite par la série génératrice correspondante

[Flaj] (sous réserve que les fonctions tailles soient définies de manière à respecter la de-

scription récursive). La traduction utilise un dictionnaire dont un extrait est donné ci-dessous.

Construction combinatoire Opération sur la série génératrice

Union disjointe : A = B ∪ C
Produit cartésien : A = B × C

Suite : A = σ(B)

Pointage : A = B•

Substitution : A = B ◦ C

A(z) = B(z) + C(z)

A(z) = B(z) · C(z)

A(z) =
1

1 −B(z)

A(z) = z
d

dz
B(z)

A(z) = B(C(z))

En traduisant une description récursive d’une classe combinatoire, on obtient une

équation qui définit entièrement la série génératrice de cette classe. On appelle rationnelles

les séries formelles de la forme F (z) = P (z)/Q(z) où P et Q sont des polynômes. On

appelle algébriques les séries formelles solutions d’une équation de la forme P (F (z), z) = 0,
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où P (x, y) est un polynôme non nul. On appelle différentiellement finies les séries formelles

solutions d’une équation de la forme
k
∑

i=0

pi(z)F
(i)(z), où pi(z) est un polynôme en z et F (i)

est la dérivée ième de la série formelle F . Clairement, les séries rationnelles sont algébriques et

on peut montrer que les séries algébriques sont différentiellement finies2. Informellement, on

s’attend à ce que la nature d’une série génératrice (rationnelle, algébrique, différentiellement

finie) reflète la complexité de la classe combinatoire qu’elle énumère [Bous 06]. Ainsi,

les langages rationnels (resp. algébriques) donnent lieu à des séries rationnelles (resp.

algébriques).

L’équation définissant une série génératrice fournit une méthode effective pour le calcul

des coefficients de la série. Par exemple, l’équation de la suite de Catalan (7) fournit un

algorithme quadratique pour le calcul des n premiers coefficients de la série. En fait, dès que

la série est différentiellement finie (c’est le cas de la suite de Catalan qui est algébrique),

on dispose d’un algorithme calculant les n premiers coefficients en un nombre linéaire

d’opérations arithmétiques [Stan 80b].

On s’intéresse maintenant à la résolution des équations, c’est-à-dire au passage de

l’équation définissant une série génératrice F (z) à la détermination (exacte ou asympto-

tique) de ses coefficients. Essayons de résoudre l’équation (7) définissant la suite de Catalan.

Puisque cette équation est quadratique, ses deux solutions (dans l’espace des séries de Lau-

rent) s’expriment par radicaux. L’une des deux solutions n’est pas une série formelle car elle

fait intervenir le terme z−1. Cette solution est donc rejetée et on en déduit l’expression de la

série génératrice C(z):

C(z) =
1 −

√
1 − 4z

2z
. (8)

Ensuite, le théorème du binôme de Newton montre que le développement de la série C(z)

s’écrit

C(z) =
∑

n∈N

1

n+ 1

(

2n

n

)

zn.

Voilà donc prouvée l’expression (4) des nombres de Catalan.

La résolution explicite par radicaux n’étant pas vouée à un très grand avenir nous allons

maintenant introduire d’autres méthodes.

Théorème 0.5 (Inversion de Lagrange 1770) Soit Φ(x) =
∑

n∈N
φnx

n une série

formelle dont le coefficient constant φ0 est non nul. Il existe une unique série formelle F (z)

2En effet, les dérivées de F s’expriment toutes comme des fractions rationnelles en F et puisque les puis-

sances de F ne sont pas linéairement indépendantes (sur le corps des fractions rationnelles en z) les fractions

rationnelles en F engendrent un espace linéaire de dimension fini.
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solution de l’équation F (z) = zΦ(F (z)). Cette solution est donnée par

F (z) =
∑

n≥1

fnz
n où fn =

1

n
[xn−1](Φ(x))n.

De plus,

[zn]fk(z) =
k

n
[xn−k](Φ(x))n.

On peut facilement mettre l’équation (7) sous la forme prescrite par le théorème d’inversion

de Lagrange :

C(z) − 1 = Φ(C(z) − 1) où Φ(x) = (x+ 1)2,

et obtenir ainsi une seconde preuve de l’expression des nombres de Catalan :

Cn =
1

n
[xn−1](1 + x)2n =

1

n

(

2n

n− 1

)

=
1

n+ 1

(

2n

n

)

.

Il n’est malheureusement pas toujours possible de se ramener au théorème d’inversion de

Lagrange ni d’obtenir des résultats d’énumération exacte. Nous verrons bientôt (sous-section

0.2.4) comment réaliser l’énumération asymptotique à partir des équations définissant la série

génératrice. Avant cela, nous allons voir comment obtenir des équations définissant la série

génératrice d’une classe combinatoire dont nous n’avons qu’une compréhension partielle.

0.2.3 Les variables catalytiques

Nous avons vu comment traduire une description récursive d’une classe combinatoire en une

équation définissant sa série génératrice. Malheureusement, il est souvent difficile de trouver

une description récursive d’une classe combinatoire. Du moins, les descriptions récursives

näıves nécessitent souvent de prendre en compte de nouveaux paramètres sur nos objets en

plus de la taille.

Considérons, par exemple, les chemins unidimensionnels fait de pas +1 et -1 qui partent

de 0 et restent positifs. Une description naı̈ve consiste à dire qu’un chemin non-vide se

décompose en un chemin plus un pas. On doit juste faire attention à ne pas ajouter un pas

-1 lorsque le chemin est à hauteur 0. Cette approche nous oblige donc à prendre en compte

la hauteur finale des chemins en plus de leur taille. On considère alors la série génératrice

bivariée F (x, z) =
∑

fn,kx
kzn, ou fn,k est le nombre de chemins de taille (longueur) n et de

hauteur k. Les chemins à hauteur 0 sont comptés par F (0, z). Par conséquent, la description

{chemins} = {chemin vide}∪{chemins}×{+1}∪{chemins à hauteur strictement positive}×{−1},

se traduit par l’équation

F (x, z) = 1 + xzF (x, z) +
z

x
(F (x, z) − F (0, z)). (9)
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Cette équation définit bien la série F (x, z) comme série formelle en la variable z dont les

coefficients sont polynomiaux en x. En particulier, la série F (0, z) qui compte les mots de

Dyck (selon leur longueur) est entièrement déterminée par l’équation (9).

La variable x qui compte la hauteur du chemin était nécessaire pour écrire l’équation

(9). La preuve en est que si nous assignons une valeur à x (0 ou 1 par exemple) l’équation

devient insuffisante pour définir F (x, z). Par analogie à la chimie, Zeilberger [Zeil 00] qualifie

la variable x de catalytique : elle permet d’écrire l’équation mais on aimerait s’en débarrasser

a posteriori.

On cherche à résoudre l’équation fonctionnelle (9), c’est-à-dire à en déduire une équation

pour la série F (0, z) ne faisant pas intervenir la variable catalytique x. L’équation fonctionnelle

(9) est linéaire en la série bivariée F (x, z). On peut, dans ce cas particulier, appliquer la

méthode du noyau [Band 02, Bous 00b, Prod 04]. On commence par mettre la série bivariée

en facteur :

(x− z(1 + x2))F (x, y) = x− zF (0, z). (10)

On cherche ensuite à annuler le noyau, c’est-à-dire le coefficient N(x, z) = x − z(1 + x2) de

la série bivariée F (x, z). Plus précisément, on cherche une série X(z) substituable à x dans

l’équation (10) et telle que N(X(z), z) = 0. Dans notre cas, l’équation X(z)−z(1+X(z)2) = 0

admet deux solutions

X1(z) =
1 −

√
1 − 4z2

2z
et X2(z) =

1 +
√

1 − 4z2

2z
.

La série X1(z) = z+o(z) est substituable à x dans l’équation (10). On obtient alors le système

{

X1(z) − z(1 +X1(z)
2) = 0,

X1(z) − zF (0, z) = 0,

et finalement,

F (0, z) = 1 + z2F (0, z)2. (11)

Cette équation définit la série F (0, z) qui compte les mots de Dyck selon leur longueur. Elle

est équivalente à l’équation (7) régissant la série C(z) qui compte les mots de Dyck selon

leur demi-longueur. Le détour par les variables catalytiques nous a donc permis d’obtenir

l’équation (7) de la suite de Catalan en nous basant sur une approche très naı̈ve de la

combinatoire des mots de Dyck.

La description récursive näıve des cartes planaires enracinées consiste à décomposer

une carte en une racine et une ou plusieurs cartes plus petites. Cette approche initiée
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par Tutte dans les années 60 permet l’énumération de nombreuses familles de cartes

[Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63]. Nous verrons en section 0.4 que cette approche

s’adapte aussi au cas des cartes coloriées et plus généralement aux cartes pondérées par leur

polynôme de Tutte.

Énumération récursive de cartes dans cette thèse. Au chapitre 1,

nous utiliserons la méthode récursive pour l’énumération des familles de

triangulations dont le degré des sommets est au moins égal à une valeur d

choisie parmi {3, 4, 5}. Nous obtenons des équations fonctionnelles pour les

séries génératrices de ces familles au prix de l’introduction d’une variable

catalytique. La résolution des équations fonctionnelles utilise les méthodes

présentées ci-dessous et mène à une caractérisation algébrique pour la série

génératrice de chacune des familles.

Tutte a montré [Tutt 63] que la série génératrice G(x, z) des cartes planaires enracinées

vérifie l’équation fonctionnelle

G(x, z) = 1 + x2zG(x, z)2 + xz

(

xG(x, z) −G(1, z)

x− 1

)

. (12)

Nous verrons comment obtenir l’équation (12) en section 0.4. Dans cette équation, la variable

principale z se rapporte à la taille (le nombre d’arêtes) de la carte et la variable catalytique

x se rapporte au degré de la face externe (à droite de l’arête racine). L’équation (12) n’étant

pas linéaire en la variable z nous ne pouvons appliquer la méthode du noyau. Nous pourrions

utiliser la méthode quadratique [Brow 65, Goul 83] mais nous préférons présenter une méthode

plus générale qui sera utile au chapitre 1. Cette méthode due à Bousquet-Mélou et Jehanne

[Bous 05b] s’applique à toute équation de la forme

P (G(x), G1, . . . , Gk, x, z) = 0, (13)

où P est un polynôme en k + 3 variables, G(x) ≡ G(x, z) est la série génératrice bivariée et

les séries Gi ≡ Gi(z) sont des séries univariées. Dans notre cas, k = 1, G1 = G(1, z) et

P (G(x), G1, x, z) = x2(x− 1)zG(x)2 + (x2z − x+ 1)G(x) − xzG1 + x− 1. (14)

On suppose que l’équation (13) définit G(x) ≡ G(x, z) de manière unique comme série

formelle en z dont les coefficients sont polynomiaux en x. Par exemple, en remplaçant x

par 1 dans (14) on obtient G1 = G(1). Une fois cette information acquise, on peut calculer

récursivement les coefficients de G(x) ≡ G(x, z). La série G(x) est donc bien définie.

Sous ces hypothèses, on dispose d’une méthode générale pour la résolution de l’équation

(13). La première étape consiste à chercher les séries X ≡ X(z) qui satisfont

P ′
1(G(X(z)), G1 , . . . , Gk, X(z), z) = 0, (15)
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où P ′
1 est la dérivée de P par rapport à sa première variable. Il est démontré (sous des

hypothèses assez générales) dans [Bous 05b] qu’il existe k séries (de Puiseux) X1, . . . , Xk

substituables à x dans l’équation (13) et satisfaisant l’équation (15). Dans notre cas, l’équation

(15) s’écrit

X = 1 + zX2 + 2zX2(X − 1)G(X)

et admet bien une solution X1 = 1 + o(1) substituable.

En dérivant l’équation (13) par rapport à x, on obtient

d

dx
G(x) · P ′

1(G(x), G1, . . . , Gk, x, z) + P ′
k+2(G(x), G1, . . . , Gk, x, z) = 0,

où P ′
k+2 est la dérivée de P par rapport à sa (k + 2)ème variable. Les séries Xi, i = 1 . . . k

satisfont donc aussi l’équation

P ′
k+2(G(X), G1 , . . . , Gk, X, z) = 0. (16)

On obtient donc un système de 3k équations polynomiales











P (G(Xi), G1, . . . , Gk, Xi, z) = 0,

P ′
1(G(Xi), G1, . . . , Gk, Xi, z) = 0,

P ′
k+2(G(Xi), G1, . . . , Gk, Xi, z) = 0,

i = 1 . . . k

pour les 3k séries inconnues Gi, Xi(z), G(Xi), i = 1 . . . k. Il est démontré que ce système

définit bien l’ensemble des séries inconnues (13). La résolution peut se faire en utilisant

des techniques d’éliminations par résultants ou par bases de Gröbner. On obtient alors une

équation polynomiale (ne faisant pas intervenir la variable catalytique x) pour chacune des

séries inconnues Gi, i = 1 . . . k. Pour l’équation des cartes, la résolution du système aboutit à

l’équation :

27z2G2
1 + (1 − 18z)G1 + 16z − 1. (17)

0.2.4 Énumération asymptotique

Il n’est pas toujours possible (ni utile) de réaliser l’énumération exacte d’une classe combi-

natoire. Bien souvent, on s’estime heureux avec une énumération asymptotique, c’est-à-dire

un développement asymptotique du nombre d’objets de taille n. La combinatoire analytique

(basée sur les séries génératrices) fournit une collection de méthodes permettant de réaliser

l’énumération asymptotique d’une classe combinatoire lorsque l’on dispose d’une équation

définissant la série génératrice correspondante.

L’énumération asymptotique demande un changement de perspective sur notre façon de

considérer les séries génératrices. Jusqu’à présent, nous avons considéré les séries génératrices
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comme des séries formelles. Cependant, si le rayon de convergence de la série génératrice

est non nul, il y a beaucoup à gagner à la considérer comme une fonction holomorphe

sur une partie du plan complexe. En effet, cette perspective permet d’espérer obtenir

des informations sur l’asymptotique des coefficients en étudiant les singularités de la série

génératrice (cet espoir est fondé sur le théorème des résidus de Cauchy). Cette approche

extrêmement féconde est à la base de toutes les techniques d’énumération asymptotique

reposant à la base sur des résultats exacts [Flaj 90, Flaj]. Nous renvoyons le lecteur à

l’ouvrage de Flajolet et Sedgewick [Flaj] (en préparation) pour une exposition très complète

du domaine. Nous nous contenterons pour notre part de tracer les lignes directrices des

résultats et méthodes qui s’appliquent aux séries génératrices algébriques.

Énumération asymptotique dans cette thèse. Au chapitre 1, nous

établissons des équations algébriques caractérisant les séries génératrices de

plusieurs familles de triangulations. Nous obtenons ensuite le développement

asymptotiques du nombre de triangulations dans chaque famille à l’aide des

techniques présentées ci-dessous.

Principes généraux de l’énumération asymptotique : Avant d’étudier le cas des

séries génératrices algébriques nous rappelons quelques principes généraux pour l’extraction

asymptotique des coefficients d’une fonction holomorphe.

1. Si une fonction holomorphe F (z) =
∑

n∈N
fnz

n a une unique singularité dominante ρ

(non nulle) les coefficients fn ont une croissance du type fn = θ(n)ρ−n où la croissance

de la fonction θ est sous-exponentielle. Le facteur sous-exponentiel θ est déterminé par le

développement asymptotique de la fonction F (z) au voisinage de ρ.

On peut se ramener au cas ρ = 1 en remarquant fn = [zn]F (z) = ρ−nF ( z
ρ).

2. Il y a une correspondance (préservant les ordres de grandeur) entre développement

asymptotique d’une fonction holomorphe au voisinage de sa singularité dominante et

l’asymptotique des coefficients de cette fonction. En effet, sous une condition (∆) concernant

le domaine de définition de la fonction holomorphe F , on a l’identité fondamentale (non

triviale) [zn]O(F (z)) = O([zn]F (z)).

3. On dispose d’une échelle de fonctions, les fonctions du type (1 − z)α log(1 − z)β , dont

on connâıt l’asymptotique. Par conséquent, sous l’hypothèse (∆), on déduit l’asymptotique

des coefficients de toute fonction F dont le comportement asymptotique autour de la

singularité dominante 1 est comparable à cette échelle. En répétant l’opération on obtient le

développement asymptotique des coefficients de F .
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4. Si une fonction holomorphe a un nombre fini de singularités dominantes, leurs contribu-

tions à l’asymptotique des coefficients s’additionnent.

Le cas des séries génératrice algébriques : Nous passons maintenant à des pro-

priétés spécifiques aux séries algébriques. Les coefficients fn d’une série génératrice

F (z) =
∑

n∈N
fnz

n sont des entiers positifs et on supposera (sans grande perte) qu’il existe

une infinité de coefficients non nuls. Dans ce cas, le rayon de convergence ρ de la fonction

holomorphe F est fini (et inférieur à 1). De plus, par le théorème de Pringsheim, le réel

positif ρ est une singularité (dominante) de la fonction F . Supposons que la série génératrice

F est algébrique, c’est-à-dire solution d’une équation de la forme P (F (z), z) = 0, ou P (y, z)

est un polynôme non nul. Dans ce cas, la fonction F est une des branches de la courbe

algébrique complexe P (y, z) = 0 (l’ensemble des couples de complexes (y, z) vérifiant cette

équation). Nous allons voir que l’algébricité de F fournit des renseignements sur la position

des singularités ainsi que sur la nature de celles-ci.

• Position des singularités :

On considère le discriminant D(z) du polynôme P (z, y) par rapport à la variable y et le

coefficient dominant d(z) de ce polynôme. Toute singularité de la fonction F est une racine

du polynôme d(z)D(z). En particulier, F a un nombre fini de singularités dominantes. De

plus, les singularités dominantes de F peuvent être déterminées algorithmiquement. Le

principe général consiste à déterminer pour chaque racine z0 de d(z)D(z) un développement

de chacune des branches de la courbe P (z, y) = 0 qui soit valide dans un voisinage de z0. Il

faut ensuite être capable de faire correspondre la branche F (z) à l’un de ces développements

pour savoir si z0 est une singularité de F . Un algorithme complet décrivant comment résoudre

ces problèmes de branchement est présenté dans [Flaj]. Si F est une série génératrice, la

positivité des coefficients simplifie grandement les problèmes de branchement auxquels on

est confronté. En effet on sait qu’il existe une singularité dominante ρ qui est un réel positif.

Pour trouver ρ on peut utiliser un algorithme par balayage permettant de suivre la branche

correspondant à F sur l’axe des réels jusqu’à sa singularité dominante ρ. Cet algorithme

ne prend en compte que le classement par ordre croissant des courbes admettant un

développement réel sur l’axe des réels. En effet, les croisements entre branches, l’apparition,

la disparition de branche à développement réel ou le passage de branche par l’infini ne

peuvent se produire que pour des valeurs de z racine du polynôme d(z)D(z).

• Nature des singularités :

Soit z0 une singularité de F (z). La fonction F (z) admet un développement asymptotique

dans un voisinage de z0 coupé d’une demi-droite émanant de z0 (en particulier, la condition
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(∆) sus-mentionnée est vérifiée). Ce développement prend la forme (de Puiseux) :

F (z) =
∑

k≥k0

ck(z − z0)
k/κ,

où k0 est un entier relatif et κ est un entier positif. Ce développement peut être déterminé

algorithmiquement par la méthode du polygone de Newton implémentée dans la librairie gfun

de Maple [Salv 94] (il faut tout de même déterminer à quel développement correspond la

branche F ). Toutes les conditions sont réunies pour appliquer les principes généraux de

l’extraction asymptotique des coefficients mentionnés plus haut. Si z0 ∈ R+ est l’unique

singularité dominante on obtient :

fn ∼ ck0

nα−1

Γ(α)
zn
0 ,

ou α = −k0/κ et Γ est la fonction Gamma. On peut, en fait, déterminer un développement

asymptotique des coefficients fn aussi poussé que nécessaire.

0.3 Polynôme de Tutte et modèle de Potts

Le polynôme de Tutte est un invariant fondamental des graphes. Il généralise à la fois le

polynôme chromatique (comptant les coloriages) et le polynôme des flots (comptant les flots

partout non-nuls). Afin d’introduire le polynôme de Tutte en douceur, nous commençons par

quelques rappels concernant le polynôme chromatique.

0.3.1 Polynôme chromatique

On s’intéresse au nombre de façons de colorier un graphe avec q couleurs. Par coloriage

nous entendons une attribution d’une couleur parmi {1, . . . , q} à chaque sommet telle que

deux sommets adjacents soient toujours de couleur différente (il n’est pas exigé que toutes

les couleurs soient utilisées).

Le graphe de gauche en figure 17 admet q(q−1)(q−2)2 coloriages avec q couleurs. En effet,

il y a q couleurs possibles pour le sommet s, après quoi il reste q − 1 couleurs possibles pour

le sommet t, puis q − 2 couleurs pour les sommets u et v. Remarquons, sur cet exemple, que

le nombre de coloriages en q couleurs s’exprime comme un polynôme en la variable q. Cette

propriété est en fait générale et se prouve facilement par récurrence sur le nombre d’arêtes.

Pour cela on introduit deux opérations fondamentales sur les graphes : la suppression et la

contraction d’une arête. Étant donné un graphe G et une arête e, on note G\e et G/e les

graphes obtenus respectivement en supprimant l’arête e et en contractant l’arête e (i.e, en

supprimant l’arête e et en identifiant ses deux extrémités). (La suppression et la contraction
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cöıncident lorsque l’arête e est une boucle.) Ces deux opérations sont illustrées en figure 17.

suppression

contraction

PG\e(q) = q(q − 1)2(q − 2)

PG/e(q) = q(q − 1)(q − 2)
PG(q) = q(q − 1)(q − 2)2

t

e

s

v

u

Figure 17: Relation de récurrence pour le polynôme chromatique.

Remarquons que les coloriages de G\e qui ne sont pas des coloriages de G sont ceux pour

lesquels les deux extrémités de l’arête e sont de même couleur, c’est-à-dire les coloriages de

G/e. Cette propriété est la clef pour démontrer le résultat classique suivant.

Proposition 0.6 Pour tout graphe G il existe un unique polynôme PG(q), appelé polynôme

chromatique, tel que pour tout entier q, l’évaluation PG(q) soit le nombre de coloriages de G

avec q couleurs. De plus, pour toute arête e du graphe G qui n’est pas une boucle, le polynôme

PG(q) satisfait la relation

PG(q) = PG\e(q) − PG/e(q). (18)

La proposition 0.6 est illustrée par la figure 17. On peut aussi exprimer le polynôme

chromatique d’un graphe G par sommation sur les sous-graphes couvrants. Un graphe H est

un sous-graphe couvrant de G si les sommets de H sont les sommets de G et les arêtes de H

sont un sous-ensemble des arêtes de G. Nous ne considérerons que des sous-graphes couvrants

et nous les appellerons simplement sous-graphes.

Proposition 0.7 Le polynôme chromatique du graphe G est égal à

PG(q) =
∑

H⊆G

(−1)|H|qc(H), (19)

où la somme porte sur les sous-graphes de G, et les exposants |H| et c(H) sont respectivement

le nombre d’arêtes et de composantes connexes du sous-graphe H.

La proposition 0.7 peut être prouvée par une méthode de crible (sieving methods)

[Stan 86, Chap. 2]). On considère les pseudo-coloriages du graphe G, soit l’attribution d’une

couleur à chaque sommet (sans contrainte sur les sommets adjacents). Pour un sous-graphe

H, on note f(H) le nombre pseudo-coloriages en q couleurs tels que les sommets adjacents
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dans H soient de couleur identique mais que les sommets adjacents dans G et non dans

H soient de couleurs différentes. Pour le sous-graphe sans-arête H∅ le paramètre f(H∅)

n’est autre que PG(q). Pour tout sous-graphe H, il est clair que g(H) =
∑

H⊆K⊆G f(K)

compte les pseudo-coloriages en q couleurs tels que les sommets adjacents dans H soient

de couleurs identiques. On obtient donc g(H) = qc(H). Le principe du crible (qui consiste

à inverser la matrice donnant les valeurs de g en fonction de celles de h) montre que

f(H) =
∑

H⊆K⊆G(−1)|K|−|H|g(K). En particulier, pour le sous-graphe sans arête H∅ on

retrouve l’expression (19).

L’expression (19) du polynôme chromatique invite à étudier le polynôme bivarié
∑

H⊆G

v|H|qc(H). Nous verrons en sous-section 0.3.4 qu’il y a équivalence (à changement de

variables près) entre cette généralisation du polynôme chromatique et la fonction de partition

du modèle de Potts. Ce polynôme est aussi équivalent (à changement de variables près) à un

invariant fondamental de la théorie de graphe que Tutte baptisa polynôme dichromatique et

qui est couramment appelé polynôme de Tutte.

0.3.2 Polynôme de Tutte : définition et spécialisations

Le polynôme de Tutte est un polynôme bivarié qui généralise à la fois le polynôme chromatique

et le polynôme des flots et admet de nombreuses autres spécialisations intéressantes. Depuis sa

découverte par William T. Tutte dans les années 1950, plusieurs caractérisations du polynôme

de Tutte ont été proposées. Dans la définition originale de Tutte, son polynôme est défini

comme la série génératrice des arbres couvrants comptés selon leurs activités [Tutt 54]. Au

chapitre 5 de cette thèse nous établissons une nouvelle caractérisation, toujours comme série

génératrice des arbres couvrants. Notre caractérisation s’appuie sur une nouvelle notion

d’activité basée sur la structure de carte combinatoire. Cependant, la caractérisation la plus

rassurante du polynôme de Tutte est comme série génératrice des sous-graphes comptés selon

le nombre d’arêtes et de composantes connexes [Bryl 91].

Definition 0.8 Soit G un graphe ayant c composantes connexes et s sommets. Le polynôme

de Tutte du graphe G est

TG(x, y) =
∑

H⊆G

(x− 1)c(H)−c(y − 1)|H|+c(H)−s, (20)

où la somme porte sur les sous-graphes de G, et les exposants |H| et c(H) sont respectivement

le nombre d’arêtes et de composantes connexes du sous-graphe H.

Par exemple, le graphe completK3 (le triangle) a 8 sous-graphes. Le sous-graphe sans arête

a contribution (x− 1)2, chaque sous-graphe à une arête a contribution (x− 1), chaque sous-

graphe à deux arêtes a contribution 1, et le sous-graphe à trois arêtes a contribution (y−1). En
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additionnant ces contributions, on obtient TK3
(x, y) = (x−1)2+3(x−1)+3+(y−1) = x2+x+y.

Il est facile de voir que le polynôme de Tutte est multiplicatif sur les com-

posantes connexes : lorsque G est l’union disjointe de deux graphes G1 et G2, alors

TG(x, y) = TG1
(x, y)×TG2

(x, y). Cette remarque nous autorise à restreindre notre attention

aux graphes connexes. À partir de maintenant tous nos graphes sont connexes.

Le développement par sous-graphes (20) du polynôme de Tutte prend en compte deux

paramètres : le nombre (renormalisé) de composantes connexes c(H) − 1 et le nombre cyclo-

matique |H| + c(H) − s. Le nombre cyclomatique est le nombre maximal d’arêtes pouvant

être supprimées de H sans augmenter le nombre de composantes connexes. En particulier, le

nombre cyclomatique est nul si et seulement si H est une forêt (i.e. sans cycle). Plusieurs

spécialisations du polynôme de Tutte sont immédiates à partir de l’expression (20). Par ex-

emple, TG(2, 2) = 2|G| compte tous les sous-graphes de G (i.e. les sous ensembles d’arêtes),

TG(1, 2) compte les sous-graphes connexes, TG(2, 1) compte les forêts et TG(1, 1) compte les

arbres couvrants. Le polynôme chromatique est lui aussi une spécialisation du polynôme de

Tutte puisque l’équation (19) donne

PG(q) =
∑

H⊆G

(−1)|H|qc(H) = qc(−1)s TG(1 − q, 0).

Le polynôme de Tutte admet encore bien d’autres spécialisations intéressantes. La voie

la plus rapide (mais aussi la moins satisfaisante) pour démontrer une telle spécialisation est

souvent d’utiliser les relations de récurrence du polynôme de Tutte.

Proposition 0.9 Soit G un graphe et e une arête de G. Le polynôme de Tutte satisfait les

relations

TG(x, y) = x · TG/e(x, y) si e est un isthme (i.e. sa suppression déconnecte G),

y · TG\e(x, y) si e est une boucle,

TG/e(x, y) + TG\e(x, y) si e n’est ni un isthme ni une boucle.

(21)

Ces relations permettent, par exemple, de montrer par récurrence que le polynôme chro-

matique est une spécialisation du polynôme de Tutte en utilisant (18). Par une induction

similaire on montre aussi que le polynôme des flots est une spécialisation du polynôme de

Tutte.

0.3.3 Polynôme de Tutte et activités des arbres couvrants

Comme nous l’avons mentionné le polynôme de Tutte n’est pas né sous la forme (20) d’une

série génératrice des sous-graphes, mais comme une série génératrice des arbres couvrants.

Historiquement, Tutte définit le polynôme qui porte son nom après s’être amusé à réduire
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des graphes à néant par une suite de suppressions et de contractions d’arêtes3. Le jeu est

le suivant : on ordonne linéairement l’ensemble des arêtes d’un graphe puis on considère les

arêtes dans l’ordre décroissant. Si une arête est un isthme on la contracte, si c’est une boucle

on la supprime et dans les autres cas on choisit soit de la contracter soit de la supprimer.

L’ensemble des exécutions possibles est représenté sur un exemple en figure 18.

a

bb
a

a

b

a

b

a
a

aaa

ca

/a /a \a /a \a

/b \b\b

/c\c/c\c

\d /d

d

b

b
ca

ca

b

\b/b

Figure 18: Jeu des suppressions et contractions pour l’ordre a < b < c < d des arêtes.

Observons que pour toute exécution, l’ensemble des arêtes contractées est un arbre

couvrant du graphe G. Par exemple l’exécution la plus à gauche en figure 18 correspond à

l’arbre couvrant {a, b}. Pour chaque exécution E, on considère le nombre i(E) de contractions

forcées (l’arête était un isthme) et le nombre e(E) de suppressions forcées (l’arête était

une boucle). Par exemple, pour l’exécution la plus à gauche en figure 18 on a i(E) = 2 et

e(E) = 0. Si on associe à chaque exécution E le monôme xi(E)ye(E) et que l’on en fait la

somme, on obtient un polynôme qui n’est autre que le polynôme de Tutte du graphe. Sur

notre exemple, TG(x, y) = x2 + x + y + xy + y2. Il mérite d’être souligné que le polynôme

obtenu ne dépend pas de l’ordre choisi sur les arêtes.

Plutôt que de caractériser le polynôme de Tutte en terme d’exécutions du jeu de suppres-

sion/contraction, il est sans doute plus agréable de considérer les arbres couvrants associés.

C’est ce que fit Tutte dans l’article fondateur [Tutt 54]. Étant donné un graphe et un arbre

couvrant, on appelle internes les arêtes qui sont dans l’arbre et externes les arêtes qui n’y

3Cette petite histoire de la pensée est relatée par Ruth Bari en appendice de [Bari 79].
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sont pas. Le cycle fondamental d’une arête externe est le cycle qu’elle forme avec les arêtes

de l’arbre. Le cocycle fondamental d’une arête interne est le cocycle qu’elle forme avec les

arêtes qui ne sont pas dans l’arbre. Autrement dit, le cocycle fondamental d’une arête interne

e est l’ensemble des arêtes qui relient les deux sous-arbres obtenus en supprimant l’arête e

de l’arbre couvrant. Un exemple est représenté en figure 19. On suppose maintenant que les

arêtes du graphe sont linéairement ordonnées. Une arête externe (resp. interne) est active si

elle est minimale dans son cycle (resp. cocycle) fondamental. Pour le graphe de la figure 19,

les arêtes actives sont 1, 4, 6 et 9. Avec ces notations, le polynôme de Tutte s’obtient comme

série génératrice des arbres couvrants comptés selon leurs activités.

Théorème 0.10 [Tutt 54] Soit G un graphe dont les arêtes sont linéairement ordonnées. Le

polynôme de Tutte du graphe G est

TG(x, y) =
∑

A arbre couvrant

xi(A)ye(A), (22)

où la somme porte sur les arbres couvrants A de G et i(A) (resp. e(A)) est le nombre d’arêtes

internes (resp. externes) actives.

Le développement par arbres (22) du polynôme de Tutte est d’autant plus étonnant qu’il

implique l’invariance de la somme (22) par rapport à l’ordre choisi sur les arêtes. Si on identifie

l’arbre couvrant à une exécution du jeu de suppression/contraction, alors les arêtes internes

(resp. externes) actives correspondent aux arêtes dont la contraction (resp. la suppression)

est forcée durant l’exécution du jeu.

3

4
7

8

3

4

5

67

8

10

11

6
12

5

10

12

2 2

11

9 9

11

Figure 19: Le cycle fondamental de l’arête externe 3 est {2, 3, 11, 12}. Le cocycle fondamental

de l’arête interne 12 est {3, 5, 6, 12}.

Il existe une autre caractérisation du polynôme de Tutte comme série génératrice des

orientations comptées selon leurs activités cycliques [Las 84b]. Cette caractérisation due à

Las Vergnas demande, tout comme celle due à Tutte, d’ordonner linéairement les arêtes du

graphe. Un lien entre le développement par orientations de Las Vergnas et le développement

par arbres de Tutte est établi dans [Gioa 05]. Mentionnons enfin, qu’il existe une autre

définition de l’activité externe des arbres couvrants due à Gessel et Wang [Gess 79]. Une
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comparaison entre les différentes caractérisations du polynôme de Tutte est effectuée au

chapitre 5, section 5.3.

Le polynôme de Tutte dans cette thèse. Au chapitre 5, nous établirons

un autre développement par arbres du polynôme de Tutte qui utilise non pas

un ordre linéaire sur les arêtes mais une carte combinatoire enracinée. Dans la

perspective du jeu de suppression/contraction, cette nouvelle caractérisation

revient à considérer l’arête racine à chaque étape de l’exécution (et à choisir

entre la suppression et la contraction). On doit ré-enraciner la carte à chaque

étape de l’exécution. Si la carte C = (H,σ, α) est enracinée sur la demi-arête

h et que l’on choisi de contracter (resp. supprimer) l’arête racine, la racine

de la nouvelle carte sera σα(h) (resp. σ(h)). Nous appellerons activité de

plongement la notion d’activité qui résulte de cette nouvelle règle du jeu.

Les activités de plongement nous servent ensuite à définir une bijection entre

les sous-graphes et les orientations (chapitre 6). Cette bijection se spécialise

agréablement à différentes classes de sous-graphes (sous-graphes connexes,

forêts, arbres couvrants etc.). L’étude de ces spécialisations est effectué au

chapitre 7 et permet d’obtenir bijectivement l’interprétation de plusieurs

évaluations du polynôme de Tutte en termes d’orientations.

0.3.4 Polynôme de Tutte et modèle de Potts

Nous présentons maintenant l’équivalence (découverte par Fortuin et Kasteleyn [Fort 72])

entre le polynôme de Tutte et la fonction de partition du modèle de Potts.

Soit G un graphe dont S est l’ensemble des sommets. On considère le modèle de Potts

(défini en sous-section 0.1.5) sur le graphe G. On rappelle que la fonction de partition du

modèle de Potts à q états s’écrit

ZG(q,K) =
∑

θ :S 7→{1,...,q}
exp(K · u(θ)),

où la somme porte sur l’ensemble des configurations θ (l’attribution d’un état parmi {1, . . . , q}
à chaque sommet) et u(θ) est le nombre d’arêtes unicolores (dont les deux extrémités ont même

état). Le paramètre u(θ) peut se définir par une sommation sur l’ensemble A des arêtes :

u(θ) =
∑

a∈A

δθ(a),

où δθ(a) vaut 1 si l’arête est unicolore et 0 sinon. En reportant cette expression dans la

fonction de partition et en développant la fonction exponentielle on obtient

ZG(q,K) =
∑

θ :S 7→{1,...,q}

∏

a∈A

exp(Kδθ(a)) =
∑

θ :S 7→{1,...,q}

∏

a∈A

(1 + vδθ(a)) ,
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où v = exp(K)−1. On considère le développement du produit. Chaque terme de ce développe-

ment correspond à un sous-graphe H de G dont les arêtes sont celles pour lesquelles le terme

vδθ(a) est pris. On fait ensuite la somme sur toutes les configurations. Le terme correspon-

dant au sous-graphe H est non nul si et seulement si la configuration c est constante sur

chaque composante connexe de H. Il y a qc(H) telles configurations (c(H) est le nombre de

composantes connexes de H). On obtient donc

ZG(q,K) =
∑

H⊆G

v|S|qc(H). (23)

On reconnâıt maintenant le développement par sous-graphes du polynôme de Tutte (20), et

on trouve
ZG(q,K)

qvs
= TG(x, y),

pour q = (x− 1)(y − 1) et v ≡ exp(K) − 1 = y − 1.

La relation (23) entre la fonction de partition du modèle de Potts et le polynôme de

Tutte explique l’intérêt suscité par ce polynôme chez certains physiciens [Baxt 01, Soka 05].

Résoudre le modèle de Potts sur réseau aléatoire revient, dans une perspective combinatoire,

à compter les cartes pondérées par leur polynôme de Tutte.

0.4 Comptage des cartes

Nous présentons maintenant les principales méthodes utilisées pour le comptage des cartes

planaires. Nous avons déjà évoqué le comptage par décomposition récursive à la Tutte

[Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63]. Nous présentons également trois autres méthodes

par substitution [Mull 68, Tutt 62d, Tutt 63], par intégrales de matrices [Bréz 78, Di F 04,

Bout 02, Zvon 97] et par conjugaisons d’arbres [Scha 98, Scha 97, Poul 03a, Bous 03b].

0.4.1 Approche récursive

L’approche récursive pour l’énumération des cartes a été initiée par Tutte au début des

années 60 dans sa célèbre série d’articles census [Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63].

Tutte espérait que l’étude des cartes, qui au contraire des graphes planaires contiennent une

description explicite de leur planarité, le mènerait à une preuve du théorème des quatre

couleurs. Si cet espoir a été déçu, la méthode mise au point par Tutte et ses disciples permit

l’énumération de nombreuses familles de cartes. C’est cette méthode que nous utiliserons

au chapitre 1 pour énumérer trois familles de triangulations dont les sommets sont de degré

supérieur à 3, 4 et 5 respectivement. La méthode récursive pour l’énumération d’une famille

de cartes enracinées consiste, tout simplement, à exprimer ce que l’on obtient en supprimant

l’arête racine d’une carte.
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Considérons, par exemple, la classe C des cartes planaires enracinées. La fonction taille,

notée |.|, est le nombre d’arêtes. La description récursive de la classe C est représentée en

figure 20. On distingue deux cas suivant que l’arête racine est un isthme ou non. Si l’arête

racine est un isthme, la carte se décompose en un couple de cartes enracinées (figure 21).

Sinon, la carte obtenue en supprimant l’arête est une carte dont un coin de la face externe (à

droite de la racine) est distingué (figure 22).

= + +

Figure 20: Description récursive des cartes planaires enracinées par suppression de la racine.

Figure 21: Cas 2: l’arête racine est un isthme.

∗

Figure 22: Cas 2: l’arête racine n’est pas un isthme.

Pour traduire la description des cartes par suppression de la racine il est nécessaire de

prendre en compte le degré de la face externe (i.e. le nombre de coins). On considère donc la

série génératrice bivariée

G(x, z) =
∑

C∈C

xf(C)z|C|,

où f(C) est le degré de la face externe de la carte C. La description récursive des cartes

planaires par suppression de la racine se traduit par l’équation fonctionnelle

G(x, z) = 1 + x2zG(x, z)2 + xz

(

xG(x, z) −G(1, z)

x− 1

)

.

Nous avons vu comment résoudre cette équation en sous-section 0.2.3 afin d’obtenir l’équation

algébrique (17) pour la série G1 ≡ G(1, z).

Au lieu de supprimer la racine, on peut essayer de la contracter. On obtient alors une

autre description récursive des cartes qui est représentée en figure 23. On distingue deux cas
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suivant que l’arête racine est une boucle ou non. Si l’arête racine est une boucle, la carte se

décompose en un couple de cartes enracinées. Sinon, la carte obtenue en contractant la racine

est une carte dont un coin du sommet racine (l’origine de l’arête racine) est distingué. Pour

traduire la description par contraction de la racine il est nécessaire de prendre en compte le

degré du sommet racine. En considérant la série génératrice bivariée

H(y, z) =
∑

C∈C

ys(C)z|C|,

où s(C) est le degré du sommet racine de la carte C, on obtient

H(y, z) = 1 + y2zH(y, z)2 + yz

(

yH(y, z) −H(1, z)

y − 1

)

.

Cette équation est identique à la précédente (au renommage près des variables et des séries).

Ceci s’explique par le fait que la famille C des cartes est stable par dualité et que la suppression

de l’arête racine d’une carte revient à la contraction de l’arête racine de sa duale.

= + +

Figure 23: Description récursive des cartes planaires enracinées par contraction de la racine.

Rappelons que le polynôme chromatique et le polynôme de Tutte admettent une définition

récursive par suppression et contraction d’arêtes (voir (18) et (21)). Par conséquent, savoir

décrire une famille de cartes à la fois par suppression et par contraction de la racine permet

d’envisager l’obtention d’équations pour les cartes pondérées par leur polynôme chromatique

ou par leur polynôme de Tutte. Pour la classe C des cartes planaires enracinées, l’approche

récursive permet de montrer [Tutt 71] que les séries génératrices

Q(x, y) ≡ Q(x, y, z, λ) =
∑

C∈C

xf(C)ys(C)z|C|PC(λ)

λ
,

et

F (x, y) ≡ F (x, y, z, µ, ν) =
∑

C∈C

xf(C)ys(C)z|C|TC(µ, ν),

vérifient respectivement les équations fonctionnelles

Q(x, y) = 1 + yz(x2(λ− 1) + x)Q(x, y)Q(x, 1) + xyzλ

(

xQ(x, y) −Q(1, y)

x− 1

)

−xyzQ(x, y)Q(1, y) − xyz

(

yQ(x, y) −Q(x, 1)

y − 1

)

, (24)
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et

F (x, y) = 1 + xyz(xµ− 1)F (x, y)F (x, 1) + xyz

(

xF (x, y) − F (1, y)

x− 1

)

+xyz(yν − 1)F (x, y)F (1, y) + xyz

(

yF (x, y) − F (x, 1)

y − 1

)

. (25)

La description récursive des cartes pondérées par leur polynôme chromatique ou par

leur polynôme de Tutte nous a contraints à utiliser non pas une mais deux variables

catalytiques. Au contraire des équations à une variable catalytique que l’on sait ré-

soudre de manière systématique [Bous 05b], les équations à deux variables catalytiques

s’avèrent très coriaces. À ce jour, il existe quelques équations linéaires (en la série

trivariée) qui ont été résolues par Bousquet-Mélou [Bous 02, Bous 03a] et une unique

équation non-linéaire qui a été résolue par Tutte. La résolution due à Tutte concerne

le comptage des triangulations pondérées par leur polynôme chromatique. Ce tour

de force lui a tout de même demandé près de dix articles étalés sur autant d’années

[Tutt 73a, Tutt 73b, Tutt 73c, Tutt 73d, Tutt 74, Tutt 78, Tutt 82a, Tutt 82b, Tutt 95].

Au chapitre des perspectives de cette thèse, nous donnerons un aperçu de la méthode de

résolution de Tutte. Il est tentant d’essayer d’appliquer cette méthode pour compter les

cartes planaires pondérées par leur polynôme chromatique, voire leur polynôme de Tutte.

Du point de vue de la physique statistique, cette tâche revient à la résolution du modèle de

Potts sur réseau aléatoire.

0.4.2 Approche par substitution

Le comptage de cartes peut aussi être réalisé par des techniques de substitution

[Mull 68, Tutt 62d, Tutt 63]. Plus précisément, l’approche par substitution permet,

dans certains cas, de transférer des résultats énumératifs d’une famille de cartes à une autre.

Supposons, par exemple, que l’on cherche à énumérer les cartes planaires enracinées dont

les sommets sont de degré supérieur ou égal à 2. On peut alors utiliser une approche par

substitution pour se ramener au cas des cartes générales.

Par commodité, nous allons relaxer quelque peu notre contrainte sur le degré des sommets

et étudier la classe B des cartes dont les sommets non-incidents à l’arête racine sont de degré

supérieur ou égal à 2. En prenant une carte quelconque et en supprimant récursivement tous

les sommets de degré 1 (qui ne sont pas incidents à l’arête racine) on obtient une carte dans

la classe B. Cette opération est représentée en figure 24. En toute généralité, une carte

planaire C se décompose en une carte B de la classe B appelé noyau et en une suite d’arbres

enracinés (éventuellement vides) qui viennent se greffer sur les coins de la carte B. La classe

C des cartes est donc en bijection avec les couples formés d’une carte B ∈ B (leur noyau) et
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d’une suite de 2|B| arbres enracinés (la carte B a 2|B| coins). Cette bijection se traduit par

l’équation

G1(z) = 1 +B(zA(z)2). (26)

liant la série génératrice A(z) de la classe A des arbres enracinés et les séries génératrices

B(z) et G1(z) des classes B et C :

Figure 24: Élagage des sommets de degré 1.

Nous connaissons déjà une équation pour la série génératrice G1(z) des cartes générales

(17) . En y substituant l’équation (26) on obtient

27z2B(t)2 +
(

1 − 18z − 54z2
)

B(t) − 2 + 34z + 27z2 = 0 (27)

où t ≡ t(z) = zA(z)2. On sait aussi que la classe A des arbres enracinés est comptée par la

suite de Catalan. Elle vérifie donc l’équation A(z) = 1 + zA(z)2. Par élimination (résultant),

on montre que la variable z et la série t ≡ t(z) = zA(z)2 sont liés par l’équation

z − t+ 2zt+ zt2 = 0. (28)

Par élimination (résultant) on montre aussi que B(t) et t sont liés par l’équation

27B(t)2t2 +
(

t4 − 14t3 − 84t2 − 14t+ 1
)

B(t) − 2t4 + 26t3 + 83t2 + 26t− 2 = 0. (29)

Il ne reste qu’à réaliser que la série t ≡ t(z) peut être considérée comme une variable

muette dans l’équation (29). En effet, l’équation (28) montre qu’il existe une série z = z(u)

telle que t(z(u)) = u. L’équation (29) est donc une équation algébrique dont on peut vérifier

qu’elle définit bien la série B(t) de manière unique comme série formelle en t. On pourra aussi

effectuer l’énumération asymptotique de la classe B par les méthodes décrites en sous-section

0.2.4.

0.4.3 Approche par intégrales de matrices

Dans les années 70, un groupe de physiciens développèrent une méthode radicalement

nouvelle pour l’énumération des cartes planaires [Bréz 78]. Cette méthode, extrêmement
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efficace (mais pas toujours rigoureuse), est basée sur des calculs d’intégrales de matrices

qui s’inspirent de la gravité quantique. L’article [Zvon 97] constitue une très agréable

introduction au lien entre les cartes et les intégrales de matrices.

Par intégrale de matrices nous entendons une intégrale sur l’espace des matrices her-

mitiennes. Une matrice hermitienne M = (mk,l)1≤k,l≤n de taille n est spécifiée par les n2

coefficients réels xi,j = Re(mi,j), 1 ≤ i ≤ j ≤ n et yi,j = Im(mi,j), 1 ≤ i < j ≤ n. L’espace des

matrices hermitiennes est identifié à l’espace vectoriel Rn2

et est muni de la mesure gaussienne

dν(M) = (2π)−n2/2 exp(tr(M 2)/2)dM où dM =
∏

1≤i≤j≤n

dxi,j

∏

1≤i<j≤n

dyi,j.

On sait que l’intégrale des polynômes dans un espace à mesure gaussienne peut se décom-

poser en une somme sur les couplages de Wick. Avec la mesure ν(M), les couplages de

Wick ont une contribution égale à 0 ou 1. De plus, l’interprétation des couplages de Wick

par les diagrammes de Feynman montre que les couplages ayant une contribution 1 peuvent

s’identifier au pseudo-cartes (des cartes combinatoires qui ne sont pas forcément connexes).

À un polynôme correspond donc un ensemble de pseudo-cartes. Le comptage d’une famille

de cartes se ramène au calcul de l’intégrale d’un polynôme, ou plutôt d’une série, judicieuse-

ment choisie. Par exemple, pour énumérer les cartes planaires tétravalentes l’intégrale à

calculer est
∫

exp(tr(zM 4))dν(M). Plus exactement, cette intégrale compte les pseudo-cartes

tétravalentes étiquetées de genre quelconque. La série génératrice T (z) des cartes planaires

tétravalentes est en fait donnée par

T (z) = zI ′(z) où I(z) = lim
n→∞

1

n2
log

∫

exp(tr(zM 4/n))dν(M).

(Le logarithme permet de passer des pseudo-cartes aux cartes et la limite permet de se débar-

rasser des cartes de genre supérieur). Il ne reste qu’à calculer l’intégrale. Ici commencent

les pires désagréments pour le mathématicien consciencieux car les intégrales en question

divergent. . . Mais les physiciens d’expérience savent comment s’en départir et arrivent à

énumérer de nombreuses familles de cartes. Nous renvoyons le lecteur à [Di F 04, Eyna 01]

pour les calculs d’intégrales de matrices.

0.4.4 Approche bijective par conjugaison d’arbres

La dernière (mais non la moindre) des approches que nous présentons est une approche

bijective récente basée sur les conjugaisons d’arbres. Les premières approches bijec-

tives pour le comptage des cartes sont dues à Cori et Vauquelin [Cori 81] et à Arques

[Arqu 86]. Mais ce n’est que récemment, notamment avec les travaux de Schaeffer, que

l’approche bijective s’est généralisée au point de pouvoir prétendre au titre de méthode

[Scha 98, Scha 97, Poul 03a, Bous 03b]. La première étape pour l’énumération d’une famille
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F de cartes par conjugaison d’arbres consiste à définir un arbre couvrant canonique pour

chaque carte de cette famille. On considère ensuite la classe des arbres bourgeonnants

non-enracinés obtenus en prenant une carte munie de son arbre couvrant canonique et en

coupant chaque arête externe en deux demi-arêtes ou bourgeons. Si la magie s’opère, la

famille F est en bijection avec la classe des arbres bourgeonnants non-enracinés ainsi obtenus

(ou, plus généralement, dans une relation k à p).

À titre d’exemple, nous allons utiliser l’approche par conjugaison d’arbres afin de montrer

que le nombre de cartes tétravalentes enracinées à n sommets est

tn =
2

n+ 2

3n

n+ 1

(

2n

n

)

. (30)

Cet exemple (et les dessins qui l’accompagnent) est tiré de [Scha 98]. On considère la classe des

arbres binaires. Les feuilles sont considérées comme des demi-arêtes et on enracine l’arbre sur

une des feuilles. Nous avons mentionné en sous-section 0.2.1 que les arbres binaires enracinés

à n noeuds sont comptés par le nème nombre de Catalan Cn = 1
n+1

(2n
n

)

. Un arbre binaire

enraciné à 8 noeuds est représenté en figure 25 (gauche). On enrichit les arbres binaires en

greffant une demi-arête bourgeon à chaque noeud. Il y a trois coins possibles pour chaque

bourgeon et donc an = 3nCn = 3n

n+1

(

2n
n

)

arbres binaires bourgeonnants enracinés à n noeuds.

Un tel arbre est représenté en figure 25 (milieu).

Figure 25: Gauche: un arbre binaire enraciné. Milieu: un arbre binaire bourgeonnant enrac-

iné. Droite: l’appariement des bourgeons et des feuilles.

On clôt un arbre bourgeonnant en appariant chaque bourgeon à une feuille. Plus précisé-

ment, on considère l’ordre cyclique des bourgeons et des feuilles obtenu en faisant le tour de

l’arbre dans le sens anti-horaire (la racine ne joue pas de rôle particulier). Il y a n bourgeons

pour n+ 2 feuilles. Si un bourgeon est suivi par une feuille on apparie ce bourgeon et cette

feuille puis on recommence jusqu’à épuisement des feuilles. Après clôture il reste 2 feuilles.

L’arbre bourgeonnant est dit équilibré si la racine est l’une de ces deux feuilles. L’arbre

représenté en figure 25 n’est pas équilibré puisque la racine a été appariée à une feuille par

l’opération de clôture. Le principe de conjugaison (consistant à considérer les arbres non-

enracinés) montre qu’il existe 2
n+2an = 2

n+2
3n

n+1

(2n
n

)

arbres équilibrés à n sommets. Lorsque



38 Introduction

l’arbre est équilibré, on joint la feuille racine et l’autre feuille non-appariée pour créer l’arête

racine. On peut montrer [Scha 98] que l’opération de clôture établit une bijection entre les

arbres équilibrés et les cartes tétravalentes ce qui prouve la formule (30).

Le comptage bijectif de cartes dans cette thèse. L’approche

bijective par conjugaison d’arbres permet d’énumérer la famille des triangu-

lations. Nous établirons au chapitre 2 une bijection alternative qui permet

l’énumération des triangulations. Notre bijection s’écarte du schéma classique

par conjugaison d’arbres. Une des différences notables tient au fait que

nous associons non pas un arbre couvrant canonique à chaque triangulation

mais toute une famille d’arbres. Plus précisément, nous associons 2n arbres

couvrants à chaque triangulation de taille n. D’autre part, le schéma de

clôture des arbres que nous utilisons est assez différent de celui présenté

ci-dessus.

Au chapitre 3, nous présentons une bijection permettant le comptage des

cartes boisées, c’est-à-dire des cartes dont un arbre couvrant est distingué. Ce

résultat a des liens assez étroits avec les bijections par conjugaison d’arbres.

Notre bijection fait correspondre à chaque carte boisée un couple formé

d’un arbre et d’une partition non-croisée. Intuitivement, la partition non

croisée constitue un mode d’emploi pour replier l’arbre en une carte. L’une

des étapes de notre bijection consiste à associer une orientation de la carte

à chaque arbre couvrant. Cette idée, qui apparaissait déjà dans [Fusy 03],

semble prometteuse. De fait, les orientations apparaissent de plus en plus

régulièrement comme outils fondamentaux pour la caractérisation et le

comptage bijectif de familles de cartes [Fray 01, Fusy 05a, Fusy 05b, Scha 97].
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Chapter 1

Triangulations with high vertex

degree

Abstract: We solve three enumerative problems concerning families of planar maps.

More precisely, we establish algebraic equations for the generating function of loopless

triangulations in which all vertices have degree at least d, for a certain value d chosen in

{3, 4, 5}.
The originality of the problem lies in the fact that degree restrictions are placed both on

vertices and faces. Our proofs first follow Tutte’s classical approach: we decompose maps

by deleting the root-edge and translate the decomposition into an equation satisfied by the

generating function of the maps under consideration. Then we proceed to solve the equation

obtained using a recent technique that extends the so-called quadratic method.

Résumé: Nous énumérons trois familles de cartes planaires. Plus précisément, nous

démontrons des résultats d’algébricité pour les familles de triangulations sans boucle dont le

degré des sommets est au moins égal à une certaine valeur d choisie parmi {3, 4, 5}.
L’originalité de nos résultats tient au fait que les restrictions de degrés portent simultanément

sur les faces et les sommets. Nous adoptons, dans un premier temps, la démarche classique

de Tutte : nous décomposons nos cartes par suppression de la racine et traduisons cette

décomposition en une équation portant sur la série génératrice correspondante. Nous

résolvons ensuite l’équation obtenue en utilisant des techniques récentes qui généralisent la

méthode quadratique.

41
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1.1 Introduction

The enumeration of planar maps (or maps for short) has received a lot of attention in the

combinatorists community for nearly fifty years. This field of research, launched by Tutte, was

originally motivated by the four-color conjecture. Tutte and his students considered a large

number of map families corresponding to various constraints on face- or vertex-degrees. These

seminal works, based on elementary decomposition techniques allied to a generating function

approach, gave rise to many explicit results [Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63, Mull 65].

Fifteen years later, some physicists became interested in the subject and developed their own

tools [Bess 80, Bréz 78, Hoof 74] based on matrix integrals (see [Zvon 97] for an introduc-

tion). Their techniques proved very powerful for map enumeration [Bout 02, Di F 04]. More

recently, a bijective approach based on conjugacy classes of trees has emerged providing new

insights on the subject [Scha 98, Bous 00a, Bous 03b, Poul 03a].

However, when one considers a map family defined by both face- and vertex-constraints,

each of the above mentioned methods seems relatively ineffective and very few enumerative

results are known. There are two major exceptions. First, and most importantly for this

chapter, the enumeration of loopless triangulations (faces have degree 3) in which all vertices

have degree at least 3 and of 3-connected triangulations in which all vertices have degree

at least 4 were performed by Gao and Wormald using a compositional approach [Gao 02].

More recently, the enumeration of all bipartite maps (faces have an even degree) according

to the degree distribution of the vertices was accomplished using conjugacy classes of trees

[Scha 97, Bous 03b]. This result includes as a special case the enumeration of bipartite

cubic maps (vertices have degree 3) performed by Tutte via a generating function approach

[Tutt 62c, Tutt 73c].

In this chapter, we consider loopless triangulations in which all vertices have degree at

least d, for a certain value d chosen in {3, 4, 5}. We establish algebraic equations for the

generating function of each of these families. We also give the asymptotic behavior of the

number of maps in each family. It is well-known that there is no triangulation in which

all vertices have degree at least 6 (we shall prove this fact in Section 1.2). Hence, we have

settled the problem of counting triangulations with ’high’ vertex degree entirely.

As mentioned above, the loopless triangulations in which all vertices have degree at least

3 have already been enumerated by Gao and Wormald [Gao 02]. Our proof differs from

theirs. Let us also mention that several families of triangulations defined by connectivity

constraints have been enumerated, for instance: the general triangulations [Gao 91b],

the loopless triangulations (i.e. non-separable triangulations) [Mull 65, Poul 03a], the

3-connected triangulations (i.e. triangulations without multiple edges) [Tutt 62b, Poul 03b],



1.1. Introduction 43

the 4-connected [Brow 64] and the 5-connected triangulations [Gao 01]. Observe that the

vertices of k-connected triangulations have degree at least k (except for the degenerated case

of the triangle K3). However, there is no equivalence between connectivity constraints and

vertex-degree constraints. In the present chapter, we shall focus on loopless triangulations

but our approach can also be adapted to some other families of triangulations, in particular

to general triangulations as well as 3-connected ones.

Our proofs first follow Tutte’s classical approach, which consists in translating the

decomposition obtained by deletion of the root-edge into a functional equation satisfied by

the generating function. It is not clear at first sight why this approach should work here.

As a matter of fact, finding a functional equation for triangulations with vertex degree at

least 5 turns out to be rather complicated. But it eventually works if some of the constraints

are relaxed at this stage of the solution. Our decomposition scheme requires to consider the

set of near-triangulations and to take into account, beside the size of the map, the degree

of its root-face. Consequently, in order to write a functional equation, we need to consider

a bivariate generating function. We end up with an equation for the (bivariate) generating

function in which the variable counting the degree of the root-face cannot be trivially

eliminated. We then use a recent generalization of the quadratic method to get rid of the

extra variable and compute an algebraic equation characterizing the univariate generating

function (see [Brow 65] and [Goul 83, Section 2.9] for the quadratic method and [Bous 05b]

for its generalization).

This chapter is organized as follows. In Section 1.2, we recall some definitions on planar

maps and introduce the main notations. In Section 1.3, we recall the classic decomposition

scheme due to W.T. Tutte (by deletion of the root-edge). We illustrate this scheme on the

set of unconstrained non-separable near-triangulations. In Section 1.4, we apply the same

decomposition scheme to the sets of near-triangulations in which any internal vertex has

degree at least 3, 4, 5. We obtain functional equation in which the variable x counting the

degree of the root-face cannot be trivially eliminated. In Section 1.5, we use techniques

generalizing the quadratic method in order to get rid of the variable x. We obtain algebraic

equations for triangulations in which any vertex not incident to the root-edge has degree at

least 3, 4, 5. In Section 1.6, we give algebraic equations for triangulations in which any

vertex has degree at least 3, 4. Lastly, in Section 1.7 we study the asymptotic behavior of

the number of maps in each family.
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1.2 Preliminaries and notations on maps

We begin with some vocabulary on maps. A map is a proper embedding of a connected

graph into the two-dimensional sphere, considered up to continuous deformations. A map

is rooted if one of its edges is distinguished as the root-edge and attributed an orientation.

Unless otherwise specified, all maps under consideration in this chapter are rooted. The

face at the right of the root-edge is called the root-face and the other faces are said to be

internal. Similarly, the vertices incident to the root-face are said to be external and the others

are said to be internal. Graphically, the root-face is usually represented as the infinite face

when the map is projected on the plane (see Figure 26). The endpoints of the root-edge are

distinguished as its origin and end according to the orientation of the root-edge. A map is

a triangulation (resp. near-triangulation) if all its faces (resp. all its internal faces) have

degree 3. For instance, the map of Figure 26 is a near-triangulation with root-face of degree

4. Lastly, a map is non-separable if it is loopless and 2-connected (the deletion of a vertex

does not disconnect the map). For instance, the map in Figure 26 is non-separable. Observe

that for a triangulation it is equivalent to be loopless or non-separable but this is not true for

near-triangulations.

Figure 26: A non-separable near-triangulation.

In what follows, we enumerate 3 families of rooted non-separable triangulations. We

recall some basic facts about these maps.

• By definition, a non-separable triangulation has no loop. Therefore, the faces of non-

separable triangulations are always homeomorphic to a triangle: they have three distinct

vertices and three distinct edges.

• Consider a triangulation with f faces, e edges and v vertices. Given the incidence relation

between edges and faces, we have 2e = 3f . Hence, the number of edges of a triangulation is a

multiple of 3. Moreover, given the Euler relation (v − e+ f = 2), we see that a triangulation

with 3n edges has 2n faces and n+ 2 vertices.

• Observe that a non-separable map (not reduced to an edge) cannot have a vertex of degree

one. Let us now prove, as promised, that any triangulation has a vertex of degree less than 6.

Moreover, we prove that this vertex can be chosen not to be incident to the root-edge. Indeed,
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if all vertices not incident to the root-edge have degree at least 6 the incidence relation be-

tween vertices and edges gives 2e ≥ 6(v−2)+4. This contradicts the fact that triangulations

with e = 3n edges have v = n+2 vertices. This property shows that, if one considers the sets

of non-separable triangulations with vertex degree at least d, the only interesting values of d

are d = 2 (which corresponds to unconstrained non-separable triangulations) and d = 3, 4, 5.

Let S be the set of non-separable rooted near-triangulations. By convention, we exclude

the map reduced to a vertex from S. Thus, the smallest map in S is the map reduced to a

straight edge (see Figure 27). This map is called the link-map and is denoted L. The vertices

of other maps in S have degree at least 2. We consider three sub-families T, U, V of S. The

set T (resp. U, V) is the subset of non-separable near-triangulations in which any internal

vertex has degree at least 3 (resp. 4, 5). For each of the families W = S, T, U, V, we consider

the bivariate generating function W(x, z), where z counts the size (the number of edges) and

x the degree of the root-face minus 2. That is to say, W(x) ≡ W(x, z) =
∑

n,d an,dx
dzn where

an,d is the number of maps in W with size n and root-face of degree d + 2. For instance,

the link-map L, which is the smallest map in all our families, has contribution z to the

generating function. Therefore, W(x) = z+o(z). Since the degree of the root-face is bounded

by two times the number of edges, the generating function W(x, z) is a power series in the

main variable z with polynomial coefficients in the secondary variable x. For each family

W = S, T, U, V, we will characterize the generating function W(x) as the unique power

series solution of a functional equation (see Equation (32) and Propositions 1.1, 1.2, 1.3).

Figure 27: The link-map L.

We also consider the set F of non-separable rooted triangulations and three of its subsets

G ,H ,K. The set G (resp. H, K) is the subset of non-separable triangulations in which

any vertex not incident to the root-edge has degree at least 3 (resp. 4, 5). As observed above,

the number of edges of a triangulation is always a multiple of 3. To each of the families

L = F, G, H, K, we associate the univariate generating function L(t) =
∑

n ant
n where an

is the number of maps in L with 3n edges (2n faces and n+ 2 vertices). For each family we

will give an algebraic equation satisfied by L(t) (see Equation (34) and Theorems 1.4, 1.5, 1.6).

There is a simple connection between the generating functions F(t) (resp. G(t), H(t),

K(t)) and S(x) (resp. T(x), U(x), V(x)). Consider a non-separable near-triangulation distinct

from L rooted on a digon (i.e. the root-face has degree 2). Deleting the external edge that

is not the root-edge produces a non-separable triangulation (see Figure 28). This classical

mapping (see e.g. [Gao 91a, Tutt 95]) establishes a one-to-one correspondence between the
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set of triangulations F (resp. G ,H ,K) and the set of near-triangulations in S− {L} (resp.

T− {L}, U − {L}, V− {L}) rooted on a digon.

α

Figure 28: Near-triangulations rooted on a digon and triangulations.

For W ∈ {S, T, U, V}, the power series W(0) ≡ W(0, z) is the generating function of

near-triangulations in W rooted on a digon. Given that the link-map has contribution z, we

have

S(0) = z + zF(z3), T(0) = z + zG(z3), U(0) = z + zH(z3), V(0) = z + zK(z3). (31)

1.3 The decomposition scheme

In the following, we adopt Tutte’s classical approach for enumerating maps. That is, we

decompose maps by deleting their root-edge and translate this combinatorial decomposition

into an equation satisfied by the corresponding generating function. In this section we

illustrate this approach on unconstrained non-separable triangulations (this was first done

in [Mull 65]). We give all the details on this simple case in order to prepare the reader to

the more complicated cases of constrained non-separable triangulations treated in the next

section.

We recall that S denotes the set of non-separable near-triangulations and S(x) = S(x, z)

the corresponding generation function. As observed before, the link-map L has contribution z

to the generating function S(x). We decompose the other maps by deleting the root-edge. Let

M be a non-separable triangulation distinct from L. Since M is non-separable, the root-edge

of M is not an isthmus. Therefore, the face at the left of the root-edge is internal, hence has

degree 3. Since M has no loop, the three vertices incident to this face are distinct. We denote

by v the vertex not incident to the root-edge. When analyzing what can happen to M when

deleting its root-edge, one is led to distinguish two cases (see Figure 29).

Either the vertex v is incident to the root-face, in which case the map obtained by deletion of

the root-edge is separable (see Figure 30). Or v is not incident to the root-face and the map

obtained by deletion of the root-edge is a non-separable near-triangulation (see Figure 31).
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v

Figure 29: Decomposition of non-separable near-triangulations.

In the first case, the map obtained is in correspondence with an ordered pair of non-separable

near-triangulations. This correspondence is bijective, that is, any ordered pair is the image of

exactly one near-triangulation. In the second case the degree of the root-face is increased by

one. Hence the root-face of the near-triangulation obtained has degree at least 3. Here again,

any near-triangulation in which the root-face has degree at least 3 is the image of exactly one

near-triangulation.

v

Figure 30: Case 1. The vertex v is incident to the root-face.

v

Figure 31: Case 2. The vertex v is not incident to the root-face.

We want to translate this analysis into a functional equation. Observe that the degree of

the root-face appears in this analysis. This is why we are forced to introduce the variable

x counting this parameter in our generating function S(x, z). For this reason, following

Zeilberger’s terminology [Zeil 00], the secondary variable x is said to be catalytic: we need it

to write the functional equation, but we shall try to get rid of it later.

In our case, the decomposition easily translates into the following equation (details will

be given in Section 1.4):

S(x, z) = z + xzS(x, z)2 +
z

x
(S(x, z) − S(0, z)) . (32)

The first summand of the right-hand side accounts for the link map, the second summand

corresponds to the case in which the vertex v is incident to the root-face, and the third
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summand corresponds to the case in which v is not incident to the root-face.

It is an easy exercise to check that this equation defines the series S(x, z) uniquely as a

power series in z with polynomial coefficients in x. By techniques presented in Section 1.5,

we can derive from Equation (32) a polynomial equation satisfied by the series S(0, z) where

the extra variable x does not appear anymore. This equation reads

S(0, z) = z − 27z4 + 36z3S(0, z) − 8z2S(0, z)2 − 16z4S(0, z)3. (33)

Given that S(0, z) = z + zF(z3), we deduce the algebraic equation

F(t) = t(1 − 16t) − t(48t− 20)F(t) − 8t(6t+ 1)F(t)2 − 16t2F(t)3, (34)

characterizing F(t) (the generating function of non-separable triangulations) uniquely as

a power series in t. From this equation one can derive the asymptotic behavior of the

coefficients of F(t), that is, the number of non-separable triangulations of a given size (see

Section 1.7).

1.4 Functional equations

In this section, we apply the decomposition scheme presented in Section 1.3 to the families

T, U, V of non-separable near-triangulations in which all internal vertices have degree at least

3, 4, 5. We obtain functional equations satisfied by the corresponding generating functions

T(x), U(x), V(x).

Note that, when one deletes the root-edge of a map, the degree of its endpoints is lowered

by one. Given the decomposition scheme, this remark explains why we are led to consider

the near-triangulations where only internal vertices have a degree constraint. However, we

need to control the degree of the origin of the root-edge since it may come from an internal

vertex (see Figure 31). This leads to the following notations. Let W be one of the sets

S, T, U, V. We define Wk as the set of maps in W such that the root-face has degree

at least 3 and the origin of the root-edge has degree k. We also define W∞ as the set of

(separable) maps obtained by gluing the root-edge’s end of a map in W with the root-edge’s

origin of a map in W. The root-edge of the map obtained is chosen to be the root-edge of

the second map. Generic elements of the sets Wk and W∞ are shown in Figure 32. We also

write W≥k , W∞ ∪
⋃

j≥k

Wj . The notation W≥k, which at first sight might seem awkward,

allows to unify the two possible cases of our decomposition scheme (Figure 30 and 31). It

shall simplify our arguments and equations (see for instance Equations (35-38)) which will

prove a valuable property.
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k ∞

Figure 32: Generic elements of the sets Wk and W∞.

The symbols Wk(x, z), W∞(x, z) and W≥k(x, z) denote the bivariate generating functions

of the sets Wk, W∞ and W≥k respectively. In these series, as in W(x, z), the contribution

of a map with n edges and root-face degree d+ 2 is xdzn.

We are now ready to apply the decomposition scheme to the triangulations in T, U, V.

Consider a near-triangulation M distinct from L in W = S, T, U, V. As observed before,

the face at the left of the root-edge is an internal face incident to three distinct vertices.

We denote by v the vertex not incident to the root-edge. If v is external, the deletion of

the root-edge produces a map in W∞ (see Figure 33). If v is internal and M is in S (resp.

T, U, V) then v has degree at least 2 (resp. 3, 4, 5) and the map obtained by deleting the

root-edge is in
⋃

k≥2 Sk (resp.
⋃

k≥3 Tk,
⋃

k≥4 Uk,
⋃

k≥5 Vk). Therefore, the deletion of the

root-edge induces a mapping from S−{L} (resp. T−{L}, U−{L}, V−{L}) to S≥2 (resp.

T≥3, U≥4, V≥5).

v

Figure 33: Mapping induced by deletion of the root-edge: the vertex v can be a separating

point in which case the map is in W∞.

This mapping is clearly bijective. Moreover, the map obtained after deleting the root-edge

has size lowered by one and root-face degree increased by one. This analysis translates into

the following equations:

S(x) = z +
z

x
S≥2(x) , (35)

T(x) = z +
z

x
T≥3(x) , (36)

U(x) = z +
z

x
U≥4(x) , (37)

V(x) = z +
z

x
V≥5(x) . (38)

In view of Equation (35), we will obtain a non-trivial equation for S(x) if we can express

S≥2(x) in terms of S(x). Similarly, we will obtain a non-trivial equation for T(x) if we can

express T≥2(x) and T2(x) in terms of T(x). Similar statements hold for U(x) and V(x).
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Thus, our first task will be to evaluate W≥2(x) for W in {S, T, U, V}.

By definition, W∞ is in bijection with W2, which translates into the functional equation

W∞(x) = x2W(x)2 .

Observe that
⋃

k≥2 Wk is the set of maps in W for which the root-face has degree at least

3, that is, all maps except those rooted on a digon. Since W(0) is the generating function of

maps in W rooted on a digon, we have

∑

k≥2

Wk(x) = W(x) − W(0).

Given that W≥2 = W∞ ∪⋃k≥2 Wk , we obtain, for W in {S, T, U, V},

W≥2(x) = x2W(x)2 + (W(x) − W(0)) for W in {S, T, U, V} . (39)

Equations (35) and (39) already prove Equation (32) announced in Section 1.3:

S(x) = z + xzS(x)2 + z

(

S(x) − S(0)

x

)

.

In order to go further, we need to express T2(x), U2(x), U3(x), V2(x), V3(x) and V4(x)

(see Equations (36-38)). We begin with an expression of W2(x) for W in {S, T, U, V}.
Observe that for W = {S, T, U, V}, the set W2 is in bijection with W by the mapping

illustrated in Figure 34. Consequently we can write

W2(x) = xz2W(x) for W in {S, T, U, V} . (40)

Figure 34: A bijection between W2 and W.

This suffices to obtain an equation for the set T:

T(x) = z +
z

x
T≥3(x) by (36)

= z +
z

x
(T≥2(x) − T2(x))

= z +
z

x

(

x2T(x)2 + (T(x) − T(0)) − xz2T(x)
)

by (39) and (40).

Proposition 1.1 The generating function T(x) of non-separable near-triangulations in which

all internal vertices have degree at least 3 satisfies:

T(x) = z + xzT(x)2 + z

(

T(x) − T(0)

x

)

− z3T(x) . (41)
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In order to find an equation concerning the sets U and V, we now need to express U3(x)

and V3(x) in terms of U(x) and V(x) respectively. Let W be U or V and M be a map in

W3. By definition, the root-face of M has degree at least 3 and its root-edge’s origin u has

degree 3. We denote by a and b the vertices preceding and following u on the root-face (see

Figure 35). Since the map M is non-separable, the vertices a, b and u are distinct. Let v be

the third vertex adjacent to u. Since M cannot have loops, the vertex v is distinct from a, b

and u.

Suppose that M is in U3 (resp. V3) and consider the operation of deleting u and the three

adjacent edges. If the vertex v is internal it has degree d ≥ 4 (resp. d ≥ 5) and the map

obtained is in Ud−1 (resp. Vd−1). If it is external, the map obtained is in U∞ (resp. V∞).

Thus, the map obtained is in U≥3 (resp. V≥4). This correspondence is clearly bijective. It

gives

U3(x) = z3U≥3(x) = z3(U≥2(x) − U2(x)) , (42)

V3(x) = z3V≥4(x) = z3(V≥2(x) − V2(x) − V3(x)) . (43)

v

a bu

Figure 35: A bijection between U3 and U≥3 (resp. V3 and V≥4 ).

We are now ready to establish the functional equation concerning U:

U(x) = z +
z

x
U≥4(x) by (37)

= z +
z

x
(U≥2(x) − U2(x) − U3(x))

= z +
z(1 − z3)

x
(U≥2(x) − U2(x)) by (42)

= z +
z(1 − z3)

x

(

x2U(x)2 + (U(x) − U(0)) − xz2U(x)
)

by (39) and (40).

Proposition 1.2 The generating function U(x) of non-separable near-triangulations in which

all internal vertices have degree at least 4 satisfies:

U(x) = z + xz(1 − z3)U(x)2 + z(1 − z3)

(

U(x) − U(0)

x

)

− z3(1 − z3)U(x) . (44)

We proceed to find an equation concerning the set V. This will require significantly more

work than the previous cases. We write

V(x) = z +
z

x
V≥4(x) = z +

z

x
(V≥2(x) − V2(x) − V3(x) − V4(x)) (45)
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and we want to express V≥2(x), V2(x), V3(x) and V4(x) in terms of V(x). We already have

such expressions for V≥2(x) and V2(x) (by Equations (39) and (40)). Moreover, Equation

(43) can be rewritten as

V3(x) =
z3

1 + z3
(V≥2(x) − V2(x)) . (46)

It remains to express V4(x) in terms of V(x). Unfortunately, this requires some efforts

and some extra notations. We define Vk,l as the set of maps in V such that the root-face has

degree at least 4, the root-edge’s origin has degree k and the root-edge’s end has degree l (see

Figure 36). The set Vk,∞ is the set of maps obtained by gluing the root-edge’s end of a map

in Vk with the root-edge’s origin of a map in V. The root-edge of the new map obtained

is the root-edge of the map in Vk. The set V∞,k is the set of maps obtained by gluing the

root-edge’s end of a map in V with the root-edge’s origin of map in V for which the root-face

has degree at least 3 and the root-edge’s end has degree k. The root-edge of the new map

obtained is the root-edge of the second map. The set V∞,∞ is obtained by gluing 3 maps of

V as indicated in Figure 36.

k ∞ ∞k l k∞ ∞

Figure 36: The sets Vk,l, V∞,k, Vk,∞ and V∞,∞.

We also write Vk,≥l ,
⋃

i≥l

Vk,i ∪Vk,∞ and

V≥k,≥l ,
⋃

i≥k,j≥l

Vi,j ∪
⋃

i≥k

Vi,∞ ∪
⋃

j≥l

V∞,j ∪V∞,∞.

As before, if W is any of these sets, the symbol W denotes the corresponding generating

function, where the contribution of a map of size n and root-face degree d+ 2 is xdzn.

Moreover, we consider the subset D of V composed of maps for which the root-face is a

digon. The set of maps in D for which the root-vertex has degree k will be denoted by Dk.

We write D≥k =
⋃

j≥k Dj. Lastly, if E is one of the set D, Dk or D≥k, the symbol E denotes

the corresponding (univariate) generating function, where the contribution of a map of size

n is zn. As observed before, D = V(0).

We can now embark on the decomposition of V4. We consider a map M in V4 with

root-vertex v. By definition, v has degree 4. Let e1, e2, e3, e4 be the edges incident to v

in counterclockwise order starting from the root-edge e1. We denote by vi, i = 1 . . . 4 the
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endpoint of ei distinct from v. Since M is non-separable and its root-face has degree at least

3, the vertices v1 and v4 are distinct. Moreover, since M has no loop we have v1 6= v2,

v2 6= v3 and v3 6= v4. Therefore, only three configurations are possible: either v1 = v3, the

two other vertices being distinct, or symmetrically, v2 = v4, the other vertices being distinct,

or v1, v2, v3, v4 are all distinct. The three cases are illustrated in Figure 37.

v2 v3

v2 = v4v1 = v3vv4 v v1 v4 v v1

v2v3

Figure 37: Three configurations for a map in V4.

In the case v1 = v3, the map can be decomposed into an ordered pair of maps in V ×
D≥4 (see Figure 38). This decomposition is clearly bijective. The symmetric case v2 = v4

admits a similar treatment. In the last case (v1, v2, v3, v4 all distinct) the map obtained from

M by deleting e1, e2, e3, e4 is in V≥4,≥4 (see Figure 39). Note that this case contains

several subcases depending on whether v2 and v3 are separating points or not. But again the

correspondence is clearly bijective.

Figure 38: A bijection between maps of the first type in V4 and V ×D≥4.

v2v3

Figure 39: A bijection between maps of the third type in V4 and V≥4,≥4.

This correspondence gives

V4(x) = 2xz4V(x)D≥4 +
z4

x
V≥4,≥4(x) . (47)

It remains to express the generating functions D≥4 and V≥4,≥4(x) in terms of V(x). We

start with D≥4.

We have D≥4 = D − D1 − D2 − D3 . We know that D = V(0). Moreover, the set D1 only
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contains the link-map and D2 is empty. Hence D1 = z and D2 = 0. Lastly, the set D3 is in

correspondence with D≥4 by the bijection represented in Figure 40. This gives D3 = z3D≥4.

3 ≥ 4

Figure 40: A bijection between D3 and D≥4.

Putting these results together and solving for D≥4, we get

D≥4 =
V(0) − z

1 + z3
. (48)

We now want to express the generating function V≥4,≥4(x). We first divide our problem

as follows (the equation uses the trivial bijections between the sets Vα,β and Vβ,α) :

V≥4,≥4(x) = V≥2,≥2(x) − V2,2(x) − 2V2,≥3(x) − V3,3(x) − 2V3,≥4(x) . (49)

We now treat separately the different summands in the right-hand-side of this equation.

• V≥2,≥2 : It follows easily from the definitions that :

V≥2,≥2(x) =
∑

k≥2,l≥2

Vk,l(x) + 2
∑

k≥2

V∞,k(x) + V∞,∞(x).

- The set
⋃

k≥2,l≥2 Vk,l is the set of maps in V for which the root-face has degree at least 4.

Thus,
∑

k≥2,l≥2

Vk,l(x) = V(x) − V(0) − x[x]V(x),

where [x]V(x) is the coefficient of x in V(x).

- By definition, the set
⋃

k≥2 V∞,k is in bijection with V × ⋃k≥2 Vk. Moreover, the set
⋃

k≥2 Vk is the set of maps in V for which the root-face has degree at least 3. This gives

∑

k≥2

V∞,k(x) = x2V(x) (V(x) − V(0)) .

- By definition, the set V∞,∞ is in bijection with V3, which gives

V∞,∞(x) = x4V(x)3.

Summing these contributions we get

V≥2,≥2(x) = V(x) − V(0) − x[x]V(x) + 2x2V(x) (V(x) − V(0)) + x4V(x)3. (50)

• V2,2 : The set V2,2 is empty (the face at the left of the root-edge would be of degree at

least 4), hence

V2,2(x) = 0 . (51)
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• V2,≥3 : The set V2,≥3 is in bijection with V≥2 by the mapping illustrated in Figure 41.

This gives V2,≥3(x) = xz2V≥2(x). From this, using Equation (39), we obtain

V2,≥3(x) = xz2(V(x) − V(0) + x2V(x)2). (52)

2 ≥ 3 ≥ 2

Figure 41: A bijection between V2,≥3 and V≥2.

• V3,3 : We consider a map M in V3,3. We denote by v1 the root-edge’s origin, v2 the

root-edge’s end, v0 the vertex preceding v1 on the root-face and v3 the vertex following v2

(see Figure 42). Since M is non-separable and its root-face has degree at least 4, the vertices

vi, i = 1 . . . 4 are all distinct. The third vertex v adjacent with v1 is also the third vertex

adjacent with v2 (or the face at the left of the root-edge would not be a triangle). Since M

has no loop, v is distinct from vi, i = 1 . . . 4. From these considerations, it is easily seen that

the set V3,3 is in bijection with the set V≥3 by the mapping illustrated in Figure 42. (Note

that this correspondence includes two subcases depending on v becoming a separating point

of not). We obtain

V3,3(x) = xz5V≥3(x) = xz5 (V≥2(x) − V2(x)) .

From this, using Equations (39) and (40), we get

V3,3(x) = xz5(V(x) − V(0) + x2V(x)2 − xz2V(x)). (53)

v0 v1 v2 v3

v

Figure 42: A bijection between V3,3 and V≥3.

• V3,≥4 : Let M be a map in V3,≥4. We denote by v1 the root-edge’s origin, v2 the root-edge’s

end, v0 the vertex preceding v1 on the root-face and v3 the vertex following v2 (see Figure 43).

Since M is non-separable and its root-face has degree at least 4, the vertices vi, i = 1 . . . 4

are all distinct. Let v be the third vertex adjacent to v1. Two cases can occur: either v = v3
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in which case the map decomposes into an ordered pair of maps in V×D≥3, or v is distinct

from vi, i = 1 . . . 4 in which case the map is in correspondence with a map in V≥4,≥3 (this

includes two subcases depending on v becoming a separating point of not). In both cases the

correspondence is clearly bijective. This gives

V3,≥4(x) = x2z3V(x)D≥3 + z3V≥4,≥3(x).

v0 ≥ 43v = v3v0 3 ≥ 4 v3

v

v2v1v1 v2

Figure 43: Two configurations for a map in V3,≥4.

Given that D≥3 = D − D1 − D2 = V(0) − z, we obtain

V3,≥4(x) = x2z3V(x)(V(0) − z) + z3(V≥4,≥4(x) + V3,≥4(x)),

and solving for V3,≥4(x) we get

V3,≥4(x) =
z3

1 − z3

(

x2V(x)(V(0) − z) + V≥4,≥4(x)
)

. (54)

We report Equations (50 - 54) in Equation (49) and solve for V≥4,≥4. We get

V≥4,≥4(x) =
1 − z3

1 + z3
( V(x) − V(0) − x[x]V(x) + 2x2V(x) (V(x) − V(0))

+x4V(x)3 − xz5(V(x) − V(0) + x2V(x)2 − xz2V(x))

−2xz2(V(x) − V(0) + x2V(x)2) − 2
x2z3

1 − z3
V(x)(V(0) − z) ).

(55)

Now, using Equations (39) (40) (46) (47) (48) and (55) we can replace V≥2, V2, V3 and

V4 by their expression in Equation (45). This establishes the following proposition.

Proposition 1.3 The generating function V(x) = V(x, z) of non-separable near-

triangulations in which all internal vertices have degree at least 5 satisfies:

V(x) = z +
1

1 + z3

(

xzV(x)2 + z
V(x) − V0

x
− z3V(x)

)

−z
5(1 − z3)

1 + z3
(V(x) − V0 − xV1

x2
− z2(2 + z3)

V(x) − V0

x
− 2V(x)(V0 − z)

+x2V(x)3 − xz2(2 + z3)V(x)2 + 2V(x) (V(x) − V0) + z7V(x))

(56)

where V0 = V(0) and V1 = [x]V(x) is the coefficient of x in V(x).
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1.5 Algebraic equations for triangulations with high degree

In the previous section, we have exhibited functional equations concerning the families of

near-triangulations T,U,V. By definition, the generating functions T(t),U(t),V(t) are

power series in the main variable z with polynomial coefficients in the secondary variable

x. We now solve these equations and establish algebraic equations for the families of

triangulations F,G,H in which vertices not incident to the root-edge have degree at least

3, 4, 5 respectively. As observed in Section 1.2, the generating functions F(t),G(t),H(t) are

closely related to the series T(0),U(0),V(0) (see Equation (31)).

Let us look at Equations (41), (44) and (56) satisfied by the series T(x), U(x) and V(x)

respectively. We begin with Equation (41). This equation is (after multiplication by x) a

polynomial equation in the main unknown series T(x), the secondary unknown T(0) and the

variables x, z. It is easily seen that this equation allows us to compute the coefficients of

T(x) (hence those of T(0)) iteratively. Moreover, we see by induction that the coefficients of

this power series are polynomials in the secondary variable x. The same property holds for

Equation (44) (resp. (56)): it defines the series U(0) (resp. V(0)) uniquely as a power series

in z with polynomial coefficients in x.

In some sense, Equations (41), (44) and (56) answer our enumeration problems. However,

we want to solve these equations, that is, to derive from them some equations for the series

T(0), U(0) and V(0). Certain techniques for performing such manipulations appear in the

combinatorics literature. In the cases of Equation (41) and (44) which are quadratic in the

main unknown series T(x) and U(x) we can routinely apply the so-called quadratic method

[Goul 83, Section 2.9]. This method allows one to solve polynomial equations which are

quadratic in the bivariate unknown series and have one unknown univariate series. This

method also applies to Equation (33) concerning S(x) and allows to prove Equation (34).

However, Equation (56) concerning V(x) is cubic in this series and involves two unknown

univariate series (V(0) and [x]V(x)). Very recently, Bousquet-Mélou and Jehanne proposed

a general method to solve polynomial equations of any degree in the bivariate unknown

series and involving any number of unknown univariate series [Bous 05b]. We present their

formalism.

Let us begin with Equation (41) concerning T(0). We define the polynomial

P (T, T0, X, Z) = XZ +X2ZT 2 + ZT − ZT0 −XZ3T −XT .

Equation (41) can be written as

P (T(x),T(0), x, z) = 0 . (57)
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Let us consider the equation P ′
1(T(x),T(0), x, z) = 0 , where P ′

1 denotes the derivative of P

with respect to its first variable. This equation can be written as

2x2zT(x) + z − xz3 − x = 0 .

This equation is not satisfied for a generic x. However, considered as an equation in x, it is

straightforward to see that it admits a unique power series solution X(z).

Taking the derivative of Equation (57) with respect to x one obtains

∂T(x)

∂x
· P ′

1(T(x),T(0), x, z) + P ′
3(T(x),T(0), x, z) = 0,

where P ′
3 denotes the derivative of P with respect to its third variable. Substituting the series

X(z) for x in that equation, we see that the series X(z) is also a solution of the equation

P ′
3(T(x),T(0), x, z) = 0. Hence, we have a system of three equations

P (T(X(z)),T(0), X(z), z) = 0 ,

P ′
1(T(X(z)),T(0), X(z), z) = 0 ,

P ′
3(T(X(z)),T(0), X(z), z) = 0 ,

for the three unknown series T(X(z)), T(0) and X(z). This polynomial system can be solved

by elimination techniques using either resultant calculations or Gröbner bases. Performing

these eliminations one obtains an algebraic equation for T(0):

T(0) = z− 24z4 + 3z7 + z10 + (32z3 + 30z6 − 4z9 − z12)T(0)− 8z2(1 + z3)2T(0)2 − 16z4T(0)3.

Using the fact that T(0) = z + zG(z3) we get the following theorem.

Theorem 1.4 Let G be the set of non-separable triangulations in which any vertex not inci-

dent to the root-edge has degree at least 3, and let G(t) be its generating function. The series

G(t) is uniquely defined as a power series in t by the algebraic equation:

16t2G(t)3 + 8t(t2 + 8t+ 1)G(t)2

+(t4 + 20t3 + 50t2 − 16t+ 1)G(t) + t2(t2 + 11t− 1) = 0.
(58)

Similar manipulations lead to a cubic equation for the set H.

Theorem 1.5 Let H be the set of non-separable triangulations in which any vertex not inci-

dent to the root-edge has degree at least 4, and let H(t) be its generating function. The series

H(t) is uniquely defined as a power series in t by the algebraic equation:

16t2(t− 1)4H(t)3 + (t8 + 12t7 − 14t6 − 84t5 + 207t4 − 192t3 + 86t2 − 16t+ 1)H(t)

+8t(t− 1)2(t4 + 4t3 − 13t2 + 8t+ 1)H(t)2 + t4(t− 1)(t3 + 5t2 − 8t+ 1) = 0.
(59)
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For Equation (56) concerning V(0) the method is almost identical. We see that

there is a polynomial Q(V, V0, V1, x, z) such that Equation (56) can be written as

Q(V(x),V(0), [x]V(x), x, z) = 0. But we can show that there are exactly two series

X1(z), X2(z) such that Q′
1(V(X(z)),V(0), [x]V(x), X(z), z) = 0. Thus, we obtain a system

of 6 equations

Q(V(Xi(z)),V(0), [x]V(x), Xi(z), z) = 0

Q′
1(V(Xi(z)),V(0), [x]V(x), Xi(z), z) = 0

Q′
3(V(Xi(z)),V(0), [x]V(x), Xi(z), z) = 0

i = 1, 2

for the 6 unknown series V(X1(z)), V(X2(z)), X1(z), X2(z), V(0) and [x]V(x). This system

can be solved via elimination techniques though the calculations involved are heavy. We

obtain the following theorem.

Theorem 1.6 Let K be the set of non-separable triangulations in which any vertex not

incident to the root-edge has degree at least 5, and let K(t) be its generating function. The

series K(t) is uniquely defined as a power series in t by the algebraic equation:

6
∑

i=0

Pi(t)K(t)i, (60)

where the polynomials Pi(t), i = 0 . . . 6 are given in Appendix 1.9.1.

1.6 Constraining the vertices incident to the root-edge

So far, we have established algebraic equations for the generating functions G(t),H(t),K(t)

of triangulations in which any vertex not incident to the root-edge has degree at least 3, 4, 5.

The following theorems provide equations concerning the generating functions G∗(t),H∗(t) of

triangulations in which any vertex has degree at least 3, 4.

Theorem 1.7 Let G∗ be the set of non-separable triangulations in which any vertex has

degree at least 3 and let G∗(t) be its generating function. The series G∗ is related to the series

G of Theorem 1.4 by

G∗(t) = (1 − 2t)G(t) . (61)

Theorem 1.8 Let H∗ be the set of non-separable triangulations in which any vertex has

degree at least 4 and let H∗(t) be its generating function. The series H∗ is related to the series

H of Theorem 1.5 by

H∗(t) =
1 − 5t+ 5t2 − 3t3

1 − t
H(t) . (62)
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Let us make a few comments before proving these two theorems. First, observe that we

can deduce from Theorems 1.4 and 1.7 (resp. 1.5 and 1.8) an algebraic equation for the

generating function G∗ (resp. H∗) of triangulations in which any vertex has degree at least

3 (resp. 4). The algebraic equation obtained for G∗ coincides with the result of Gao and

Wormald [Gao 02, Theorem 2]. From the algebraic equations we can routinely compute the

first coefficients of our series:

G∗(t) = t2 + 3t3 + 19t4 + 128t5 + 909t6 + 6737t7 + 51683t8 + 407802t9 + o(t9),

H∗(t) = t4 + 3t5 + 12t6 + 59t7 + 325t8 + 1875t9 + 11029t10 + 65607t11 + o(t11).

Recall that the coefficient of tn in the series G∗(t), H∗(t) is the number of triangulations

with 3n edges (2n triangles, n+ 2 vertices) satisfying the required degree constraint. In the

expansion of G∗(t), the smallest non-zero coefficient t2 corresponds to the tetrahedron. In

the expansion of H∗(t), the smallest non-zero coefficient t4 corresponds to the octahedron

(see Figure 44).

We were unable to find an equation that would permit to count non-separable triangula-

tions in which any vertex has degree at least 5. However, we can use the algebraic equation

(60) to compute the first coefficients of the series K(t):

K(t) = t10 + 8t11 + 45t12 + 209t13 + 890t14 + 3600t15 + 14115t16 + 54306t17 + o(t18).

The first non-zero coefficient t10 corresponds to the icosahedron (see Figure 44).

Figure 44: The platonic solids: tetrahedron, octahedron, icosahedron.

In order to prove Theorems 1.7 and 1.8 we need some new notations. The set Gi,j,k

(resp. Hi,j,k) is the set of triangulations such that the root-edge’s origin has degree i, the

root-edge’s end has degree j, the third vertex of the root-face has degree k and all internal

vertices have degree at least 3 (resp. 4). For L = G,H we define L≥i,j,k =
⋃

l≥i Ll,j,k

and with similar notation, L≥i,≥j,k etc. If L is any of these sets, L(t) is the corresponding

generating function, where a map with 3n edges has contribution tn.

Proof of Theorem 1.7: By definition, G = G≥2,≥2,≥3 and G∗ = G≥3,≥3,≥3. Hence,

G∗(t) = G(t) − G2,2,≥3(t) − 2G2,≥3,≥3(t). (63)
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• The set G2,2,≥3 is empty, hence G2,2,≥3(t) = 0.

• The set G2,≥3,≥3 is in bijection with G≥1,≥1,≥3 = G by the mapping represented in Figure

45. This gives G2,≥3,≥3(t) = tG(t).

Plugging these results in (63) proves the theorem.
�

2 ≥ 3

≥ 3

≥ 1

≥ 1

Figure 45: A bijection between G2,≥3,≥3 and G (resp. H2,≥3,≥3 and H).

Proof of Theorem 1.8: By definition, H∗ = H≥4,≥4,≥4. Hence,

H∗(t) = H≥3,≥3,≥4(t) − H3,3,≥4(t) − 2H3,≥4,≥4(t). (64)

Recall that H = H≥1,≥1,≥4 = H≥2,≥2,≥4.

• Clearly, H≥3,≥3,≥4(t) = H≥2,≥2,≥4(t) −H2,2,≥4(t) − 2H2,≥3,≥3(t).

• The set H2,2,≥4(t) is empty, hence H2,2,≥4(t) = 0.

• The set H2,≥3,≥3 is in bijection with H≥1,≥1,≥4 = H by the mapping represented in Figure

45, hence H2,≥3,≥3(t) = tH(t).

This gives

H≥3,≥3,≥4(t) = (1 − 2t)H(t). (65)

• The set H3,3,≥4 is in bijection with H≥1,≥1,≥4 = H by the mapping represented in Figure

46. This gives

H3,3,≥4(t) = t2H(t). (66)

≥ 4

≥ 4

≥ 1

≥ 1

33

Figure 46: A bijection between H3,3,≥4 and H.

• For any integer k greater than 2, the set H≥k,≥k,3 is in bijection with the set H≥k−1,≥k−1,≥3

by the mapping represented in Figure 47. This gives

H≥k,≥k,3(t) = tH≥k−1,≥k−1,≥3(t) for all k ≥ 2. (67)
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3

≥ k ≥ k ≥ k − 1

≥ 3

≥ k − 1

Figure 47: A bijection between H≥k,≥k,3 and H≥k−1,≥k−1,≥3.

Using Equation (67) for k = 4 and then for k = 3 (and trivial symmetry properties), we get

H3,≥4,≥4(t) = H≥4,≥4,3(t) = tH≥3,≥3,≥3(t) = tH≥3,≥3,≥4(t) + tH≥3,≥3,3(t)

= tH≥3,≥3,≥4(t) + t2H≥2,≥2,≥3(t).

- By Equation (65), we have H≥3,≥3,≥4(t) = (1 − 2t)H(t).

- Using Equation (67) for k = 2 gives

H≥2,≥2,≥3(t) = H≥2,≥2,≥4(t) + H≥2,≥2,3(t) = H(t) + tH≥1,≥1,≥3(t).

Given that H≥1,≥1,≥3 = H≥2,≥2,≥3, we get H≥2,≥2,≥3(t) =
1

1 − t
H(t).

Thus, we obtain

H3,≥4,≥4(t) =
t(1 − 2t+ 2t2)

1 − t
H(t). (68)

Plugging Equations (65), (66) and (68) in Equation (64) proves the theorem.
�

1.7 Asymptotics

In Section 1.5, we established algebraic equations for the generating functions L = F,G,H,K

of non-separable triangulations in which any vertex not incident to the root-edge has degree

at least d = 2, 3, 4, 5 (Equations (34), (58), (59) and (60)). We will now derive the asymptotic

form of the number ln = fn, gn, hn, kn of maps with 3n edges in each family by analyzing the

singularities of the generating function L = F,G,H,K (ln is the coefficient of tn in L). The

principle of this method is a general correspondence between the expansion of a generating

function at its dominant singularities and the asymptotic form of its coefficients [Flaj 90, Flaj].

Lemma 1.9 Each of the generating functions L = F,G,H,K has a unique dominant singu-

larity ρL > 0 and a singular expansion with singular exponent 3
2 at ρL, in the sense that

L(t) = αL + βL(1 − t

ρL
) + γL(1 − t

ρL
)3/2 +O((1 − t

ρL
)2), (69)
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with γL 6= 0. The dominant singularities of the series F and G are respectively ρF = 2
27 and

ρG = 3
√

3−5
2 . The dominant singularities ρH and ρK of the series H and K are defined by

algebraic equations given in Appendix 1.9.2.

Proof (sketch): The (systematic) method we follow is described in [Flaj, Chapter VII.4]).

Calculations were performed using the Maple package gfun [Salv 94].

Let us denote generically by ρL the radius of convergence of the series L and by Q(L, t) the

algebraic equation satisfied by L (Equations (34), (58), (59) and (60)). It is known that the

singular points of the series L are among the roots of the polynomial R(t) = D(t)∆(t) where

D(t) is the dominant coefficient of Q(y, t) and ∆(t) is the discriminant of Q(y, t) considered

as a polynomial in y. Moreover, since the series L has non-negative coefficients, we know (by

Pringsheim’s Theorem) that the point t = ρL is singular. In our cases, the smallest positive

root of R(t) is found to be indeed a singular point of the series L. (This requires to solve

some connection problems that we do not detail.) Moreover, no other root of R(t) has the

same modulus. This proves that the series L has a unique dominant singularity.

The second step is to expand the series L near its singularity ρL. This calculation can be

performed using Newton’s polygon method (see [Flaj, Chapter VII.4]) which is implemented

in the algeqtoseries Maple command [Salv 94].
�

From Lemma 1.9, we can deduce the asymptotic form of the number ln = fn, gn, hn, kn of

non-separable triangulations of size n in each family.

Theorem 1.10 The number ln = fn, gn, hn, kn of non-separable triangulations of size n (3n

edges) in which any vertex not incident to the root-edge has degree at least d = 2, 3, 4, 5 has

asymptotic form

ln ∼ λLn
−5/2

(

1

ρL

)n

.

The growth constants ρF , ρG, ρH , ρK are given in Lemma 1.9. Numerically,

1

ρF
= 13.5,

1

ρG
≈ 10.20,

1

ρH
≈ 7.03,

1

ρK
≈ 4.06 .

Remark: The subexponential factor n−5/2 is typical of planar maps families (see for instance

[Band 01] where 15 classical families of maps are listed all displaying this subexponential

factor n−5/2).

Remark: Using Theorems 1.7 and 1.8, it is easily seen that the series L∗ = G∗,H∗ has

dominant singularity ρL = ρG, ρH with singular exponent 3
2 at ρL:

L(t) = α∗
L + β∗L(1 − t

ρL
) + γ∗L(1 − t

ρL
)3/2 +O((1 − t

ρL
)2).

Therefore, we obtain the asymptotic form

l∗n ∼ λ∗Ln
−5/2

(

1

ρL

)n
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for the number l∗n = g∗n, h
∗
n of non-separable triangulations of size n with vertex degree at least

d = 3, 4. Hence, the numbers l∗n and ln are equivalent up to a (known) constant multiplicative

factor
λ∗L
λL

:

λ∗G
λG

=
γ∗G
γG

= 1 − 2ρG = 6 − 3
√

3,

λ∗H
λH

=
γ∗H
γH

=
1 − 5ρH + 5ρH

2 − 3ρH
3

1 − ρH
.

We do not have such precise information about the asymptotic form of the number k∗n of

non-separable triangulations of size n (3n edges) with vertex degree at least 5. However,

we do know that k∗n = Θ(kn) = Θ(n−5/2ρK
−n). Indeed, we clearly have k∗n ≤ kn and, in

addition, k∗n ≥ kn−9 ∼ ρK
9kn. The latter inequality is proved by observing that the operation

of replacing the root-face of a triangulation by an icosahedron is an injection from the set of

triangulations of size n in which any vertex not incident to the root-edge has degree 5 to the

set of triangulations of size n+ 9 in which any vertex has degree at least 5.

1.8 Concluding remarks

We have established algebraic equations for the generating functions of loopless triangula-

tions (i.e. non-separable triangulations) in which any vertex not incident to the root-edge

has degree at least d = 3, 4, 5. We have also established algebraic equations for loopless

triangulations in which any vertex has degree at least d = 3, 4. However, have not found a

similar result for d = 5. The algebraic equations we have obtained can be converted into

differential equations (using for instance the algeqtodiffeq Maple command available in the

gfun package [Salv 94]) from which one can compute the coefficients of the series in a linear

number of operations. Moreover, the asymptotic form of their coefficients can also be found

routinely from the algebraic equations.

The approach we have adopted is based on a classic decomposition scheme allied with

a generating function approach. Alternatively, it is possible to obtain some of our results

by a compositional approach. This is precisely the method followed by Gao and Wormald

to obtain the algebraic equation concerning loopless triangulations in which any vertex has

degree at least 3 [Gao 02]. This substitution approach can also be extended to obtain the

algebraic equation concerning loopless triangulations in which any vertex has degree at least

4. However, we do not see how to apply this method to loopless triangulations in which

vertices not incident to the root-edge have degree at least 5.

Recently, Poulalhon and Schaeffer gave a bijective proof based on the conjugacy classes

of tree for the number of loopless triangulations [Poul 03a]. However, it is dubious that this
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approach should apply for the families H, K of loopless triangulations in which vertices have

degree at least d = 4, 5. Indeed, for a large number of families of maps L, the generating

function L(t) is Lagrangean, that is, there exists a series X(t) and two rational functions Ψ,Φ

satisfying

L(t) = Ψ(X(t)) and X(t) = tΦ(X(t))

(see for instance [Band 01] where 15 classical families are listed together with a Lagrangean

parametrization). Often, a parametrization can be found such that the series X(t) looks like

the generating function of a family of trees (i.e. Φ(x) is a series with non-negative coeffi-

cients) suggesting that a bijective approach exists based on the enumeration of certain trees

[Bous 03b, Bout 02, Bout 05]. However, it is known that an algebraic series is Lagrangean if

and only if the genus of the algebraic equation is 0 [Abhy 90, Chapter 15]. In our case, the

algebraic equations defining the series F, G, H and K have respective genus 0, 0, 2 and 25.

(The genus can be computed using the Maple command genus.) Thus, whereas the series

F, G are Lagrangean (with a parametrization given in Appendix 1.9.3), the series H, K are not.

Lastly, we claim some generality to our approach. Here, we have focused on loopless

triangulations, but it is possible to practice the same kind of manipulations for general

triangulations and for 3-connected ones. The method should also apply to some other

families of maps, like quadrangulations. Thus, a whole new class of map families is expected

to have algebraic generating functions.
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1.9 Appendix

1.9.1 Coefficients of the algebraic equation (60)

The coefficients Pi(t), i = 0..6 in the algebraic equation (60) are:

P0(t) = t10(−1 + 82552t11 − 163081t12 + 277796t13 − 308156t14 − 443851t16 + t34 + 13t +

32t31 + 454t5 − 2434t6 − 5762t8 + 4373t7 − 53961t10 + 23037t9 + 354387t15 + 163964t20 −
28454t21 − 38408t22 + 36713t23 − 11737t24 + t33 + 2t32 − 278t25 + 242t28 − 1678t27 + 2714t26 +

36t29 − 64t30 − 70t2 + 180t3 − 195t4 − 273662t19 + 122688t18 + 262614t17),

P1(t) = (1 − 594873t11 + 1078572t12 − 1457943t13 + 1921912t14 + 1327736t16 + 1462t38 −
3168t37 − 611t39 + 25956t35 − 56515t34 − 3826t36 − 21t − 467567t31 − 4545t5 + 3916t6 +

60304t8 − 13364t7 + 275068t10 − 142715t9 − 2t42 + 9t43 + t44 − 2338117t15 − 4673450t20 +

5167054t21 − 1145738t22 − 2425736t23 + 2298353t24 + 66635t33 + 90827t32 + 559893t25 −
874518t28 +2995671t27 − 3225500t26 − 526335t29 +763474t30 +68t41 +75t40 +193t2 − 988t3 +

2913t4 + 1719643t19 − 945302t18 + 541155t17),

P2(t) = t(8 + 2011979t11 − 1422607t12 + 2174211t13 − 4910332t14 − 9095603t16 − 814t38 +

688t37 + 306t39 − 16997t35 + 43703t34 + 1292t36 − 4t + 370239t31 − 3000t5 + 20421t6 −
268574t8 +72382t7−1309172t10 +527412t9 +8t42 +5383141t15 +31153077t20 −16211612t21 −
2143067t22 + 7886923t23 − 2902691t24 − 50536t33 − 26161t32 − 4609909t25 + 156674t28 −
3199107t27 + 6488106t26 + 970079t29 − 902321t30 + 12t41 + 4t40 − 556t2 + 3851t3 − 8840t4 −
18494688t19 − 9439987t18 + 17752182t17),

P3(t) = t2(16 + 1278321t11 − 2978655t12 + 1697247t13 + 5975715t14 + 54631824t16 + 166t38 −
90t37−32t39 +3984t35−13104t34−868t36−192t−105251t31 +17247t5−36981t6 +521925t8−
74982t7 + 835782t10 − 1142394t9 − 29427957t15 − 39935486t20 + 7773505t21 + 6824437t22 −
5541795t23 − 1619262t24 + 18648t33 + 4941t32 + 5146785t25 + 349680t28 + 880004t27 −
3411645t26 − 600239t29 + 358687t30 + 16t40 + 1046t2 − 2554t3 − 397t4 + 60017232t19 −
26467945t18 − 34977363t17),

P4(t) = 9t5(t− 1)2(8 +722739t11 − 1888278t12 +1483343t13 + 679876t14 +1099122t16 − 84t−
20t31 +9250t5 − 17908t6 +144652t8 − 22565t7 +87721t10 − 234335t9 − 1820089t15 − 5409t20 −
64607t21 + 41918t22 − 12628t23 − 1362t24 + 8t32 + 6200t25 − 189t28 + 1127t27 − 3809t26 −
103t29 + 84t30 + 368t2 − 583t3 − 2069t4 + 110521t19 − 69119t18 − 243772t17),

P5(t) = 81t8(t − 1)4(1 + 25926t11 − 14080t12 + 2973t13 − 369t14 + 348t16 − 9t + 2118t5 −
2936t6 + 23913t8 − 4134t7 − 6330t10 − 25946t9 − 970t15 + 12t20 − 22t21 + 12t22 − 3t23 + t24 +

30t2 − 15t3 − 747t4 + 42t19 − 219t18 + 405t17),
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P6(t) = 59049t15(t+ 1)(t− 1)9.

1.9.2 Algebraic equations for the dominant singularity of the series H(t)

and K(t)

The dominant singularity ρH (resp. ρK) of the generating function H(t) (resp. K(t)) is the

smallest positive root of the polynomial rH(t) (resp. rK(t)) where

rH(t) = 2 − 17t+ 22t2 − 10t3 + 2t4,

and

rK(t) = 256 − 5504t+ 51744t2 − 265664t3 + 755040t4 − 1069751t5 + 1411392t6 − 9094370t7 +

30208920t8 − 14854607t9 − 106655904t10 + 169679596t11 + 1693392t12 + 58535932t13 −
263701752t14 − 751005332t15 + 2215033200t16 − 2276240390t17 + 2301677920t18 −
1558097344t19 − 2448410184t20 + 6223947236t21 − 7440131352t22 + 6100648148t23 +

1602052848t24 − 9604816702t25 + 6144202392t26 + 996698032t27 + 551560496t28 −
3299013583t29 − 728097928t30 + 4881643814t31 − 3845803168t32 + 494467523t33 +

1677669800t34 − 1787552140t35 +825330824t36 +1529759t37 − 340280968t38 +301075034t39 −
121555768t40−1710967t41+37850432t42−27659392t43+9430688t44−152352t45−1901664t46+

1245152t47 − 400416t48 + 47744t49 + 30720t50 − 22528t51 + 7680t52 − 1792t53 + 256t54.

1.9.3 Lagrangean parametrization for the series F(t), G(t) and G∗(t)

The series F(t) has the following Lagrangean parametrization:

F(t) =
X(1 + X)

2
,

where

X ≡ X(t) = 2t(1 + X(t))3.

The series G(t) and G∗(t) have the following Lagrangean parametrization:

G(t) = 2tY(1 + Y)(1 − Y − Y2),

G∗(t) = 4t2(1 + Y)(1 − Y − Y2)(1 + 3Y + 6Y2 + 2Y3),

where

Y ≡ Y(t) = 2t(1 + Y(t))(1 + 4Y(t) + 2Y(t)2).
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Chapter 2

Kreweras walks and loopless

triangulations

Abstract: We consider lattice walks in the plane starting at the origin, remaining in the

first quadrant i, j ≥ 0 and made of West, South and North-East steps. In 1965, Germain

Kreweras discovered a remarkably simple formula giving the number of these walks (with

prescribed length and endpoint). Kreweras’ proof was very involved and several alternative

derivations have been proposed since then. But the elegant simplicity of the counting formula

remained unexplained. We give the first purely combinatorial explanation of this formula.

Our approach is based on a bijection between Kreweras walks and triangulations with a

distinguished spanning tree. We obtain simultaneously a bijective way of counting loopless

triangulations.

Résumé : On considère les chemins planaires constitués de pas Sud, Ouest et Nord-Est

partant de l’origine et restant dans le quart de plan. En 1965, Germain Kreweras dé-

montra une formule remarquablement simple donnant le nombre de ces chemins (à taille

et point d’arrivée fixés). La preuve originale de Kreweras est particulièrement complexe

et plusieurs démonstrations alternatives ont été proposées depuis lors. Mais l’élégante

simplicité de la formule de comptage resta inexpliquée. Nous apportons la première preuve

entièrement bijective de cette formule. Notre approche est basée sur une bijection entre

les chemins de Kreweras et les triangulations dont un arbre couvrant est distingué. Nous

obtenons simultanément une preuve bijective pour le comptage des triangulations sans boucle.

71
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2.1 Introduction

We consider lattice walks in the plane starting from the origin (0,0), remaining in the first

quadrant i, j ≥ 0 and made of three kind of steps: West, South and North-East. These walks

were first studied by Kreweras [Krew 65] and inherited his name. A Kreweras walk ending at

the origin is represented in Figure 48.

a

c

b

Figure 48: The Kreweras walk cbcccbbcaaaaabb.

These walks have remarkable enumerative properties. Kreweras proved in 1965 that the

number of walks of length 3n ending at the origin is:

kn =
4n

(n+ 1)(2n+ 1)

(

3n

n

)

. (70)

The original proof of this result is complicated and somewhat unsatisfactory. It was

performed by guessing the number of walks of size n ending at a generic point (i, j).

The conjectured formulas were then checked using the recurrence relations between these

numbers. The checking part involved several hypergeometric identities which were later

simplified by Niederhausen [Nied 83]. In 1986, Gessel gave a different proof in which the

guessing part was reduced [Gess 86]. More recently, Bousquet-Mélou proposed a constructive

proof (that is, without guessing) of these results and some extensions [Bous 05a]. Still,

the simple looking formula (70) remained without a direct combinatorial explanation. The

problem of finding a combinatorial explanation was mentioned by Stanley in [Stan 05]. Our

main goal in this chapter is to provide such an explanation.

Formula (70) for the number of Kreweras walks is to be compared to another formula

proved the same year. In 1965, Mullin, following the seminal steps of Tutte, proved via a

generating function approach [Mull 65] that the number of loopless triangulations of size n

(see below for precise definitions) is

tn =
2n

(n+ 1)(2n+ 1)

(

3n

n

)

. (71)

A bijective proof of (71) was outlined by Schaeffer in his Ph.D thesis [Scha 98]. See also

[Poul 03a] for a more general construction concerning loopless triangulations of a k-gon. We

will give an alternative bijective proof for the number of loopless triangulations. Technically

speaking, we will work instead on bridgeless cubic maps which are the dual of loopless
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triangulations.

It is interesting to observe that both (70) and (71) admit a nice generalization. Indeed,

the number kn,i of Kreweras walks of size n ending at point (i, 0) and the number cn,i of

loopless triangulations of size n of an (i + 2)-gon both admit a closed formula (see (77) and

(78)). Moreover, the numbers kn,i and cn,i are related by the equation kn,i = 2ncn,i. This

relation is explained in Section 2.8. Alas, we have found no way of proving these formulas by

our approach.

2.2 How the proofs work

We begin with an account of this chapter’s content in order to underline the (slightly unusual)

logical structure of our proofs.

• In Section 2.3, we first recall some definitions on planar maps. We also define a special class

of spanning trees called depth-first search trees or dfs-trees for short. Dfs-trees are closely

related to the trees that can be obtained by a depth-first search algorithm.

Then, we consider a larger family of walks containing the Kreweras walks. These walks are

made of West, South and North-East steps, start from the origin and remain in the half-plane

i + j ≥ 0. We borrow a terminology from probability theory and call these walks meanders.

We call excursion a meander ending on the second diagonal (i.e. the line i + j = 0). An

excursion is represented in Figure 49.

a

b

c

Figure 49: An excursion.

Unlike Kreweras walks, excursions are easy to count. By applying the cycle lemma (see

[Stan 99, Section 5.3]), we prove that the number of excursions of size n (length 3n) is

en =
4n

2n+ 1

(

3n

n

)

.

• In Section 2.4, we define a mapping Φ between excursions and cubic maps with a distin-

guished dfs-tree. In Section 2.5 we prove that the mapping Φ is a (n+1)-to-1 correspondence
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Φ between excursions (of size n) and bridgeless cubic maps (of size n) with a distinguished

dfs-tree. As a consequence, the number of bridgeless cubic maps of size n with a distinguished

dfs-tree is found to be:

dn =
en

n+ 1
=

4n

(n+ 1)(2n+ 1)

(

3n

n

)

.

• In Section 2.6, we prove that the correspondence Φ, restricted to Kreweras walks, induces a

bijection between Kreweras walks (of size n) ending at the origin and bridgeless cubic maps

(of size n) with a distinguished dfs-tree. As a consequence, we obtain:

kn = dn =
4n

(n+ 1)(2n + 1)

(

3n

n

)

,

where kn is the number of Kreweras walks of size n ending at the origin. This gives a

combinatorial proof of (70).

• In Section 2.7, we enumerate dfs-trees on cubic maps. We prove that the number of such

trees for a cubic map of size n is 2n. As a consequence, the number of cubic maps of size n is

cn =
dn

2n
=

2n

(n+ 1)(2n + 1)

(

3n

n

)

.

This gives a combinatorial proof of (71).

• In Section 2.8, we extend the mapping Φ to Kreweras walks ending at (i, 0) and discuss

some open problems.

2.3 Preliminaries

2.3.1 Planar maps and dfs-trees

Planar maps. A planar map, or map for short, is an embedding of a connected planar

graph in the sphere without intersecting edges, defined up to orientation preserving homeo-

morphisms of the sphere. Loops and multiple edges are allowed. The faces are the connected

components of the complement of the graph. By removing the midpoint of an edge we obtain

two half-edges, that is, one-dimensional cells incident to one vertex. We say that each edge

has two half-edges, each of them incident to one of the endpoints.

A map is rooted if one of its half-edges is distinguished as the root. The edge containing

the root is the root-edge and its endpoint is the root-vertex. Graphically, the root is indicated

by an arrow pointing on the root-vertex (see Figure 50). All the maps considered in this

chapter are rooted and we shall not further precise it.
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root

Figure 50: A rooted map.

Growing maps. Our constructions lead us to consider maps with some legs, that is, half-

edges that are not part of a complete edge. A growing map is a (rooted) map together with

some legs, one of them being distinguished as the head. We require the legs to be (all) in

the same face called head-face. The endpoint of the head is the head-vertex. Graphically, the

head is indicated by an arrow pointing away from the head-vertex. The root of a growing

map can be the head, another leg or a regular half-edge. For instance, the growing map in

Figure 51 has 2 legs beside the head, and its root is not a leg.

leg

leg

root
head

Figure 51: A growing map.

Cubic maps. A map (or growing map) is cubic if every vertex has degree 3. It is k-near-

cubic if the root-vertex has degree k and any other vertex has degree 3. For instance, the

map in Figure 50 is 2-near-cubic and the growing map in Figure 51 is cubic. Observe that

cubic maps are in bijection with 2-near-cubic maps not reduced to a loop by the mapping

illustrated in Figure 52.

Figure 52: Bijection between cubic maps and 2-near-cubic maps.

The incidence relation between vertices and edges in cubic maps shows that the number of

edges is always a multiple of 3. More generally, if M is a k-near-cubic map with e edges and v

vertices, the incidence relation reads: 3(v−1)+k = 2e. Equivalently, 3(v−k+1) = 2(e−2k+3).
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The number v − k + 1 is non-negative for non-separable k-near-cubic maps (see definition

below). (This property can be shown by induction on the number of edges by contracting

the root-edge.) Hence, the number of edges has the form e = 3n + 2k − 3, where n is a

non-negative integer. We say that a k-near-cubic map has size n if it has e = 3n + 2k − 3

edges (and v = 2n + k − 1 vertices). In particular, the mapping of Figure 52 is a bijection

between cubic maps of size n (3n+3 edges) and 2-near-cubic maps of size n+1 (3n+4 edges).

Non-separable maps. A map is non-separable if its edge set cannot be partitioned into

two non-empty parts such that only one vertex is incident to some edges in both parts. In

particular, a non-separable map not reduced to an edge has no loop nor bridge (a bridge or

isthmus is an edge whose deletion disconnects the map). For cubic maps and 2-near-cubic

maps it is equivalent to be non-separable or bridgeless. The mapping illustrated in Figure 52

establishes a bijection between bridgeless cubic maps and bridgeless 2-near-cubic maps not

reduced to a loop.

Bridgeless cubic maps are interesting because their dual are the loopless triangulations.

Recall that the dual M ∗ of a map M is the map obtained by putting a vertex of M ∗ in each

face of M and an edge of M ∗ across each edge of M . See Figure 53 for an example.

Figure 53: A cubic map and the dual triangulation (dashed lines).

Dfs-trees. A tree is a connected graph without cycle. A subgraph T of a graph G is a

spanning tree if it is a tree containing every vertex of G. An edge of the graph G is said to

be internal if it is in the spanning tree T and external otherwise. For any pair of vertices

u, v of the graph G, there is a unique path between u and v in the spanning tree T . We call

it the T -path between u and v. A map (or growing map) M with a distinguished spanning

tree T will be denoted by MT . Graphically, we shall indicate the spanning tree by thick

lines as in Figure 54. A vertex u of MT is an ancestor of another vertex v if it is on the

T -path between the root-vertex and v. In this case, v is a descendant of u. Two vertices are

comparable if one is the ancestor of the other. For instance, in Figure 54, the vertices u1 and

v1 are comparable whereas u2 and v2 are not.
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A dfs-tree is a spanning tree such that any external edge joins comparable vertices. More-

over, we require the edge containing the root to be external. In Figure 54, the tree on the left

side is a dfs-tree but the tree on the right side is not a dfs-tree since the edge (u2, v2) breaks

the rule. The dfs-trees are strongly related to the depth-first search algorithm (see Section

2.7) and are also known as the Trémaux trees [Fray 82, Fray 85]. A dfs-map is a map with a

distinguished dfs-tree. A marked-dfs-map is a dfs-map with a marked external edge.

u1

v1

u2

v2

Figure 54: A dfs-tree (left) and a non-dfs-tree (right).

2.3.2 Kreweras walks and meanders

In what follows, Kreweras walks are considered as words on the alphabet {a, b, c}. The letter

a (resp. b, c) corresponds to a West (resp. South, North-East) step. For instance, the walk

in Figure 48 is cbcccbbcaaaaabb. The length of a word w is denoted by |w| and the number

of occurrences of a given letter α is denoted by |w|α. Kreweras walks are the words w on the

alphabet {a, b, c} such that any prefix w′ of w satisfies

|w′|a ≤ |w′|c and |w′|b ≤ |w′|c . (72)

Kreweras walks ending at the origin satisfy the additional constraint

|w|a = |w|b = |w|c. (73)

These conditions can be interpreted as a ballot problem with three candidates. This is why

Kreweras walks sometimes appear under this formulation in the literature [Nied 83].

Similarly, the meanders, that is, the walks remaining in the half-plane i + j ≥ 0, are the

words w on {a, b, c} such that any prefix w′ of w satisfies

|w′|a + |w′|b ≤ 2|w′|c . (74)

Excursions, that is, meanders ending on the second diagonal, satisfy the additional constraint

|w|a + |w|b = 2|w|c . (75)

Note that the length of any walk ending on the second diagonal is a multiple of 3. The

size of such a walk of length 3n is n. Note also that a walk ending at point (i, 0) has a
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length of the form l = 3n+ 2i where n is a non-negative integer. A Kreweras walk of length

l = 3n+ 2i ending at (i, 0) has size n.

Unlike Kreweras walks, the excursions are easy to count.

Proposition 2.1 There are

en =
4n

2n+ 1

(

3n

n

)

(76)

excursions of size n.

Proof: We consider projected walks, that is, one-dimensional lattice walks starting and ending

at 0, remaining non-negative and made of steps +2 and −1. (They correspond to projections

of excursions on the first diagonal.) A projected walk is represented in Figure 55. Projected

walks can be seen as words w on the alphabet {α, c} with |w|α = 2|w|c and such that any

prefix w′ of w satisfies |w′|α ≤ 2|w′|c. The projected walks can be counted bijectively by

applying the cycle lemma (see Section 5.3 of [Stan 99]): there are

pn =
1

3n+ 1

(

3n+ 1

2n+ 1

)

=
1

2n+ 1

(

3n

n

)

projected walks of size n (length 3n).

Given an excursion, we obtain a projected walk by replacing the occurrences of a and b by α.

Conversely, taking a projected walk of length 3n and replacing the 2n letters α by a sequence of

letters in {a, b} one obtains an excursion. This establishes a 4n-to-1 correspondence between

excursions (of size n) and projected walks (of size n). Thus, there are 4npn excursions of

size n.
�

Figure 55: The projected walk associated to the excursion of Figure 49.

2.4 A bijection between excursions and cubic marked-dfs-

maps

In this section we define a mapping Φ between excursions and bridgeless 2-near-cubic

marked-dfs-maps (2-near-cubic maps with a distinguished dfs-tree and a marked external



2.4. A bijection between excursions and cubic marked-dfs-maps 79

edge). We shall prove in Section 2.5 that the mapping Φ is a bijection between excursions

and bridgeless 2-near-cubic marked-dfs-maps. The general principle of the mapping Φ

is to read the excursion from right to left and interpret each letter as an operation for

constructing the map and the tree. This step-by-step construction is illustrated in Figure

57. The intermediate steps are tree-growing maps, that is, growing maps together with a

distinguished spanning tree (indicated by thick lines).

• We start with the tree-growing map M 0
• consisting of one vertex and two legs. One of the

legs is the root, the other is the head (see Figure 56). The spanning tree is reduced to the

unique vertex.

• We apply successively certain elementary mappings ϕa, ϕb, ϕc (Definition 2.2) correspond-

ing to the letters a, b, c of the excursion read from right to left.

• When the whole excursion is read, there is only one leg remaining beside the head. At this

stage, we close the tree-growing map, that is, we glue the head and the remaining leg into a

marked external edge as shown in Figure 58.

Figure 56: The tree-growing map M 0
• .

a ca

a ca

c

a cb

b a

Figure 57: Successive applications of the mappings ϕa, ϕb, ϕc for the walk cacbaaccaaba

(read from right to left).

Let us enter in the details and define the mapping Φ. Consider a growing map M . We

make a tour of the head-face if we follow its border in counterclockwise direction (i.e. the
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Close

Figure 58: Closing the map (the marked edge is dashed).

border of the head-face stays on our left-hand side) starting from the head (see Figure 59).

This journey induces a linear order on the legs of M . We shall talk about the first and last

legs of M .

root

head

first leg
last leg

Figure 59: Making the tour of the head-face.

We define three mappings ϕa, ϕb, ϕc on tree-growing maps.

Definition 2.2 Let MT be a tree-growing map (the map is M and the distinguished tree is

T ).

• The mappings ϕa and ϕb are represented in Figure 60. The tree-growing map M ′
T ′ = ϕa(MT )

(resp. ϕb(MT )) is obtained from MT by replacing the head by an edge e together with a new

vertex v incident to the new head and another leg at its left (resp. right). The tree T ′ is

obtained from T by adding the edge e and the vertex v.

• The tree-growing map ϕc(MT ) is only defined if the first and last legs exist (that is, if the

head-face contains some legs beside the head) and have distinct and comparable endpoints.

We call these legs s and t with the convention that the endpoint of s is an ancestor of the

endpoint of t.

In this case, the tree-growing map M ′
T = ϕc(MT ) is obtained from MT by gluing together the

head and the leg s while the leg t becomes the new head (see Figure 61). The spanning tree T

is unchanged.
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• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ϕw the mapping

ϕa1
◦ ϕa2

◦ · · · ◦ ϕan .

a

e

v

b

e

v

Figure 60: The mappings ϕa and ϕb.

c

s
t

Figure 61: The mapping ϕc.

Definition 2.3 The image of an excursion w by the mapping Φ is the map with a distin-

guished spanning tree and a marked external edge obtained by closing the tree-growing map

ϕw(M0
• ), that is, by gluing the head and the unique remaining leg into a marked edge.

The mapping Φ has been applied to the excursion cacbaaccaaba in Figure 57 and 58. Of

course, we still need to prove that the mapping Φ is well defined.

Proposition 2.4 The mapping Φ is well defined on any excursion w:

• It is always possible to apply the mapping ϕc when required.

• The tree-growing map ϕw(M0
• ) has exactly one leg beside the head. This leg and the head

are both in the head-face, hence can be glued together.

Before proving Proposition 2.4, we need three technical results.

Lemma 2.5 Let w be a word on the alphabet {a, b, c} such that ϕw(M0
• ) is well defined. Then,

ϕw(M0
• ) is a tree-growing map.

Proof: Let MT = ϕw(M0
• ). It is clear by induction that T is a spanning tree. The only

point to prove is that the legs of ϕw(M0
• ) are in the head-face. We proceed by induction

on the length of w. This property holds for the empty word. If the property holds for

MT = ϕw(M0
• ) it clearly holds for ϕa(MT ) and ϕb(MT ). If ϕc can be applied, the head is
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glued either to the first or to the last leg of MT . Thus, all the remaining legs (including

the head of ϕc(MT )) are in the same face. �

We shall see shortly (Lemma 2.7) that whenever the tree-growing map ϕw(M0
• ) is well

defined, the endpoints of any leg is an ancestor of the head-vertex. Observe that in this case

the endpoints of the legs are comparable.

Lemma 2.6 Let MT be a tree-growing map. Suppose that the endpoint of any leg is an

ancestor of the head-vertex. Suppose also that the first and last legs exist and have distinct

endpoints. We call these endpoints u and v with the convention that u is an ancestor of

v. Then, v is the last vertex incident to a leg on the T -path from the root-vertex to the

head-vertex.

Proof: The situation is represented in Figure 62. We make an induction on the number of

edges that are not in the T -path P from the root-vertex to the head-vertex. The property

is clearly true if the tree-growing map is reduced to the path P plus some legs. If not, the

deletion of a edge not in P does not change the order of appearance of the legs around the

head-face. In particular, the first and last legs are unchanged.
�

P
v

u P
v

u

Figure 62: The last vertex incident to a leg on the T -path from the root-vertex to the head-

vertex is v.

Lemma 2.7 Let w be a word on the alphabet {a, b, c} such that ϕw(M0
• ) is defined. Then the

endpoint of any leg of ϕw(M0
• ) is an ancestor of the head-vertex.

Proof: We proceed by induction on the length of w. The property holds for the empty word.

We suppose that it holds for MT = ϕw(M0
• ). It is clear that the property holds for the tree-

growing maps ϕa(MT ) and ϕb(MT ). If ϕc can be applied, the endpoints of the first and last

leg are distinct and comparable. We call these endpoints u and v with the convention that u

is an ancestor of v. By the induction hypothesis, the conditions of Lemma 2.6 are satisfied

by MT . Therefore, the vertex v is the last vertex incident to a leg on the T -path from the

root-vertex to the head-vertex. Hence, any endpoint of a leg of ϕc(MT ) is an ancestor of v

which is the head-vertex of ϕc(MT ).
�
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Proof of Proposition 2.4: Let w be an excursion. We consider a suffix w ′ of w and denote

by M ′
T = ϕw′(M0

• ) the corresponding tree-growing map (if it is well defined).

• If M ′
T is well defined, it has |w′|a + |w′|b − 2|w′|c + 1 legs besides the head. (Observe that,

by (74) and (75), the quantity |w′|a + |w′|b − 2|w′|c is non-negative.)

We proceed by induction on the length of w′. The property holds for the empty word.

Moreover, applying ϕa or ϕb increases by 1 the number of legs whereas applying ϕc decreases

this number by 2. Thus, the property follows easily by induction.

• The tree-growing map M ′
T is well defined.

We proceed by induction on the length of w′. The property holds for the empty word. We

write w′ = αw′′ and suppose that M ′′
T = ϕw′′(M0

• ) is well defined. If α = a or b the tree-

growing map M ′
T = ϕα(M ′′

T ) is well defined. We suppose now that α = c. The tree-growing

map M ′′
T has |w′′|a + |w′′|b −2|w′′|c +1 = |w′|a + |w′|b −2|w′|c +3 > 2 legs besides the head. It

is clear by induction that all these legs have distinct endpoints. Moreover, by Lemma 2.7, all

the endpoints of these legs are ancestors of the head-vertex. Thus the endpoints of the legs

are comparable. In particular, the endpoints of the first and last legs are comparable. Hence,

the mapping ϕc can be applied.

• The tree-growing map MT = ϕw(M0
• ) is well defined and has exactly one leg beside the head.

This property follows from the preceding points since |w|a + |w|b − 2|w|c = 0.
�

We now state the key result of this chapter.

Theorem 2.8 The mapping Φ is a bijection between excursions of size n and bridgeless 2-

near-cubic marked-dfs-maps of size n.

The proof of Theorem 2.8 is postponed to the next section. For the time being we explore

its enumerative consequences. We denote by dn the number of bridgeless 2-near-cubic dfs-

maps of size n. Consider a 2-near-cubic map M of size n (3n+ 1 edges, 2n+ 1 vertices) and

a spanning tree T . Since T has 2n+ 1 vertices, MT has 2n internal edges and n+ 1 external

edges. Hence, there are (n+ 1)dn bridgeless 2-near-cubic marked-dfs-maps. By Theorem 2.8,

this number is equal to the number en of excursions of size n. Using Proposition 2.1, we

obtain the following result.

Corollary 2.9 There are dn =
en

n+ 1
=

4n

(n+ 1)(2n+ 1)

(

3n

n

)

bridgeless 2-near-cubic

dfs-maps of size n.

Observe that dn is also the number of bridgeless cubic dfs-maps of size n − 1 since the

bijection between cubic maps and 2-near-cubic maps represented in Figure 52 can be turned

into a bijection between cubic dfs-maps and 2-near-cubic dfs-maps.
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2.5 Why the mapping Φ is a bijection

In this section, we prove that the mapping Φ is a bijection between excursions and bridgeless

2-near-cubic marked-dfs-maps. We first prove that the image of any excursion by the mapping

Φ is a bridgeless 2-near-cubic marked-dfs-map (Proposition 2.10). Then we define a mapping

Ψ from bridgeless 2-near-cubic marked-dfs-maps to excursions (Definition 2.13) and prove

that Φ and Ψ are inverse mappings (Propositions 2.16 and 2.18).

Proposition 2.10 The image Φ(w) of any excursion w is a bridgeless 2-near-cubic marked-

dfs-map.

Proof: Let w′ be a suffix of w and let M ′
T = ϕw′(M0

• ) be the corresponding tree-growing

map.

• The tree-growing map M ′
T is 2-near-cubic.

Applying ϕa or ϕb creates a new vertex of degree 3 and does not change the degree of the

other vertices. Applying ϕc does not affect the degree of the vertices. The property follows

by induction.

• The head and the root of M ′
T are distinct half-edges.

The property holds for the empty word. We now write w ′ = αw′′. If α = a or b the property

clearly holds for w′. Suppose now that α = c. Let u and v be the vertices incident to the first

and last legs of M ′′
T = ϕw′′(M0

• ) with the convention that u is an ancestor of v. By definition,

v is the head-vertex of M ′
T = ϕc(M

′′
T ) and is a proper descendant of u. Hence, the head-vertex

v and the root-vertex of M ′
T are distinct.

• The tree T is a dfs-tree of M ′
T .

The external edges are created by applying the mapping ϕc, that is, by gluing the head to

another leg. By Lemma 2.7, any vertex incident to a leg is an ancestor of the head-vertex.

Hence, any external edge joins comparable vertices. Moreover, by the preceding point, if the

root is part of a complete edge, then this edge is external (internal edges are created by the

mappings ϕa or ϕb which replace the head by a complete edge).

• Let u0 be the first vertex of M ′
T incident to a leg on the T -path from the root-vertex to the

head-vertex. Any isthmus of M ′
T is in the T -path between u0 and the head-vertex.

We proceed by induction on the length of w′. The property holds for the empty word. We

write w′ = αw′′ and suppose that it holds for M ′′
T = ϕw′′(M0

• ). If α = a or b the property

clearly holds for M ′
T = ϕα(M ′′

T ). We suppose now that α = c. We denote by u1 the first

vertex of M ′′
T incident to a leg on the T -path from the root-vertex to the head-vertex. Let u

and v be the vertices incident to the first and last legs of M ′′
T with the convention that u is

an ancestor of v. By Lemma 2.7, the vertices u1, u and v are all ancestors of the head-vertex

v1 of M ′′
T . Hence, u and v are on the T -path between u1 and v1. This situation is represented

in Figure 63. By definition, the tree-growing map M ′
T is obtained from M ′′

T by creating an
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edge e1 between u and v1 while v becomes the new head-vertex. We denote by P1 (resp. P2)

the T -path between u1 and u (resp. u and v1). We consider an isthmus e of M ′
T . The edge e

is an isthmus of M ′′
T (since M ′′

T is obtained from MT by deleting an edge). By the induction

hypothesis, the isthmus e is either in P1 or in P2. The edge e is not in the path P2 since

the new edge e1 creates a cycle with P2. The isthmus e is in P1, therefore the vertices u1

and u are distinct. Hence u1 = u0 is the first vertex of M ′
T incident to a leg on the T -path

from the root-vertex to the head-vertex. Thus, the isthmus e is in the T -path from u0 to the

head-vertex v of M ′
T .

• The dfs-map Φ(w) has no isthmus.

By the preceding points, any isthmus of MT = ϕw(M0
• ) is on the T -path between the head-

vertex and the endpoint of the only remaining leg. Hence, no isthmus remains once the map

closed.
�

P2

u

v

P1

v

u

v1

u1 u1

v1
e1

ϕc

Figure 63: Isthmuses are in the T -path between u0 and the head-vertex.

We will now define a mapping Ψ (Definition 2.13) that we shall prove to be the inverse of

Φ. The mapping Ψ destructs the tree-growing map that Φ constructs and recovers the walk.

Looking at Figure 57 from bottom-to-top and right-to-left we see how Ψ works.

We first define three mappings ψa, ψb, ψc on tree-growing maps that we shall prove to

be the inverse of ϕa, ϕb and ϕc respectively. We consider the following conditions for a

tree-growing map MT :

(a) The head-vertex has degree 3 and is incident to an edge and a leg at the left of the head.

(b) The head-vertex has degree 3 and is incident to an edge and a leg at the right of the head.

(c) The head-vertex has degree 3 and is incident to 2 edges which are not isthmuses.

Furthermore, the tree T is a dfs-tree.

The conditions (a), (b), (c) are the domain of definition of ψa, ψb, ψc respectively. Before

defining these mappings we need a technical lemma.

Lemma 2.11 If Condition (c) holds for the tree-growing map MT , then there exists a unique

external edge e0 incident to the head-face with one endpoint u ancestor of the head-vertex and
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one endpoint v0 descendant of the head-vertex.

Lemma 2.11 is illustrated by Figure 64.

u

ee0

v0

Figure 64: The unique edge e0 satisfying the conditions of Lemma 2.11.

Proof: We suppose that MT satisfies Condition (c). One of the two edges incident to the

head-vertex is in the T -path from the root-vertex to the head-vertex. Denote it e. The edge

e separates the tree T in two subtrees T1 and T2. We consider the set E0 of external edges

having one endpoint in T1 and the other in T2. Any edge satisfying the conditions of Lemma

2.11 is in E0. Since e is not an isthmus, the set E0 is non-empty. Moreover, any edge in E0

has one endpoint that is a descendant of the head-vertex. Since T is a dfs-tree, the other

endpoint is an ancestor of the head-vertex. It remains to show that there is a unique edge

e0 in E0 incident to the head-face. By contracting every edge in T1 and T2 we obtain a map

with 2 vertices. The edges incident to both vertices are precisely the edges in E0 ∪ {e}. It is

clear that exactly 2 of these edges are incident to the head-face. One is the internal edge e

and the other is an external edge e0 ∈ E0. This edge e0 is the only external edge satisfying

the conditions of Lemma 2.11.
�

We are now ready to define the mappings ψa, ψb and ψc.

Definition 2.12 Let MT be a tree-growing map.

• The tree-growing map M ′
T ′ = ψa(MT ) (resp. ψb(MT )) is defined if Condition (a) (resp.

(b)) holds. In this case, the tree-growing map M ′
T ′ is obtained by suppressing the head-vertex

v and the 3 incident half-edges. The other half of the edge incident to v becomes the new

head.

• The tree-growing map M ′
T ′ = ψc(MT ) is defined if Condition (c) holds. In this case, we

consider the unique external edge e0 with endpoints u, v0 satisfying the conditions of Lemma

2.11. The edge e0 is broken into two legs. The leg incident to v0 becomes the new head (the

former head becomes an anonymous leg).

• For a word w = a1a2 . . . an on the alphabet {a, b, c}, we denote by ψw the mapping

ψan ◦ ψan−1
◦ · · · ◦ ψa1

. Moreover, we say that the word w is readable on a tree-growing map
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MT if the mapping ψw is well defined on MT .

Remarks:

• Applying one of the mappings ψa, ψb or ψc to a 2-near-cubic map cannot delete the root

(only half-edges incident to a vertex of degree 3 can disappear by application of ψa or ψb).

• The conditions (a), (b), (c) are incompatible. Thus, for any tree-growing map MT , there is

at most one readable word of a given length.

• Applying the mapping ψa, ψb or ψc decreases by one the number of edges. Therefore, the

length of any readable word on a tree-growing map MT is less than or equal to the number

of edges in MT .

We now define the mapping Ψ on bridgeless 2-near-cubic marked-dfs-maps. Let MT be

such a map and let e be the marked (external) edge. Observe first that, unless MT is reduced

to a loop, the edge e has two distinct endpoints (or the endpoint of e would be incident to an

isthmus). We denote by u and v the endpoints of e with the convention that u is an ancestor

of v. We open this map if we disconnect the edge e into two legs and choose the leg incident

to v to be the head. We denote by Ma`
T the tree-growing map obtained by opening MT . By

convention, opening the 2-near-cubic marked-dfs-map reduced to a loop gives M 0
• . Note that

we obtain MT by closing Ma`
T . We now define the mapping Ψ.

Definition 2.13 Let MT be a bridgeless 2-near-cubic marked-dfs-map. The word Ψ(MT ) is

the longest word readable on Ma`
T .

We want to prove that Φ and Ψ are inverse mappings. We begin by proving that the

mapping ψα is the inverse of ϕα for α = a, b, c.

We say that a tree-growing map satisfies Condition (c′) if it satisfies Condition (c) and is

such that the endpoint of every leg is an ancestor of the head-vertex.

Lemma 2.14

• For α = a or b, the mapping ψα ◦ ϕα is the identity on all tree-growing maps and the

mapping ϕα ◦ ψα is the identity on tree-growing maps satisfying Condition (α).

• The mapping ψc ◦ϕc is the identity on tree-growing maps such that the endpoints of the first

and last legs exist and are distinct ancestors of the head-vertex. The mapping ϕc ◦ ψc is the

identity on tree-growing maps satisfying Condition (c′).

Before proving Lemma 2.14, we need the following technical result.

Lemma 2.15 Let MT be a tree-growing map satisfying Condition (c′) and let e0 be the edge

with endpoints u, v0 satisfying the conditions of Lemma 2.11. By definition, the tree-growing
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map ψc(MT ) is obtained by breaking e0 into two legs s and h incident to u and v0 respectively

while h becomes the new head. The pair of first and last legs of ψc(MT ) is the pair {s, t},
where t is the head of MT .

Lemma 2.15 is illustrated by Figure 65.

s
u u

v0v0

v vψc

t

h

t
e0

Figure 65: The pair of first and last legs of the tree-growing map ψc(MT ) is the pair {s, t}.

Proof of Lemma 2.15:

• Let v be the head-vertex of MT (i.e. the endpoint of t). By Condition (c′), the endpoint of

any leg of MT is an ancestor of v. Therefore, in the tree-growing map ψc(MT ), the vertex v

is the last vertex incident to a leg on the T -path from the root-vertex to the head-vertex v0.

Hence, by Lemma 2.6, the leg t is either the first or the last leg of ψc(MT ).

• No leg lies between s and h on the tour of the head-face of ψc(MT ) since this leg would

have been inside a non-head face of MT . Thus the leg s is either the first or the last leg of

ψc(MT ).
�

Proof of Lemma 2.14:

• For α = a or b, it is clear from the definitions that ϕα ◦ ψα is the identity mapping on all

tree-growing maps and that ϕα ◦ψα is the identity on tree-growing maps satisfying Condition

(α).

• Consider a tree-growing map MT such that the endpoints of the first and last legs exist and

are distinct ancestors of the head-vertex v0. We call these legs s and t with the convention

that the endpoint u of s is an ancestor of the endpoint v of t. By definition, ϕc(MT ) is

obtained by gluing the head of MT to s while t becomes the new head. Let e0 be the external

edge created by gluing the head to s. The head-vertex v of the tree-growing map ϕc(MT ) is

on the cycle made of e0 and the T -path between its two endpoints u and v0, thus ϕc(MT )

satisfies Condition (c). Moreover, the external edge e0 satisfies the conditions of Lemma 2.11.

Thus, ψc ◦ ϕc(MT ) = MT .

• We consider a tree-growing map MT satisfying Condition (c′). We consider the edge e0 with

endpoints u, v0 satisfying the conditions of Lemma 2.11. By definition, ψc(MT ) is obtained
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by breaking e0 into two legs s and h incident to u and v0 respectively while h becomes the

new head. By Lemma 2.15, the pair of first and last legs of ψc(MT ) is {s, t}. Moreover, the

endpoint u of s is an ancestor of the endpoint v of t (by definition of e0, u, v0 in Lemma 2.11).

Therefore, the identity ϕc ◦ ψc(MT ) = MT follows from the definitions.
�

Proposition 2.16 The mapping Ψ ◦ Φ is the identity on excursions.

Proof:

• For any word w on the alphabet {a, b, c} such that the tree-growing map ϕw(M0
• ) is well

defined, the word w is readable on ϕw(M0
• ) and ψw ◦ ϕw(M0

• ) = M0
• .

We proceed by induction on the length of w. The property holds for the empty word. We

write w = αw′ with α = a, b or c and suppose that it holds for w′. Let M ′
T = ϕw′(M0

• ). If

α = c, the endpoints of the first and last legs of M ′
T are distinct and comparable (since ϕc is

defined on M ′
T ). Moreover, we know by Lemma 2.7 that these endpoints are ancestors of the

head-vertex. Thus, for α = a, b or c, Lemma 2.14 ensures that ψα◦ϕα(M ′
T ) = M ′

T . Therefore,

ψαw′ ◦ ϕαw′(M0
• ) = ψw′ ◦ ψα ◦ ϕα ◦ ϕw′(M0

• ) = ψw′ ◦ ψα ◦ ϕα(M ′
T ) = ψw′(M ′

T ),

and ψw′(M ′
T ) = M0

• by the induction hypothesis.

• For any excursion w, we have Ψ ◦ Φ(w) = w.

By definition, the map MT = Φ(w) is obtained by closing ϕw(M0
• ). In order to conclude that

Ma`
T = ϕw(M0

• ), we only need to check that the head of M a`
T is the head of ϕw(M0

• ) (and the

non-head leg of Ma`
T is the non-head leg of ϕw(M0

• )). This is true since the endpoint of the

non-head leg of ϕw(M0
• ) is an ancestor of the head-vertex by Lemma 2.7. By the preceding

point, the word w is readable on Ma`
T = ϕw(M0

• ) and ψw(MT ) = ψw ◦ ϕw(M0
• ) = M0

• . Since

no letter is readable on M 0
• , the longest word readable on Ma`

T is w. Thus, Ψ ◦ Φ(w) =

Ψ(MT ) = w.
�

It remains to show that Φ ◦Ψ is the identity mapping on bridgeless 2-near-cubic marked-

dfs-maps. We first prove that the image of bridgeless 2-near-cubic marked-dfs-maps by Ψ are

excursion.

Proposition 2.17 For any bridgeless 2-near-cubic marked-dfs-map MT , the longest word w

readable on Ma`
T is an excursion. Moreover, the tree-growing map ψw(Ma`

T ) is M0
• .

Proof: If MT is the map reduced to a loop the result is trivial. We exclude this case in what

follows. Let w be a word readable on Ma`
T and let NT = ψw(Ma`

T ). We denote by u0 the first

vertex of NT incident to a leg on the T -path from the root-vertex to the head-vertex.

• Any isthmus of NT is in the T -path between u0 and the head-vertex.

We proceed by induction on the length of w. Suppose first that w is the empty word. Let e0



90 Chapter 2. Kreweras walks and loopless triangulations

be the marked edge of MT . By definition, the tree-growing map NT = Ma`
T is obtained from

MT by breaking e0 into two legs: the head and another leg incident to u0. Let e be an isthmus

of NT and let N1, N2 be the two connected submaps obtained by deleting e. Since e is not an

isthmus of MT , the edge e0 joins N1 and N2. Therefore, the root-vertex and head-vertex are

not in the same submap. Thus, the isthmus e is in any path between u0 and the head-vertex,

in particular it is in the T -path.

We now write w = αw′ with α = a, b or c and suppose, by the induction hypothesis, that the

property holds for w′. We denote by u′0 the first vertex of N ′
T = ψw′(Ma`

T ) incident to a leg

on the T -path from the root-vertex to the head-vertex. Suppose first that α = a or b. The

edge incident to the head-vertex of N ′
T is an isthmus hence, by the induction hypothesis, it is

in the T -path between u′0 and the head-vertex v′0 of N ′
T . Hence, u′0 6= v′0. Thus, u0 = u′0 and

every isthmus of NT = ψα(N ′
T ) is in the T -path between u0 and the head-vertex. Suppose

now that α = c. Since w is readable on Ma`
T , the tree-growing map N ′

T = ψw′(Ma`
T ) satisfies

Condition (c). We consider the edge e0 with endpoints u, v0 satisfying the conditions of

Lemma 2.11. The map NT = ψc(N
′
T ) is obtained from NT by breaking e0 into two legs. By

definition, the head-vertex of NT is v0. Moreover, the vertex u0 is either u′0 or u if u is an

ancestor of u′0. We consider an isthmus e of NT . If e is an isthmus of N ′
T , it is in the T -path

between u′0 to the head-vertex of N ′
T which is included in the T -path between u0 and v0. If

e is not an isthmus of N ′
T , we consider the two connected submaps N1, N2 obtained from

NT by deleting the isthmus e. Since e is not an isthmus of N ′
T , the edge e0 joins N1 and N2.

Hence, the endpoints u and v0 of e0 are not in the same submap. Thus, the isthmus e is in

every path of NT between u and the head-vertex v0, in particular, it is in the T -path between

u0 and v0.

• The tree-growing map NT has at least one leg beside the head.

We proceed by induction. The property holds for the empty word. We now write w = αw ′

with α = a, b or c and suppose that the property holds for w ′. Suppose first that α = a or b.

Since Condition (α) holds, the edge incident to the head-vertex v ′0 of the tree-growing map

N ′
T = ψw′(Ma`

T ) is an isthmus. By the preceding point, this edge is on the T -path between u′
0

and v′0, where u′0 be the first vertex of N ′
T incident to a leg on the T -path from the root-vertex

to the head-vertex. Thus u′0 6= v′0 and NT = ψα(N ′
T ) has at least one leg (the one incident

to u′0) beside the head. In the case α = c, the tree-growing map NT = ψc(N
′
T ) has one more

legs than N ′
T , hence it has at least one leg beside the head.

• The head and root of NT are distinct half-edges.

By definition, the map Ma`
T has one leg beside the head whose endpoint is a proper ancestor

of the head-vertex. Hence, the head-vertex and root-vertex are distinct. We suppose now that

w = αw′ with α = a, b or c. If α = a or b the head of NT is an half-edge of N ′
T = ψw′(Ma`

T )

which is part of an internal edge. Hence it is not the root. If α = c, the head of NT is

part of an external edge e of N ′
T = ψw′(Ma`

T ). The edge is broken into the head of NT and
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another leg whose endpoint is a proper ancestor of the head-vertex. Hence, the head-vertex

and root-vertex of NT are distinct.

• If w is the longest readable word, then NT = M0
• .

We first prove that the root-vertex and the head-vertex of NT are the same. Suppose they

are distinct. In this case, the head-vertex has degree 3 and is incident to at least one edge. If

it is incident to one edge, then one of the conditions (a) or (b) holds and w is not the longest

readable word. Hence the head-vertex is incident to two edges e1 and e2. One of these edges,

say e1, is in the T -path from the root-vertex to the head-vertex and the other e2 is not. By a

preceding point, the edge e2 is not an isthmus . Therefore, e1 is not an isthmus either (e1 and

e2 have the same ability to disconnect the map). In this case, Condition (c) holds (since T is

a dfs-tree) and w is not the longest readable word. Thus, the root-vertex and the head-vertex

of NT are the same. Therefore, the root-vertex has degree 2 and is incident to the head and

the root. The head and the root are distinct (by the preceding point). Moreover the root is a

leg. Indeed, if the root was not a leg it would be part of an external edge which is an isthmus

(which is impossible since the tree T is spanning). Hence the root-vertex is incident to two

legs: the root and the head. Thus, NT = M0
• .

• The tree-growing map NT has 2|w|c − |w|a − |w|b + 1 legs beside the head.

The tree-growing map Ma`
T has one leg beside the head. Moreover, applying mapping ψa or

ψb decreases by one the number of legs whereas applying mapping ψc increases this number

by two. Hence the property follows easily by induction.

• The longest word w readable on Ma`
T is an excursion.

By the preceding points, any prefix w′ of w satisfies 2|w′|c − |w′|a − |w′|b + 1 ≥ 1 (since this

quantity is the number of non-head legs of ψw′(Ma`
T )). Moreover, since ψw(Ma`

T ) = M0
• has

one leg beside the root, we have 2|w|c − |w|a − |w|b + 1 = 1. These properties are equivalent

to (74) and (75), hence w is an excursion.
�

Proposition 2.18 The mapping Φ ◦Ψ is the identity on bridgeless 2-near-cubic marked-dfs-

maps.

Proof: Let MT be a bridgeless 2-near-cubic marked-dfs-map.

• For any word w readable on Ma`
T , the endpoints of any leg of ψw(Ma`

T ) is an ancestor of

the head-vertex.

We proceed by induction on the length of w. The property holds for the empty word. We

now write w = αw′ with α = a, b or c and suppose that it holds for w′. For α = a or b, the

property clearly holds for w. Suppose now that α = c. Since w is readable, the tree-growing

map N ′
T = ψw′(Ma`

T ) satisfies Condition (c). We consider the edge e0 with endpoints u, v0

satisfying the conditions of Lemma 2.11. By definition, the head-vertex v0 of NT = ψc(N
′
T )
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is a descendant of the head-vertex v of N ′
T . By the induction hypothesis, the endpoint of any

leg of N ′
T is an ancestor of v. Hence, the endpoint of any leg of NT is an ancestor of the

head-vertex v0.

• For any word w readable on Ma`
T , we have ϕw ◦ ψw(Ma`

T ) = Ma`
T .

We proceed by induction. The property holds for the empty word. We now write w = αw ′

with α = a, b or c and suppose that the property holds for w ′. If α = a or b the induction step

is given directly by Lemma 2.14 (since Condition (α) holds for M ′
T = ψw′(Ma`

T )). If α = c,

that is, Condition (c) holds for M ′
T = ψw′(Ma`

T ), we must prove that Condition (c′) holds (in

order to apply Lemma 2.14). But we are ensured that Condition (c′) holds by the preceding

point. Thus, for α = a, b or c, Lemma 2.14 ensures that ϕα ◦ ψα(M ′
T ) = M ′

T . Therefore,

ϕαw′ ◦ ψαw′(Ma`
T ) = ϕw′ ◦ ϕα ◦ ψα ◦ ψw′(Ma`

T ) = ϕw′ ◦ ϕα ◦ ψα(M ′
T ) = ϕw′(M ′

T ),

and ϕw′(M ′
T ) = Ma`

T by the induction hypothesis.

• Φ ◦ Ψ(MT ) = MT .

By definition, the word w = Ψ(MT ) is the longest readable word on Ma`
T . Hence, by Propo-

sition 2.17, ψw(Ma`
T ) = M0

• . By the preceding point, ϕw(M0
• ) = ϕw ◦ ψw(Ma`

T ) = Ma`
T . By

definition, the map Φ(w) is obtained by closing ϕw(M0
• ) = Ma`

T , hence Φ(w) = MT . Thus,

Φ ◦ Ψ(MT ) = Φ(w) = MT .
�

By Proposition 2.10, the mapping Φ associates a bridgeless 2-near-cubic marked-dfs-map

with any excursion. Conversely, by Proposition 2.17, the mapping Ψ associates an excursion

with any bridgeless 2-near-cubic marked-dfs-map. The mappings Φ and Ψ are inverse map-

pings by Propositions 2.16 and 2.18. Thus, the mapping Φ is a bijection between excursions

and bridgeless 2-near-cubic marked-dfs-maps. Moreover, if an excursion w has size n (length

3n), the 2-near-cubic dfs-map Φ(w) has size n (3n + 1 edges). This concludes the proof of

Theorem 2.19.
�

2.6 A bijection between Kreweras walks and cubic dfs-maps

In this section, we prove that the mapping Φ establishes a bijection between Kreweras walks

ending at the origin and 2-near-cubic dfs-maps. This result is stated more precisely in the

following theorem.

Theorem 2.19 Let w be an excursion. The marked edge of the 2-near-cubic dfs-map Φ(w)

is the root-edge if and only if the excursion w is a Kreweras walk ending at the origin.

Thus, the mapping Φ induces a bijection between Kreweras walks of size n (length 3n) ending

at the origin and bridgeless 2-near-cubic dfs-maps of size n (3n+ 1 edges).
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Figure 66 illustrates an instance of Theorem 2.19. Before proving this theorem we explore

its enumerative consequences. From Theorem 2.19, the number kn of Kreweras walks of size

n is equal to the number dn of bridgeless 2-near-cubic dfs-maps of size n. The number dn is

given by Corollary 2.9. We obtain the following result.

Theorem 2.20 There are kn =
4n

(n+ 1)(2n+ 1)

(

3n

n

)

Kreweras walks of size n (length 3n)

ending at the origin.

a

c c b c

a ab b

Close

Figure 66: The image of a Kreweras walk by Φ: the root-edge is marked.

The rest of this section is devoted to the proof of Theorem 2.19.

Consider a growing map M such that the root is a leg. Recall that making the tour of

the head-face means following its border in counterclockwise direction starting from the head

(see Figure 59). We call left (resp. right) the legs encountered before (resp. after) the root

during the tour of the head-face. For instance, the growing map in Figure 59 has one left leg

and two right legs.

Lemma 2.21 For any Kreweras walk w ending at the origin, the marked edge of Φ(w) is the

root-edge.

Proof: Let w′ be a suffix of w and let M ′
T = ϕw′(M0

• ) be the corresponding tree-growing

map.

• The root of M ′
T is a leg and M ′

T has |w′|a−|w′|c left legs and |w′|b−|w′|c right legs. (Observe

that, these quantities are non-negative by (72) and (73).)

We proceed by induction on the length of w′. The property holds for the empty word. We now

write w′ = αw′′ with α = a, b or c and suppose that the property holds for w ′′. If α = a or b the

property holds for w′ since applying ϕa (resp. ϕb) increases by one the number of left (resp.
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right) legs. We now suppose that α = c. We know that |w ′′|a − |w′′|c = |w′|a − |w′|c + 1 ≥ 1.

Hence, by the induction hypothesis, the tree-growing-map M ′′
T = ϕw′′(M0

• ) has at least one

left leg. Similarly, M ′′
T has at least one right leg. Therefore, the first (resp. last) leg of M ′′

T is

a left (resp. right) leg. Hence, applying ϕc to M ′′
T decreases by one the number of left (resp.

right) legs. Thus, the property holds for w′.

• For w′ = w, the preceding point shows that ϕw(M0
• ) has only one leg beside the head and

that this leg is the root. Thus, the marked edge of Φ(w) is the root-edge.
�

Lemma 2.22 For any bridgeless 2-near-cubic dfs-map MT marked on the root-edge, the word

w = Ψ(MT ) = Φ−1(MT ) is a Kreweras walk ending at the origin.

Proof: Let w be a word readable on Ma`
T and let NT = ψw(Ma`

T ). Observe that the root of

NT is a leg (since it is the case in Ma`
T and the root never disappears).

• The tree-growing map NT has |w|c − |w|a left legs and |w|c − |w|b right legs.

We proceed by induction on the length of w. The property holds for the empty word. We now

write w = αw′ with α = a, b or c and suppose that the property holds for w ′. If α = a or b the

property holds for w since applying ψa (resp. ψb) decreases by one the number of left (resp.

right) legs. We now suppose that α = c. The map N ′
T = ψw′(Ma`

T ) satisfies Condition (c).

We have already proved (see the first point in the proof of Lemma 2.17) that the endpoint

of every leg is an ancestor of the head-vertex. Hence N ′
T satisfies Condition (c′). Therefore,

Lemma 2.15 holds for N ′
T . We adopt the notations h, s, t of this lemma which is illustrated in

Figure 65. By Lemma 2.15, the pair of first and last head of NT = ψc(N
′
T ) is the pair {s, t}.

Hence, in the pair {s, t} one is a left leg and the other is a right leg of NT . Moreover, the

other left and right legs of NT are the same as in N ′
T . Thus, applying ψc to N ′

T increases by

one the number of left (resp. right) legs. Hence, the property holds for w.

• The word w = Ψ(MT ) is a Kreweras walk ending at the origin.

By definition, w is the longest word readable on M a`
T . By Proposition 2.17, ψw(Ma`

T ) = M0
• .

By the preceding point, we get |w|c − |w|a = 0 and |w|c − |w|b = 0 (since M 0
• has no left nor

right leg). Moreover, for any suffix w′ of w, the preceding point proves that |w′|c − |w′|a ≥ 0

and |w′|c −|w′|b ≥ 0. These properties are equivalent to (72) and (73), hence w is a Kreweras

walk ending at the origin.
�

2.7 Enumerating dfs-trees and cubic maps

In Section 2.4, we exhibited a bijection Φ between excursions and bridgeless 2-near-cubic

marked-dfs-maps. As a corollary we obtained the number of bridgeless 2-near-cubic dfs-maps
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of size n: dn = 4n

(n+1)(2n+1)

(3n
n

)

. In this section, we prove that any bridgeless 2-near-cubic

map of size n has 2n dfs-trees (Corollary 2.27). Hence, the number of bridgeless 2-near-cubic

maps of size n is cn = dn
2n = 2n

(n+1)(2n+1)

(3n
n

)

. Given the bijection between 2-near-cubic maps

and cubic maps (see Figure 52), we obtain the following theorem.

Theorem 2.23 There are cn =
2n

(n+ 1)(2n + 1)

(

3n

n

)

bridgeless cubic maps with 3n edges.

By duality, cn is also the number of loopless triangulations with 3n edges. Hence, we

recover Equation (71) announced in the introduction. As mentioned above, an alternative

bijective proof of Theorem 2.23 was given in [Poul 03a].

The rest of this section is devoted to the counting of dfs-trees on cubic maps and,

more generally, on cubic (potentially non-planar) graphs. We first give an alternative

characterization of dfs-trees. This characterization is based on the depth-first search (DFS)

algorithm (see Section 23.3 of [Corm 90]). We consider the DFS algorithm as an algorithm

for constructing a spanning tree of a graph.

Consider a graph G with a distinguished vertex v0. If the DFS algorithm starts at v0,

the subgraph T (see below) constructed by the algorithm remains a tree containing v0. We

call visited the vertices in T and unvisited the other vertices. The distinguished vertex v0 is

considered as the root-vertex of the tree. Hence, any vertex in T distinct from v0 has a father

in T .

Definition 2.24 Depth-first search (DFS) algorithm.

Initialization: Set the current vertex to be v0 and the tree T to be reduced to v0.

Core: While the current vertex v is adjacent to some unvisited vertices or is distinct from

v0 do:

If there are some edges linking the current vertex v to an unvisited vertex, then choose one

of them. Add the chosen edge e and its unvisited endpoint v ′ to the tree T . Set the current

vertex to be v′.

Else, backtrack, that is, set the current vertex to be the father of v in T .

End: Return the tree T .

It is well known that the DFS algorithm returns a spanning tree. It is also known

[Corm 90] that the two following properties are equivalent for a spanning tree T of a graph

G having a distinguished vertex v0:

(i) Any external edge joins comparable vertices.

(ii) The tree T can be obtained by a DFS algorithm on the graph G starting at v0.
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Before stating the main result of this section, we need an easy preliminary lemma.

Lemma 2.25 Let G be a connected graph with a distinguished vertex v0 whose deletion does

not disconnect the graph. Then, any spanning tree T of G satisfying conditions (i)-(ii) has

exactly one edge incident to v0.

Proof: Let e0 be an edge of T incident to v0 and let v1 be the other endpoint of e0. We

partition the vertex set V of G into {v0} ∪ V0 ∪ V1, where V1 is the set of descendants of v1.

There is no internal edge joining a vertex in V0 and a vertex in V1. There is no external edge

either or it would join two non-comparable vertices. Thus V0 = ∅ or the deletion of v0 would

disconnect the graph.
�

Theorem 2.26 Let G be a loopless connected graph with a distinguished vertex v0 whose

deletion does not disconnect the graph. Let e0 be an edge incident to v0. If G is a k-near-

cubic graph (v0 has degree k and the other vertices have degree 3) of size n (3n+2k−3 edges),

then there are 2n trees containing e0 and satisfying conditions (i)-(ii).

Given that the dfs-trees are the spanning trees satisfying conditions (i)-(ii) and not con-

taining the root, the following corollary is immediate.

Corollary 2.27 Any bridgeless 2-near-cubic map of size n (3n+ 1 edges) has 2n dfs-trees.

Remark: Theorem 2.26 implies that any k-near-cubic loopless graph of size n has k2n trees

satisfying the conditions (i)-(ii).

The rest of this section is devoted to the proof of Theorem 2.26. The proof relies on the

intuition that exactly n real binary choices have to be made during the execution of a DFS

algorithm on a k-near-cubic map of size n.

Given a graph G and a subset of vertices U , we say that two vertices u and v are U -

connected if there is a path between u and v containing only vertices in U ∪ {u, v}.

Lemma 2.28 Let v be the current vertex and let U be the set of unvisited vertices at a given

time of the DFS algorithm. The vertices that will be visited before the last visit to v are the

vertices in U that are U -connected to v.

Proof: Let S be the set of vertices in U that are U -connected to v. We make an induction

on the cardinality of S. If the set S is empty, there is no edge linking v to an unvisited vertex.

Hence, the next step in the algorithm is to backtrack and the vertex v will never be visited

again. In other words, it is the last visit to v, hence the property holds. Suppose now that S

is non-empty. In this case, there are some edges linking the current vertex v to an unvisited
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vertex. Let e be the edge chosen by the DFS algorithm and let v ′ ∈ U be the corresponding

endpoint. Let S1 be the set of vertices in U that are U -connected to v ′ and let S2 = S \ S1.

Observe that no edge joins a vertex in S1 and a vertex in S2. This situation is represented in

Figure 67. The set of vertices in U ′ = U \ {v′} that are U ′-connected to v is S ′
1 = S1 \ {v′}

(since a vertex is U -connected to v′ if and only if it is U ′-connected to v′). By the induction

hypothesis, S ′
1 is the set of vertices visited between the first and last visit to v ′. Hence S1 is

the set of vertices visited before the algorithm returns to v. Since no edge joins a vertex in

S1 and a vertex in S2, the vertices in S2 are the vertices in U \S1 that are (U \S1)-connected

to v. By the induction hypothesis, S2 is the set of vertices visited before the last visit to v.

Thus, the property holds.
�

v′

v

S1

S2

Figure 67: Partition of the vertices in S.

Proof of Theorem 2.26: Clearly, the spanning trees containing e0 and satisfying the con-

ditions (i)-(ii) are the spanning trees obtained by a DFS algorithm for which the first core

step is to choose e0. We want to prove that there are 2n such spanning trees.

We consider an execution of the DFS algorithm for which the first core step is to choose e0

and denote by T the spanning tree returned by the DFS algorithm (in order to distinguish

it from the evolving tree T ). After the first core step, the tree T is reduced to e0 and its

two endpoints v0 and v′0. Let V be the vertex set of G and let V ′ = V \ {v0, v
′
0}. Since the

deletion of v0 does not disconnect the graph, every vertex in V ′ is V ′-connected to v′0. Hence,

by Lemma 2.28, every vertex will be visited before the algorithm returns to v0. Thus, from

this stage on, the current vertex v is incident to 3 edges e, e1, e2, where e ∈ T links v to its

father.

• We denote by v1 and v2 the endpoints of e1 and e2 respectively (these endpoints are not

necessarily distinct) and we denote by U the set of unvisited vertices. We distinguish three

cases:

(α) at least one of the vertices v1, v2 is not in U ,

(β) the two vertices v1, v2 are in U and are U -connected with each other,

(γ) the two vertices v1, v2 are in U and are not U -connected with each other.

The three cases are illustrated by Figure 68. We prove successively the following properties:

- In case (α), no choice has to be done by the algorithm.

Indeed, there is at most one edge (e1 or e2) linking the current vertex v to an unvisited vertex.
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- In case (β), the algorithm has to choose between e1 and e2. This choice necessarily leads to

two different spanning trees T . Indeed the edge e1 (resp. e2) is in T if and only if the choice

of e1 (resp. e2) is made.

Suppose (without loss of generality), that the choice of e1 is made. The vertex v2 is (U∪{v1})-
connected to v1 (a vertex is (U ∪{v1})-connected to v1 if and only if it is U -connected to v1).

Hence, by Lemma 2.28, the vertex v2 will be visited before the last visit to v1, that is, before

the algorithm returns to the vertex v. Therefore, the edge e2 will not be in the spanning tree

T .

- In case (γ), the algorithm has to choose between e1 and e2. Moreover, any tree T obtained

by choosing e1 can be also obtained by choosing e2.

Let S1 and S2 be the set of vertices in U that are U -connected to v1 and v2 respectively.

Observe that the sets S1 and S2 are disjoint and no edge links a vertex in S1 and a vertex

in S2 (otherwise the vertices v1 and v2 would be U -connected). Suppose that the choice of

e1 is made. The set of vertices in U \ {v1} that are U \ {v1}-connected to v1 is S1 \ {v1}.
Hence, by Lemma 2.28, the set of vertices visited before the last visit to v1, that is, before

the algorithm returns to v is S1. Since v2 is not in S1 the next step of the algorithm is to

choose e2. Let U2 = U \ S1 be the set of unvisited vertices at this stage. Since no vertex in

S1 is adjacent to a vertex in S2, the set of vertices in U2 \ {v2} that are (U2 \ {v2})-connected

to v2 is S2 \ {v2}. Hence, by Lemma 2.28, the set of vertices visited before the last visit to v2,

that is, before the algorithm returns to v is S2. Let T1 (resp. T2) be the subtree constructed

by the algorithm between the first and last visit to v1 (resp. v2). Since no vertex in S1 is

adjacent to a vertex in S2, the subtree T1 could have been constructed exactly the same way

if the algorithm had chosen e2 (instead of e1) at the beginning. Similarly, the subtree T2

could have been constructed exactly in the same way if the algorithm had chosen e2 at the

beginning. Therefore, the tree T returned by the algorithm could have been constructed if

the algorithm had chosen e2 (instead of e1) at the beginning.

• During any execution of the DFS algorithm we are exactly n times in case (β).

The k-near-cubic graph G has 3n+2k−3 edges and 2n+2k−1 vertices. Hence, the spanning

tree T has 2n+2k− 2 edges. Thus, there are n+ k− 1 external edges among which k− 1 are

incident to v0. Let Eβ be the set of the n external edges not incident to v0. Since G is loop-

less and the spanning tree T satisfies (i)-(ii), the edges in Eβ have distinct and comparable

endpoints. For any edge e in Eβ, we denote by ve the endpoint of e which is the ancestor of

the other endpoint. The vertex ve is incident to e, to the edge of T linking v to its father and

to another edge in T linking ve to its son (otherwise ve has no descendant). In particular, if

e and e′ are distinct edges in Eβ, then the vertices ve and ve′ are distinct. Thus, the set of

vertices Vβ = {ve/e ∈ Eβ} has size n.

We want to prove that the case (β) occurs when the algorithm visit a vertex in Vβ for the

first time (and not otherwise). Let v be a vertex in Vβ. The vertex v is incident to an edge
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e1 in Eβ, an edge e in T linking v to its father and another edge e2 in T linkink v to its son.

Let T be the tree constructed by the algorithm at the time of the first visit to v and let U

be the set of unvisited vertices. Any descendant of v is in U . In particular, the endpoints v1

and v2 of e1 and e2 are in U and are U -connected with each other (take the T -path between

v1 and v2). Thus, we are in case (β). Conversely, if we are in case (β) during the algorithm,

the current vertex v is visited for the first time (or one of the vertices v1, v2 would already

be in U). Moreover, by the preceding point, one of the edges (e1 or e2) incident to v is not in

T and joins v to one of its descendants. Hence, the current vertex v is in Vβ.

• During the DFS algorithm we have to make n binary choices that will affect the outcome

of the algorithm (case (β)). The other choices (case (γ)) do not affect the outcome of the

algorithm. Therefore, there are 2n possible outcomes.
�

e

v2v1
v e2e1

e

v2v1
v e2e1

e

v1
v e2e1

v2

S1 S2

Figure 68: Case (α) (left), case (β) (middle) and case (γ) (right). The visited vertices are

indicated by a square while unvisited ones are indicated by a circle.

2.8 Applications, extensions and open problems

2.8.1 Random generation of triangulations

The random generation of excursions of length 3n (with uniform distribution) reduces to

the random generation of 1-dimensional walks of length 3n with steps +2, -1 starting and

ending at 0 and remaining non-negative. The random generation of these walks is known to

be feasible in linear time. (One just needs to generate a word of length 3n + 1 containing

n letters c and 2n + 1 letters α and to apply the cycle lemma.) Given an excursion w,

the construction of the 2-near-cubic marked-dfs-map Φ(w) can be performed in linear

time. Therefore, we have a linear time algorithm for the random generation (with uniform

distribution) of bridgeless 2-near-cubic marked-dfs-maps. For any bridgeless 2-near-cubic

map there are 2n dfs-trees and (n+ 1) possible marking. Therefore, if we drop the marking

and the dfs-tree at the end of the process, we obtain a uniform distribution on bridgeless

2-near-cubic maps. This allows us to generate uniformly bridgeless cubic maps or, dually,
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loopless triangulations, in linear time.

2.8.2 Kreweras walks ending at (i, 0) and (i+ 2)-near-cubic maps

The Kreweras walks ending at (i, 0) are the words w on the alphabet {a, b, c} with |w|a + i =

|w|b = |w|c such that any suffix w′ of w satisfies |w′|a + i ≥ |w′|c and |w′|b ≥ |w′|c. There is a

very nice formula [Krew 65] giving the number of Kreweras walks of size n (length 3n + 2i)

ending at (i, 0):

kn,i =
4n(2i + 1)

(n+ i+ 1)(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

. (77)

There is also a similar formula [Mull 65] for non-separable (i + 2)-near-cubic maps of size n

(3n+ 2i+ 1 edges):

cn,i =
2n(2i + 1)

(n+ i+ 1)(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

. (78)

In this subsection, we show that the bijection Φ (Definition 2.3) can be extended to

Kreweras walks ending at (i, 0). This gives a bijective correspondence explaining why

kn,i = 2ncn,i.

Consider the tree-growing map M i
• reduced to a vertex, a root, a head and i left legs

(Figure 69). We define the image of a Kreweras walk w ending at (i, 0) as the map obtained

by closing ϕw(M i
•). We get the following extension of Theorem 2.19.

Theorem 2.29 The mapping Φ is a bijection between Kreweras walks of size n (length 3n+2i)

ending at (i, 0) and non-separable (i+2)-near-cubic maps of size n (3n+2i+1 edges) marked

on the root-edge with a dfs-tree that contains the edge following the root in counterclockwise

order around the root-vertex.

Figure 69: The tree-growing map M i
• when i = 3.

By Theorem 2.26, there are 2n such dfs-trees. Consequently, we obtain the following

corollary:

Corollary 2.30 The number kn,i of Kreweras walks of size n ending at (i, 0) and the number

cn,i of non-separable (i+2)-near-cubic maps of size n are related by the equation kn,i = 2ncn,i.
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One can define the counterpart of excursions for Kreweras walks ending at (i, 0). These

are the walks obtained when one chooses an external edge in a non-separable (i+2)-near-cubic

dfs-map such that the edge following the root is in the tree and applies the mapping Ψ = Φ−1.

Alas, we have found no simple characterization of this set of walks nor any bijective proof

explaining why this set has cardinality
4n(2i+ 1)

(2n+ 2i+ 1)

(

2i

i

)(

3n+ 2i

n

)

.



102 Chapter 2. Kreweras walks and loopless triangulations



Chapter 3

Bijective decomposition of

tree-rooted maps

Abstract: The number of tree-rooted maps, that is, rooted planar maps with a distin-

guished spanning tree, of size n is CnCn+1 where Cn = 1
n+1

(2n
n

)

is the nth Catalan number.

We present a (long awaited) simple bijection which explains this result. We prove that our

bijection is isomorphic to a former recursive construction on shuffles of parenthesis systems

due to Cori, Dulucq and Viennot.

Résumé : On considère les cartes boisées, c’est-à-dire les cartes planaires enracinées dont

un arbre couvrant est distingué. Le nombre de cartes boisées de taille n est donné par

le produit CnCn+1 où Cn = 1
n+1

(

2n
n

)

est le nème nombre de Catalan. Nous présentons une

bijection simple (et longtemps attendue) qui explique ce résultat. Nous montrons ensuite

que notre bijection est isomorphe à une construction récursive antérieure due à Cori, Dulucq

et Viennot et définie sur les mélanges de mots de parenthèses.

103
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3.1 Introduction

In the late sixties, Mullin published an enumerative result concerning planar maps on which

a spanning tree is distinguished [Mull 67]. He proved that the number of rooted planar maps

with a distinguished spanning tree, or tree-rooted maps for short, of size n is CnCn+1 where

Cn = 1
n+1

(

2n
n

)

is the nth Catalan number. This means that tree-rooted maps of size n are

in one-to-one correspondence with pairs of plane trees of size n and n + 1 respectively. But

although Mullin asked for a bijective explanation of this result, no natural mapping was

found between tree-rooted maps and pairs of trees. Twenty years later, Cori, Dulucq and

Viennot exhibited one such mapping while working on Baxter permutations [Cori 86]. More

precisely, they established a bijection between pairs of trees and shuffles of two parenthesis

systems, that is, words on the alphabet a, a, b, b, such that the subword consisting of the

letters a, a and the subword consisting of the letters b, b are parenthesis systems. It is known

that tree-rooted maps are in one-to-one correspondence with shuffles of two parenthesis

systems [Mull 67, Lehm 72], hence the bijection of Cori et al. somehow answers Mullin’s

question. But this answer is quite unsatisfying in the world of maps. Indeed, the bijection of

Cori et al. is recursively defined on the set of prefixes of shuffles of parenthesis systems and

it was not understood how this bijection could be interpreted on maps. We fill this gap by

defining a natural, non-recursive, bijection between tree-rooted maps and pairs made of a tree

and a non-crossing partition. Then, we show that our construction is isomorphic to the con-

struction of Cori et al. via the encoding of tree-rooted maps by shuffles of parenthesis systems.

Tree-rooted maps, or alternatively shuffles of parenthesis systems, are in one-to-one

correspondence with square lattice walks confined in the quarter plane (we explicit this

correspondence in the next section). Therefore, our bijection can also be seen as a way of

counting these walks. Some years ago, Guy, Krattenthaler and Sagan worked on walks in

the plane [Guy 92] and exhibited a number of nice bijections. However, they advertised the

result of Cori et al. as being considerably harder to prove bijectively. We believe that the

encoding in terms of tree-rooted maps makes this result more natural.

The outline of this chapter is as follows. In Section 3.2, we recall some definitions and

preliminary results on tree-rooted maps. In Section 2.6, we present our bijection between

tree-rooted maps of size n and pairs consisting of a tree and a non-crossing partition of size n

and n+ 1 respectively. This simple bijection explains why the number of tree-rooted maps of

size n is CnCn+1. In Section 3.4, we prove that our bijection is isomorphic to the construction

of Cori et al.

Our study requires to introduce a large number of mappings; we refer the reader to Figure

87 which summarizes our notations.
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3.2 Preliminary results

We begin by some preliminary definitions on planar maps. A planar map, or map for short,

is a two-cell embedding of a connected planar graph into the oriented sphere considered

up to orientation preserving homeomorphisms of the sphere. Loops and multiple edges are

allowed. A rooted map is a map together with a half-edge called the root. A rooted map

is represented in Figure 70. The vertex (resp. the face) incident to the root is called the

root-vertex (resp. root-face). When representing maps in the plane, the root-face is usually

taken as the infinite face and the root is represented as an arrow pointing on the root-vertex

(see Figure 70). Unless explicitly mentioned, all the maps considered in this chapter are

rooted.

A planted plane tree, or tree for short, is a rooted map with a single face. A vertex v is

an ancestor of another vertex v′ in a tree T if v is on the (unique) path in T from v ′ to the

root-vertex of T . When v is the first vertex encountered on that path, it is the father of v ′. A

leaf is a vertex which is not a father. Given a rooted map M , a submap of M is a spanning

tree if it is a tree containing all vertices of M . (The spanning tree inherit its root from the

map.) We now define the main object of this study, namely tree-rooted maps. A tree-rooted

map is a rooted map together with a distinguished spanning tree. Tree-rooted maps shall be

denoted by symbols like MT where it is implicitly assumed that M is the underlying map

and T the spanning tree. Graphically, the distinguished spanning tree will be represented by

thick lines (see Figure 74). The size of a map, a tree, a tree-rooted map, is the number of

edges.

Figure 70: A rooted map.

A number of classical bijections on trees are defined by following the border of the tree.

Doing the tour of the tree means following its border in counterclockwise direction starting

and finishing at the root (see Figure 73). Observe that the tour of the tree induces a linear

order, the order of appearance, on the vertex set and on the edge set of the tree. For

tree-rooted maps, the tour of the spanning tree T also induces a linear order on half-edges

not in T (any of them is encountered once during a tour of T ). We shall say that a vertex,

an edge, a half-edge precedes another one around T .

Our constructions lead us to consider oriented maps, that is, maps in which all edges are
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oriented. If an edge e is oriented from u to v, the vertex u is called the origin and v the end.

The half-edge incident to the origin (resp. end) is called the tail (resp. head). The root of an

oriented map will always be considered and represented as a head.

endorigin
tail head

Figure 71: Half-edges and endpoints.

We now recall a well-known correspondence between tree-rooted maps and shuffles of two

parenthesis systems [Mull 67, Lehm 72]. We derive from it the enumerative result mentioned

above: the number of tree-rooted maps of size n (i.e. with n edges) is CnCn+1. For this

purpose, we introduce some notations on words. A word w on a set A (called the alphabet)

is a finite sequence of elements (letters) in A. The length of w (that is, the number of

letters in w) is denoted |w| and, for a in A, the number of occurrences of a in w is denoted

|w|a. A word w on the two-letter alphabet {a, a} is a parenthesis system if |w|a = |w|a
and for all prefixes w′, |w′|a ≥ |w′|a. For instance, aaaaaa is a parenthesis system. A

shuffle of two parenthesis systems, or parenthesis-shuffle for short, is a word on the alphabet

{a, a, b, b} such that the subword of w consisting of letters in {a, a} and the subword consist-

ing of letters in {b, b} are parenthesis systems. For instance abababaaba is a parenthesis-shuffle.

Parenthesis-shuffles can also be seen as walks in the quarter plane. Consider walks made

of steps North, South, East, West, confined in the quadrant x ≥ 0, y ≥ 0. The parenthesis-

shuffles of size n are in one-to-one correspondence with walks of length 2n starting and

returning at the origin. This correspondence is obtained by considering each letter a (resp.

a, b, b) as a North (resp. South, East, West) step. For instance, we represented the walk

corresponding to abbabaabbaab in Figure 72. The fact that the subword of w consisting of

letters in {a, a} (resp. {b, b}) is a parenthesis system implies that the walk stays in the half-

plane y ≥ 0 (resp. x ≥ 0) and returns at y = 0 (resp. x = 0).

x

y

Figure 72: A walk in the quarter plane.

The size of a parenthesis system, a parenthesis-shuffle, is half its length. For instance, the

parenthesis-shuffle abababaaba has size 5. It is well known that the number of parenthesis
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systems of size n is the nth Catalan number Cn = 1
n+1

(2n
n

)

. From this, a simple calculation

proves that the number of parenthesis-shuffles of size n is Sn = CnCn+1. Indeed, there are
(2n
2k

)

ways to shuffle a parenthesis system of size k (on {a, a}) with a parenthesis system of

size n− k (on {b, b}). And summing on k gives the result:

Sn =

n
∑

k=0

(

2n

2k

)

CkCn−k =
(2n)!

(n+ 1)!2

n
∑

k=0

(

n+ 1

k

)(

n+ 1

n− k

)

=
(2n)!

(n+ 1)!2

(

2n+ 2

n

)

= CnCn+1.

Note, however, that this calculation involves the Chu-Vandermonde identity.

It remains to show that tree-rooted maps of size n are in one-to-one correspondence with

parenthesis-shuffles of size n. We first recall a very classical bijection between trees and

parenthesis systems. This correspondence is obtained by making the tour of the tree. Doing

so and writing a the first time we follow an edge and a the second time we follow that edge (in

the opposite direction) we obtain a parenthesis system. This parenthesis system is indicated

for the tree of Figure 73. Conversely, any parenthesis system can be seen as a code for

constructing a tree.

aaaaaaaaaaaaaaaa

Figure 73: A tree and the associated parenthesis system.

Now, consider a tree-rooted map. During the tour of the spanning tree we cross edges of

the map that are not in the spanning tree. In fact, each edge not in the spanning tree will

be crossed twice (once at each half-edge). Hence, making the tour of the spanning tree and

writing a the first time we follow an edge of the tree, a the second time, b the first time

we cross an edge not in the tree and b the second time, we obtain a parenthesis-shuffle. We

shall denote by Ξ this mapping from tree-rooted maps to parenthesis-shuffles. We applied the

mapping Ξ to the tree-rooted map of Figure 74.

The reverse mapping can be described as follows: given a parenthesis-shuffle w we first

create the tree corresponding to the subword of w consisting of letters a, a (this will give the

spanning tree) then we glue to this tree a head for each letter b and a tail for each letter b̄.

There is only one way to connect heads to tails so that the result is a planar map (that is, no
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babaababaabaabbabbababbaaaabba
Ξ

Figure 74: A tree-rooted map and the associated parenthesis-shuffle.

edges intersect). Note that, if the map M has size n, the corresponding parenthesis-shuffle w

has size n since |w|a is the number of edges in the tree and |w|b is the number of edges not

in the tree.

This encoding due to Walsh and Lehman [Lehm 72] establishes a one-to-one correspondence

between tree-rooted maps of size n and parenthesis-shuffles of size n. Hence, there are CnCn+1

tree-rooted maps of size n.

Such an elegant enumerative result is intriguing for combinatorists since Catalan numbers

have very nice combinatorial interpretations. We have just seen that these numbers count

parenthesis systems and trees. In fact, Catalan numbers appear in many other contexts (see

for instance Ex. 6.19 of [Stan 99] where 66 combinatorial interpretations are listed). We now

give another classical combinatorial interpretation of Catalan numbers, namely non-crossing

partitions. A non-crossing partition is an equivalence relation ∼ on a linearly ordered set

S such that no elements a < b < c < d of S satisfy a ∼ c, b ∼ d and a � b. The

equivalence classes of non-crossing partitions are called parts. Non-crossing partitions have

been extensively studied (see [Simi 00] and references therein).

Non-crossing partitions can be represented as cell decompositions of the half-plane. If the

set S is {s1, . . . , sn} with s1 < s2 < · · · < sn, we associate with si the vertex of coordinates

(i, 0) and with each part we associate a connected region of the lower half-plane y ≤ 0 incident

to the vertices of that part. The existence of a cell decomposition with no intersection between

cells is precisely the definition of non-crossing partitions. A non-crossing partition of size 8 is

represented in Figure 75. The only non-trivial parts of this non-crossing partition are {1, 4, 5}
and {6, 8}.

Non-crossing partitions of size n (i.e. on a set of size n) are in one-to-one correspondence

with trees of size n. One way of seeing this is to draw the dual of the cell-representation

of the partition, that is, to draw a vertex in each part and each anti-part (connected cells

complementary to parts in the half-plane decomposition) and connect vertices corresponding

to adjacent cells by an edge. The root is chosen in the infinite cell as indicated in Figure

75. In the sequel, this mapping between non-crossing partitions and trees is denoted Υ. It

is a bijection between non-crossing partitions of size n and trees of size n. It proves that the
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number of non-crossing partitions of size n is Cn.

Υ6 7 81 2 3 4 5

Figure 75: A non-crossing partition and the associated tree.

3.3 Bijective decomposition of tree-rooted maps

We begin with the presentation of our bijection between tree-rooted maps and pairs consisting

of a tree and a non-crossing partition. This bijection has two steps: first we orient the edges

of the map and then we disconnect properly the vertices.

Map orientation: Let MT be a tree-rooted map. We denote by ~MT the oriented map

obtained by orienting the edges of M according to the following rules:

• edges in the tree T are oriented from the root to the leaves,

• edges not in the tree T are oriented in such a way that their head precedes their tail around

T .

As always in this chapter, the root is considered as a head.

In the sequel, the mapping MT 7→ ~MT is denoted δ. We applied this mapping to the

tree-rooted map of Figure 76. Note that any vertex of ~MT is incident to at least one head

(since the spanning tree is oriented from the root to the leaves).

δ

Figure 76: A tree-rooted map MT and the corresponding oriented map ~MT .

Vertex explosion: We replace each vertex v of the oriented map ~MT by as many vertices

as heads incident to v and we suppress some adjacency relations between half-edges incident

to v according to the rule represented in Figure 77. That is, each tail t becomes adjacent to

exactly one head which is the first head encountered in counterclockwise direction around v
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starting from t.

Figure 77: Local rule for suppressing the adjacency relations.

We shall prove (Lemma 3.11) that this suppression of some adjacency relations in ~MT

produces a tree denoted ϕ0( ~M
T ). Observe that this tree has the same number of edges, say

n, as the original map M . Hence, its vertex set S has size n+ 1. This set is linearly ordered

by the order of appearance around the tree ϕ0( ~M
T ). We define an equivalence relation

ϕ1( ~M
T ) on S: two vertices are equivalent if they come from the same vertex of ~MT . We will

prove (Lemma 3.12) that the equivalence relation ϕ1( ~M
T ) is a non-crossing partition on the

set S. The mapping ~MT 7→ (ϕ0( ~M
T ), ϕ1( ~M

T )) is called the vertex explosion process and is

denoted ϕ.

Therefore, with any tree-rooted map MT of size n we associate a tree ϕ0( ~M
T ) of size n

and a non-crossing partition ϕ1( ~M
T ) of size n + 1. The following theorem states that this

correspondence is one-to-one.

Theorem 3.1 Let Φ be the mapping associating the ordered pair (ϕ0( ~M
T ), ϕ1( ~M

T )) with the

tree-rooted map MT . This mapping is a bijection between the set of tree-rooted maps of size

n and the Cartesian product of the set of trees of size n and the set of non-crossing partitions

of size n+ 1.

It follows that the number of tree-rooted maps of size n is CnCn+1.

Graphically, the bijection Φ is best represented by keeping track of the underlying

non-crossing partition during the vertex explosion process. This is done by creating for

each vertex of M a connected cell representing the corresponding part of the non-crossing

partition. The graphical representation of the vertex explosion process ϕ becomes as in-

dicated in Figure 78. For instance, we applied the mapping ϕ to the oriented map of Figure 79.

The rest of this section is devoted to the proof of Theorem 3.1. We first give a

characterization of the set of oriented maps, called tree-oriented maps, associated to

tree-rooted maps by the mapping δ. We also define the reverse mapping γ. Then we

prove that the vertex explosion process ϕ is a bijection between tree-oriented maps (of
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Figure 78: The vertex explosion process and a part of the non-crossing partition.

1 2 3 4 5 6 97 8

1

2

3

7
6

5

8

9

4

Figure 79: The vertex explosion process ϕ.

size n) and pairs made of a tree and a non-crossing partition (of size n and n+1 respectively).

3.3.1 Tree-rooted maps and tree-oriented maps

In this subsection, we consider certain orientations of maps called tree-orientations (Def-

inition 3.2). We prove that the mapping δ : MT 7→ ~MT restricted to any given map M

induces a bijection between spanning trees and tree-orientations of M . The key property

explaining why the mapping δ is injective is that during a tour of a spanning tree T , the tails

of edges in T are encountered before their heads whereas it is the contrary for the edges not

in T . Using this property we will define a procedure γ for recovering spanning trees from

tree-orientations of M (Definition 3.5). We will prove that δ and γ are reverse mappings

that establish a one-to-one correspondence between tree-rooted maps and tree-oriented maps
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(Proposition 3.3). The mapping δMT 7→ ~MT shall appear again but in a more general setting

in Chapter 6. In this Chapter, the mapping δ is extended into a bijection between subgraphs

and orientations.

We begin with some definitions concerning cycles and paths in oriented maps. A simple

cycle (resp. simple path) is directed if all its edges are oriented consistently. A simple cycle

defines two regions of the sphere. The interior region (resp. exterior region) of a directed

cycle is the region situated at its left (resp. right) as indicated in Figure 80. We call positive

cycle a directed cycle having the root in its exterior region. Graphically, positive cycles appear

as counterclockwise directed cycles when the map is projected on the plane with the root in

the infinite face.

Exterior regionInterior
region

Figure 80: Interior and exterior regions of a directed cycle.

Definition 3.2 A tree-orientation of a map is an orientation without positive cycle such that

any vertex can be reached from the root by a directed path. A tree-oriented map is a map with

a tree-orientation.

We will prove that the images of tree-rooted maps by the mapping δ are tree-oriented

maps. More precisely, we have the following proposition.

Proposition 3.3 For any given map M , the mapping δ : MT 7→ ~MT induces a bijection

between spanning trees and tree-orientations of M .

We first prove the following lemma.

Lemma 3.4 For all tree-rooted map MT , the map ~MT is tree-oriented.

Proof: For any vertex v, there is a path in T from the root to v. This path is oriented from

the root to v in ~MT . It remains to prove that there is no positive cycle. Suppose the contrary

and consider a positive cycle C. By definition, the root is in the exterior region of C. Since C

is a cycle there are edges of C which are not in T . Consider the first such edge e encountered

during the tour of T . When we first cross e we enter for the first time the interior region of

C. Given the orientation of C, the half-edge of e that we first cross is its tail (see Figure 81).

But, by definition of ~MT , the half-edge of e that we first cross should be its head. This gives

a contradiction.
�
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C

e
The tree T

The tour of T

Figure 81: Entering the cycle C.

We now define a procedure γ constructing a spanning tree T on a tree-oriented map ~M .

Algorithm 3.5

Procedure γ:

1. At the beginning, the submap T is reduced to the root and the root-vertex.

2. We make the tour of T (starting from the root) and apply the following rule.

When the tail of an edge e is encountered and its head has not been encountered yet,

we add e to T (together with its end).

Then we continue the tour of T , that is, if e is in T we follow its border, otherwise

we cross e.

3. We stop when arriving at the root and return the submap T .

We prove the correction of the procedure γ.

Lemma 3.6 The mapping γ is well defined (terminates) on tree-oriented maps and returns

a spanning tree.

Proof:

• At any stage of the procedure, the submap T is a tree.

Suppose not, and consider the first time an edge e creating a cycle is added to T . We denote

by T0 the tree T just before that time. The edge e is added to T0 when its tail t is encountered.

At that time, its head h has not been encountered but is incident to T0 (since adding e creates

a cycle). We know that, when e is added, the border of T0 from the root to t has been followed

but not the border of T0 from t to the root. Moreover, the head h lies after t around T0 (since

h has not been encountered yet). Observe that the right border of any edge of T0 has been

followed (just after this edge was added to T0). Thus, the border of T0 from t to h is made of

the left borders of some edges e1, e2, . . . , ek. Hence, these edges form a directed path from h

to t and e, e1, e2, . . . , ek form a directed cycle C. Since h lies after t around T0, the root is in

the exterior region of C (see Figure 82). Therefore, the cycle C is positive which is impossible.

• The procedure γ terminates.
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e

. .
.

The tree T0

e1
e2

ek

h t

The tour of T

Figure 82: The submap T remains a tree.

The set T remains a tree connected to the root. Hence, it is impossible to follow the same

border of the same edge twice without encountering the root.

• At the end of the procedure γ, the tree T is spanning.

At the end of the procedure, the whole border of T has been followed. Hence, any half-edge

incident to T has been encountered. Now, suppose that a vertex v is not in T and consider a

directed path from the root to v. (This path exists by definition of tree-orientations.) There

is an edge of this path with its origin in T and its end out of T . Therefore, its tail is incident

to T but not its head. Thus, it should have been added to T (with its end) when its tail was

encountered. We reach a contradiction.
�

We continue the proof of Proposition 3.3. We proved that the mapping δ associates a

tree-orientation of a map to any spanning tree of that map (Lemma 3.4). We proved that the

mapping γ associates a spanning tree of a map to any tree-orientation of that map (Lemma

3.6). It remains to prove that δ ◦ γ and γ ◦ δ are identity mappings.

Lemma 3.7 Let ~M be a tree-oriented map and T be the spanning tree constructed by the

procedure γ. The edges in T are oriented from the root to the leaves and the edges not in T

are oriented in such a way that their head precedes their tail around T .

Proof:

• Edges in T are oriented from the root to the leaves. An edge e is added to T when its tail

is encountered. At that time the end of e is not in T or adding e would create a cycle. The

property follows by induction.

• Edges not in T are oriented in such a way that their head precedes their tail around T . If

an edge breaks this rule it should have been added to T when its tail was encountered.
�

Corollary 3.8 The mapping δ ◦ γ is the identity mapping on tree-oriented maps.

Proof: Let ~M be a tree-oriented map and T be the tree constructed by the procedure γ. By

Lemma 3.7, the edges in T are oriented from the root to the leaves and the edges not in T
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are oriented in such a way that their head precedes their tail around T . By definition of δ,

this is also the case in δ ◦ γ( ~M). Thus, δ ◦ γ is the identity mapping on tree-oriented maps.
�

Lemma 3.9 The mapping γ ◦ δ is the identity mapping on tree-rooted maps.

Proof: Let MT be a tree-rooted map. Suppose the spanning tree T ′ constructed by the

procedure γ(δ(MT )) differs from T . We consider the order of edges induced by the tour of

T . Let e be the smallest edge in the symmetric difference of T and T ′. The tours of T and

T ′ must coincide until a half-edge h of e is encountered. We distinguish the head and the

tail of e according to its orientation in δ(MT ). If e is in T , its tail is encountered before its

head around T (by definition of δ(MT )). In this case, h is a tail. If e is not in T ′, its head is

encountered before its tail around T ′ (by Lemma 3.7). In this case, h is a head. Therefore, e

cannot be in T \ T ′. Similarly, e cannot be in T ′ \ T since e being in T ′ implies that h is a

head and e not being in T implies that h is a tail. We obtain a contradiction.
�

This completes the proof of Proposition 3.3: tree-oriented maps are in one-to-one corre-

spondence with tree-rooted maps.
�

3.3.2 The vertex explosion process on tree-oriented maps

This subsection is devoted to the proof of the following proposition.

Proposition 3.10 The mapping ϕ : ~M 7→ (ϕ0( ~M), ϕ1( ~M)) is a bijection between tree-

oriented maps of size n and ordered pairs consisting of a tree of size n and a non-crossing

partition of size n+ 1.

We start with a lemma concerning the mapping ϕ0.

Lemma 3.11 The image of any tree-oriented map ~M by ϕ0 is a tree (oriented from the root

to the leaves).

Proof: Let ~M be a tree-oriented map. Any vertex is incident to at least one head (there is a

directed path from the root to any vertex), hence the mapping ϕ0 is well defined. The image

ϕ0( ~M) has the same number of edges, say n, as ~M . The map ~M has n + 1 heads (one per

edge plus one for the root). Since any vertex in ϕ0( ~M) is incident to exactly one head, the

image ϕ0( ~M) has n + 1 vertices. Thus, it is sufficient to prove that ϕ0( ~M ) has no cycle (it

will imply the connectivity).

Suppose ϕ0( ~M ) contains a simple cycle C. Since any vertex in C is incident to exactly one

head, the edges of C are oriented consistently. We identify the edges of ~M and the edges of

ϕ0( ~M). The edges of C form a cycle in ~M but this cycle might not be simple. We consider

a directed path P in ~M from the root to a vertex v (of ~M) incident with an edge of C.
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We suppose (without loss of generality) that v is the only vertex of P incident with an edge

of C. Let h be the head in P incident with v and t′ be the first tail in C following h in

counterclockwise direction around v. We can construct a directed simple cycle C ′ (in ~M)

made of edges in C and containing t′ (see Figure 83). Let h′ be the head of C ′ incident

with v. Since C ′ is a directed cycle of the tree-oriented map ~M , it contains the root in its

interior region. Since v is the only vertex of P incident with an edge in C ′, the head h is

in the interior region of C ′. Therefore, in counterclockwise direction around v we have h, h′

and t′ (and possibly some other half-edges). We consider the tail t following h in the cycle

C (considered as a directed simple cycle of ϕ0( ~M )). By the choice of t′ we know that t is

between t′ and h in counterclockwise direction around v (t and t′ may be distinct or not).

Hence, in counterclockwise direction around v we have h, h′ and t. Hence, h′ is not the

first head encountered in counterclockwise direction around v starting from t. Therefore, by

definition of the vertex explosion process, h′ and t are not adjacent in ϕ0( ~M). We reach a

contradiction.
�

v

t′
C ′

t

h′
P

h

Figure 83: The cycle C ′ in ~M .

We now study the properties of the mapping ϕ1. Two consecutive half-edges around a

vertex define a corner. A vertex has as many corners as incident half-edges. Let T be a tree

and v be a vertex of T . The first corner of the vertex v is the first corner of v encountered

around T . If the tree is oriented from the root to the leaves, the first corner of v is at the

right of the head incident to v as shown in Figure 84.

v first corner of v

Figure 84: The first corner of a vertex.

We compare the vertices of the tree ϕ0( ~M) according to their order of appearance around

this tree. We write u < v if u precedes v (i.e. the first corner of u precedes the first corner of
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v) around the tree.

Lemma 3.12 For any tree-oriented map ~M , the equivalence relation ϕ1( ~M) on the set of

vertices of the tree ϕ0( ~M ) ordered by their order of appearance around this tree is a non-

crossing partition.

Proof: The proof relies on the graphical representation of the equivalence relation ∼= ϕ1( ~M )

given by Figure 78. During the vertex explosion process, we associate a connected cell Cv with

each vertex v of ~M , that is, with each equivalence class of the relation ∼. The cell Cv can be

chosen to be incident only with the first corners of the vertices in its class but not otherwise

incident with the tree. Moreover the cells can be chosen so that they do not intersect.

Suppose v1 < v2 < v3 < v4, v1 ∼ v3 and v2 ∼ v4. One can draw a path from the first corner

of v1 to the first corner of v3 staying in a cell C and a path from the first corner of v2 to the

first corner of v4 staying in a cell C ′. It is clear that these two paths intersect (see Figure 85).

Thus C = C ′ and v1 ∼ v2. �

v4

v3

v2

v1

Figure 85: The two paths intersect.

We have proved that the application ϕ : ~M 7→ (ϕ0( ~M), ϕ1( ~M)) associates a tree of size n

and a non-crossing partition of size n+ 1 with any tree-oriented map of size n. Conversely,

we define the mapping ψ.

Definition 3.13 Let T be a tree of size n and ∼ be a non-crossing partition on a linearly

ordered set S of size n+1. We identify S with the set of vertices of T ordered by the order of

appearance around T . We construct the oriented map ψ(T,∼) as follows. First we orient the

tree T from the root to the leaves. With each part {v1, v2, . . . , vk} of the partition, we associate

a simply connected cell incident to the first corner of vi, i = 1 . . . k but not otherwise incident

with T . Since ∼ is a non-crossing partition, these cells can be chosen without intersections.

Then we contract each cell into a vertex in such a way no edges of T intersect.

We first prove the following lemma.

Lemma 3.14 For any tree T of size n and any non-crossing partition ∼ of size n + 1, the

oriented map ψ(T,∼) is tree-oriented.
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Proof: Every vertex of ~M = ψ(T,∼) is connected to the root by a directed path (since it is

the case in T ). It remains to show that there is no positive cycle.

Let C be a positive cycle of ~M and e an edge of C. We consider the directed path P of

T from the root to e (the root and e included). By definition, the root is in the exterior

region of C. Let h be the last head of P contained in the exterior region of C and t the

tail following h in P (the tail t exists since the last edge e of P is in C). By definition, the

tail t is either in C or in its interior region. Let v be the end of h (i.e the origin of t) in ~M

and h′ the head of C incident with v (see Figure 86). In counterclockwise direction around

v, we have h, t and h′ (and possibly some other half-edges). The vertex v is obtained by

contracting a cell Cv of the partition ∼ corresponding to some vertices of T . Each of these

vertices is incident to one head in T , hence h and h′ were incident to two distinct vertices, say

v1 and v2, of T . The cell Cv is incident to the first corner of v1 which is situated between h

and t in counterclockwise direction around v1. Therefore, after the cell Cv is contracted, the

half-edges of v2 are situated between h and t in counterclockwise direction around v. Thus, in

counterclockwise direction around v, we have h, h′ and t (and possibly some other half-edges).

We obtain a contradiction.
�

v

Ch′

t
P h

Figure 86: The map ~M = ψ(T,∼) has no positive cycle.

We now conclude the proof of Theorem 3.1.

• Let ~M be a tree-oriented map. We know from Lemma 3.11 that T = ϕ0( ~M ) is a tree

oriented from the root to the leaves. Moreover, we know from Lemma 3.12 that the partition

∼= ϕ0( ~M ) of the vertex set of T is non-crossing. Let u be a vertex of T . Let {v1, . . . , vk}
be a part of the partition ∼ corresponding to a vertex v of ~M . The cell Cv associated to v

during the vertex explosion process is incident to the corner of vi, i = 1 . . . k at the right of

the head incident with vi (see Figure 78). Since T is oriented from the root to the leaves, this

corner is the first corner of vi. Therefore, by definition of ψ, we have ψ ◦ ϕ( ~M ) = ~M . Thus,

ψ ◦ ϕ is the identity mapping on tree-oriented maps.

• Let T be a tree of size n and ∼ be a non-crossing partition on a linearly ordered set S of

size n+ 1. We know from Lemma 3.14 that ~M = ψ(T,∼) is a tree-oriented map. We think

to the tree T as being oriented from the root to the leaves and we identify the set S with the

vertex set of T . Let v be a vertex of ~M corresponding to the part {v1, . . . , vk} of the partition

∼. The vertex v is obtained by contracting a cell Cv incident with the first corner of vi,



3.4. Correspondence with a bijection due to Cori, Dulucq and Viennot 119

i = 1 . . . k, that is, the corner at the right of the head hi incident with vi. Therefore, if t is a

tail incident with vi in T , then, hi is the first head encountered in counterclockwise direction

around v starting from t (in ~M). Given the definition of the vertex explosion process, the

adjacency relations between the half-edges incident with v that are preserved by the vertex

explosion process are exactly the adjacency relations in the tree T . Thus, the trees ϕ0( ~M )

and T are the same. Moreover, the part of the partition ϕ1( ~M ) associated to the vertex v is

{v1, . . . , vk}. Thus, the partitions ϕ1( ~M ) and ∼ are the same. Hence, ϕ ◦ ψ is the identity

mapping on pairs made of a tree of size n and a non-crossing partition of size n+ 1.

Thus, the mapping ϕ is a bijection between tree-oriented maps of size n and pairs made

of a tree of size n and a non-crossing partition of size n + 1. This completes the proof of

Proposition 3.10 and Theorem 3.1.
�

3.4 Correspondence with a bijection due to Cori, Dulucq and

Viennot

In this section, we prove that our bijection Φ is isomorphic to a former bijection due to Cori,

Dulucq and Viennot defined on parenthesis-shuffles [Cori 86]. We know that tree-rooted maps

are in one-to-one correspondence with parenthesis-shuffles by the mapping Ξ defined in Section

3.2. Our bijection Φ : MT 7→ (ϕ0( ~M
T ), ϕ1( ~M

T )) associates with any tree-rooted map MT

of size n, a tree ϕ0( ~M
T ) of size n and a non-crossing partition ϕ1( ~M

T ) of size n + 1. The

bijection Λ : w 7→ (λ′0(w), λ′1(w)) of Cori et al. associates with any parenthesis-shuffle w of

size n, a tree λ′0(w) of size n and a binary tree λ′1(w) of size n+ 1. We shall prove that these

two bijections are isomorphic via the encoding of tree-rooted maps by parenthesis-shuffles.

That is, we shall prove that there exist two independent bijections Ω and Θ such that, if

w = Ξ(MT ), then ϕ0( ~M
T ) = Ω(λ′0(w)) and ϕ1( ~M

T ) = Θ(λ′1(w)). In fact, we have adjusted

some definitions from [Cori 86] so that Ω is the identity mapping on trees. This situation is

represented in Figure 87.

Tree-rooted maps

Parenthesis-shuffles

Ξ

w

MT

Φ

δ

γ ψ~MT

Tree-oriented maps

Trees × Non-crossing partitions

ϕ0( ~M
T ), ϕ1( ~M

T )

Id Θ

λ′0(w), λ′1(w)

ϕ

Λ
Trees × Binary trees

Figure 87: The bijection diagram.
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3.4.1 The bijection Λ of Cori, Dulucq and Viennot

We begin with a presentation of the bijection Λ of Cori et al. For the sake of simplicity, the

presentation given here is not completely identical to the one of the original article [Cori 86].

But, whenever our definitions differ there is an obvious equivalence via a composition with a

simple, well-known bijection. The interested reader can look for more details in the original

article. In this article, Cori et al. defined recursively two mappings λ0 and λ1 on the set

of prefix-shuffles. A prefix-shuffle is a word w on the alphabet {a, a, b, b} such that, for all

prefixes w′ of w, we have |w′|a ≥ |w′|a and |w′|b ≥ |w′|b. Note that the set of prefix-shuffles

is the set of prefixes of parenthesis-shuffles. The mappings λ0 and λ1 both eventually return

trees. In the original article [Cori 86], the trees returned by λ0 and λ1 were called the leaf

code and the tree code respectively.

We first define the mapping λ0. It involves the mapping σ that associates the tree σ(T1, T2)

represented in Figure 88 with the ordered pair of trees (T1, T2).

T2

T1

T1 T2

σ

Figure 88: The mapping σ on ordered pairs of trees.

We consider the alphabet U = {u, v} and the infinite alphabet T consisting of all trees.

A word s on the alphabet U ∪ T is a tree-sequence if s = ut1u . . . ti−1utivti+1 . . . tkv where

1 ≤ i ≤ k and t1, . . . , tk are trees. The mapping λ0 associates tree-sequences with prefix-

shuffles.

Definition 3.15 The mapping λ0 is recursively defined on prefix-shuffles by the following

rules:

• If w = ε is the empty word, λ0(w) is the tree-sequence uτv where τ is the tree reduced

to a root and a vertex.
τ :

• If w = w′a, the tree-sequence λ0(w) is obtained from λ0(w
′) by replacing the last occur-

rence of u by uτv.

• If w = w′b, the tree-sequence λ0(w) is obtained from λ0(w
′) by replacing the first occur-

rence of v by uτv.

• If w = w′a, we consider the first occurrence of v in λ0(w
′) and the trees T1 and T2

directly preceding and following it. The tree-sequence λ0(w) is obtained from λ0(w
′) by
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replacing the subword T1vT2 by the tree σ(T1, T2).

• If w = w′b, we consider the last occurrence of u in λ0(w
′) and the trees T1 and T2

directly preceding and following it. The tree-sequence λ0(w) is obtained from λ0(w
′) by

replacing the subword T1uT2 by the tree σ(T1, T2).

We applied the mapping λ0 to the word w = baaaba. The different steps are represented

in Figure 89.

b a a a b au v uu v u u v v u u v u u v v u v v u v

Figure 89: The mapping λ0 applied to the prefix-shuffle w = baaaba.

It is easily seen by induction that the number of v (resp. u) in λ0(w) is |w|a − |w|a + 1

(resp. |w|b −|w|b +1). Hence, the mapping λ0 is well defined on prefix-shuffles. Moreover, the

first letter u and last letter v are never replaced by anything. Observe also (by induction) that

the letters u always precede the letters v in λ0(w). Thus, λ0(w) is indeed a tree-sequence. If

w is a parenthesis-shuffle, there is exactly one letter u and one letter v in λ0(w), hence λ0(w)

is a three letter word uTv.

Definition 3.16 The mapping λ′0 associates with a parenthesis-shuffle w the unique tree T

in the tree-sequence λ0(w) = uTv.

Observe that, for any prefix-shuffle w, the total number of edges in the trees t1, . . . , tk

of the tree-sequence λ0(w) = ut1u . . . ti−1utivti+1 . . . tkv is |w|a + |w|b. Hence, if w is

parenthesis-shuffle of size n, the tree λ′0(w) has size n.

We now define the mapping λ1 which associates binary trees with prefix-shuffles. A

binary tree is a (planted plane) tree for which each vertex is either of degree 3, a node, or

of degree 1, a leaf. The size of a binary tree is defined as the number of its nodes. It is

well-known that binary trees of size n (i.e. with n nodes) are in one-to-one correspondence

with trees of size n (i.e. with n edges).

In a binary tree, the two sons of a node are called left son and right son. In counter-

clockwise order around a node we find the father (or the root), the left son and the right son

(see Figure 90). A left leaf (resp. right leaf ) is a leaf which is a left son (resp. right son).

As before, we compare vertices according to their order of appearance around the tree and

we shall talk about the first and last leaf. Moreover, a leaf will be either active or inactive.

Graphically, active leaves will be represented by circles and inactive ones by squares.
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father

right sonleft son

Figure 90: Left and right son of a node

Definition 3.17 The mapping λ1 is recursively defined on prefix-shuffles by the following

rules:

• If w = ε is the empty word, λ1(w) is the binary tree B1 consisting of a root, a node and

two active leaves.

B1 :

• If w = w′a, the tree λ1(w) is obtained from λ1(w
′) by replacing the last active left leaf

by B1.
a

• If w = w′b, the tree λ1(w) is obtained from λ1(w
′) by replacing the first active right leaf

by B1.
b

• If w = w′a, the tree λ1(w) is obtained from λ1(w
′) by inactivating the first active right

leaf.
a

• If w = w′b, the tree λ1(w) is obtained from λ1(w
′) by inactivating the last active left leaf.

b

We applied the mapping λ1 to the word w = baaaba. The different steps are represented

in Figure 91.

b aaaab

Figure 91: The mapping λ1 on the word w = baaaba.
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It is easily seen by induction that the number of active right leaves (resp. left leaves) in

λ1(w) is |w|a − |w|a + 1 (resp. |w|b − |w|b + 1). Hence, the mapping λ1 is well defined on

prefix-shuffles. Observe that the binary tree λ1(w) has |w|a + |w|b + 1 nodes. Observe also

(by induction) that active left leaves always precede active right leaves in λ1(w). Moreover, if

w is a parenthesis-shuffle, only the first left leaf and the last right leaf are active (since they

can never be inactivated).

Definition 3.18 The mapping λ′1 associates with a parenthesis-shuffle w of size n the binary

tree of size n+ 1 obtained from λ1(w) by inactivating the two active leaves.

We now make some informal remarks explaining why the mapping w 7→ (λ0(w), λ1(w))

is injective. It is, of course, possible to decide from (λ0(w), λ1(w)) if w is the empty word.

Indeed, w is the empty word iff λ1(w) = B1 (equivalently iff λ0(w) = τ). Otherwise, the

remarks below show that the last letter α of w = w′α can be determined as well as λ0(w
′)

and λ1(w
′). So any prefix-shuffle w can be entirely recovered from (λ0(w), λ1(w)).

Remarks:

• For any prefix-shuffle w, the number of letters u (resp. v) in the tree-sequence λ0(w) is equal

to the number of active left leaves (resp. right leaves) in the binary tree λ1(w). Furthermore,

it can be shown by induction that the size of the tree ti lying between the ith and i + 1th

letters u, v in λ0(w) is the number of inactive leaves lying between the ith and i+ 1th active

leaves in λ1(w).

• The three following statements are equivalent:

- the word w is not empty and the last letter α of w = w ′α is in {a, b},
- there is a sequence uτv in λ0(w),

- there is an active left leaf and an active right leaf which are siblings.

In this case, λ1(w
′) is obtained from λ1(w) by deleting the two actives leaves and making the

father an active leaf `. Moreover, α = a (resp. α = b) if ` is a left leaf (resp. right leaf) in

λ1(w
′) in which case λ0(w

′) is obtained from λ0(w) by replacing the subword uτv by u (resp.

v).

• If the last letter α of w = w′α is in {a, b}, we know from the above remark that the tree T

lying between the last letter u and the first letter v in the tree-sequence λ0(w) has size k > 0.

Since k > 0, the tree T admits a (unique) preimage (T1, T2) by the mapping σ. Let k′ be the

size of the tree T1. Then k′ < k. We know that there are k inactive leaves lying between the

last active left leaf and the first active right leaf in λ1(w). The binary tree λ1(w
′) is obtained

from λ1(w) by activating the k′ + 1th leaf ` encountered when following the border of the

tree starting from the last active left leaf. Moreover, α = a (resp. α = b) if ` is a right leaf

(resp. left leaf), in which case the tree-sequence λ0(w
′) is obtained from λ0(w) by replacing

T by T1vT2 (resp. T1uT2).
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From these remarks, we see that the mapping w 7→ (λ0(w), λ1(w)) is injective. It can be

shown, with the same ideas, that it is bijective on the set of pairs consisting of a tree-sequence

S and a binary tree B with active and inactive leaves satisfying the following conditions:

- the active left leaves precede the active right leaves in B,

- the number of active left leaves (resp. right leaves) in B is the same as the number of u

(resp. v) in S,

- the number of inactive leaves lying between the ith and i+ 1th active leaves in B is the size

of the tree lying between the ith and i+ 1th letters u, v in S.

We now define the mapping Λ of Cori et al. on parenthesis-shuffles.

Definition 3.19 The mapping w 7→ (λ′0(w), λ′1(w)) defined on parenthesis-shuffles is denoted

Λ.

We know that Λ associates with a parenthesis-shuffle of size n a pair consisting of a tree of

size n and a binary tree of size n + 1. The remarks above should convince the reader that

the mapping Λ is a bijection between these two sets of objects.

3.4.2 The bijections Φ and Λ are isomorphic

We now return to our business and prove that the bijection Λ of Cori et al. and our bijection

Φ are isomorphic. Before stating precisely this result, we define a (non-classical) bijection

θ between binary trees and trees. By composition, this allows us to define a bijection Θ

between binary trees and non-crossing partitions.

Let e be an edge of a binary tree. The edge e is said to be branching if one of its vertices

is a right son and the other is a left son or the root-vertex. Intuitively, this means that the

edge e is non-parallel to its parent-edge. For instance, the branching edges of the binary tree

in Figure 92 are indicated by thick lines.

Definition 3.20 Let B be a binary tree. The tree θ(B) is obtained by contracting every non-

branching edge. The non-crossing partition Θ(B) is the image of θ(B) by the mapping Υ−1

(see Figure 75).

We applied the mapping Θ to the binary tree of Figure 92.

The mapping Θ is a bijection between binary trees of size n (n nodes) and trees of size n

(n edges). The proof is omitted here since we will not use this property.

We now state the main result of this section.

Theorem 3.21 Let MT be a tree-rooted map and w = Ξ(MT ) its associated parenthesis-

shuffle. Let ϕ0( ~M
T ) and ϕ1( ~M

T ) be the tree and the non-crossing partition obtained from
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Υ−1

Θ

θ

Figure 92: The mappings θ and Θ.

MT by the mapping Φ. Let λ′0(w) and λ′1(w) be the tree and binary tree obtained from w by

the mapping Λ. Then ϕ0( ~M
T ) = λ′0(w) and ϕ1( ~M

T ) = Θ(λ′1(w)).

This relation between the mappings Λ and Φ is represented by Figure 87. As an

illustration, we applied the mapping Φ to the tree-rooted map MT of Figure 93 and we

applied the mapping Λ to w = Ξ(MT ) = baaaba. The rest of this section is devoted to the

proof of Theorem 3.21.

ΘId

Φ

Λ
baaaba

Ξ

Figure 93: The isomorphism between Λ and Φ.

3.4.3 Prefix-maps

The mappings λ′0 and λ′1 are defined on parenthesis-shuffles from the more general mappings

λ0 and λ1 defined on prefix-shuffles. In order to relate ϕ0( ~M
T ) and λ′0(w) (resp. ϕ1( ~M

T )

and λ′1(w)) we need to define the prefix-maps which are in one-to-one correspondence with

prefix-shuffles. As we will see, prefix-maps are tree-oriented maps together with some

dangling heads in the root-face. In Subsections 3.4.4 and 3.4.5 we shall extend the mappings
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ϕ0 and ϕ1 defined in Section 3.3 to prefix-maps.

For any prefix-shuffle w we denote by wa (resp. wb) the subword of w consisting

of the letters a, a (resp. b, b). The words wa and wb are prefixes of parenthesis sys-

tems. We say that an occurrence of a letter c = a, b is paired with an occurrence of c

if the subword of wc lying between these two letters is a parenthesis system. There are

|w|a − |w|a non-paired letters a and |w|b − |w|b non-paired letters b in w. We denote by w+
a

the parenthesis system obtained from wa by adding |w|a−|w|a letters a at the end of this word.

Let w be a prefix-shuffle. We define Tw as the tree associated to the parenthesis system

w+
a , that is, Tw is such that, making the tour of Tw and writing a the first time we follow an

edge and a the second time, we obtain w+
a . We orient the edges of Tw from the root to the

leaves. Then, we add half-edges to Tw by looking at the position of the letters b and b in w.

More precisely, we read the word w and while making the tour of T according to the letters

a, a, we insert heads for the letters b and tails for the letters b. If an occurrence of b and an

occurrence of b are paired in w we connect the corresponding head and tail. We obtain an

oriented map together with some heads called dangling heads corresponding to non-paired

letters b of w. In the tree Tw, the edges corresponding to non-paired letters a are called

active while the others are called inactive. We denote by Mw, and call prefix-map associated

with w, the oriented map (with dangling heads and active edges) obtained. For instance, the

prefix-map associated with babaababaab has been represented in Figure 94 (the active edges

are dashed).

Observe that Tw is a spanning tree of the prefix-map Mw. The orientation of Mw is the

tree-orientation associated to the spanning tree Tw by the mapping δ defined in Section 3.3.

In particular, when w is a parenthesis-shuffle, the prefix-map Mw is a map (i.e. it has no

active edge and no dangling head except for the root) which is tree-oriented. More precisely,

if w = Ξ(MT ), the tree-oriented map Mw is ~MT ≡ δ(MT ).

the last active edge

the root

the last dangling head

Figure 94: The prefix-map associated to babaababaab.

Let w be a prefix-shuffle. The heads of active edges in the prefix map Mw are called
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rooting heads, and their ends are called rooting vertices. By convention, the root is considered

as a rooting head. As before, we compare active edges (resp. rooting vertices, dangling

heads) of Mw according to their order of appearance around Tw. By convention, the root is

considered as the first rooting head.

Let w+ be the word w followed by |w|a − |w|a letters a. We obtain w+ by making the tour

of the tree Tw and writing a the first time we follow an edge of the tree, a the second time,

b when we cross a head not in the tree and b when we cross a tail not in the tree. Each

prefix of w+ corresponds to a given time in this journey. In particular, w corresponds to a

given corner c of a vertex v. The |w|a − |w|a letters a at the end of w+ correspond to the left

border of active edges followed from c to the root. Thus, the active edges are the edges on

the directed path of Tw from the root to v. Note that an active edge precedes another one if

it appears before on the path from the root to v. Therefore, v is the last rooting vertex and

c is the corner at the left of the last rooting head. Moreover, active edges are directed from

a rooting vertex to the next one (for the appearance order). In particular, the next-to-last

rooting vertex (if it exists) is the origin of the last active edge.

We now explore the relation between Mw and Mwα when α is a letter in {a, a, b, b}.
Lemma 3.22 Let c be the corner at the left of the last rooting head of Mw.

• Mwa is obtained from Mw by adding an edge e in the corner c. It is oriented from this

corner to a vertex not present in Mw. The edge e is the last active edge of Mwa.

• Mwb is obtained from Mw by adding a dangling head h in the corner c. The head h is

the last dangling head of Mwb.

• Mwa is obtained from Mw by inactivating the last active edge e. The origin of e becomes

the last rooting vertex.

• Mwb is obtained from Mw by adding a tail in the corner c and connecting it to the last

dangling head.

In any case, the appearance order on the edges, half-edges and vertices present in Mw is the

same in Mwα.

Proof: As mentioned above, the corner c is the corner reached when the word w is written

during the tour of Tw in Mw.

• Case α = a. The letter a added to w is not paired. Therefore, it corresponds to a new

active edge e added to Tw. This new edge is added in the corner c. The edge e is oriented

from c to a new vertex (since it is leaf of Twa). All active edges of Mw are encountered before

c around the spanning tree Tw. Therefore, e is the last active edge of Mwa.

• Case α = b. The letter b added to w is not paired. Therefore, it corresponds to a new

dangling head h. This new head is added in the corner c. All dangling heads of Mw are
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encountered before c around the spanning tree Tw. Therefore, h is the last dangling head of

Mwb.

• Case α = a. The last letter a of w is paired with the letter a added to w. This last letter

a corresponds to the last active edge. Therefore, the last active edge e of Mw is inactivated.

We know that the next-to-last rooting vertex of Mw is the origin v of the last active edge e.

Therefore, v becomes the last rooting vertex.

• Case α = b. The last letter b of w is paired with the letter b added to w. This last letter b

corresponds to the last dangling head h′. Hence, Mwb is obtained from Mw by adding a tail

h in the corner c and connecting it to h′.
�

This completes our study of prefix-maps. We are now ready to extend the mappings ϕ0 and

ϕ1 to prefix maps and to prove Theorem 3.21.

3.4.4 The trees ϕ0( ~M
T ) and λ′0(w) are the same

In this subsection, we prove that, when w = Ξ(MT ), the trees ϕ0( ~M
T ) and λ′0(w) are the same.

Let w be a prefix-shuffle and Mw the corresponding prefix-map. Note that any vertex of

Mw is incident to at least one head. The prefix-forest of w, denoted by Fw, is obtained by

deleting the tails of active edges and then applying the vertex explosion process of Figure 78

(we forget about the cells corresponding to the parts of the non-crossing partition). We will

prove that the prefix-forest is indeed a forest (i.e. a collection of trees) in Proposition 3.23.

For instance, we represented the prefix-forest of w = babaababaab in Figure 95.

t′1

t′2

t′3

t1

Figure 95: The prefix-forest Fw (on the right).

Note that, if w = Ξ(MT ) is a parenthesis-shuffle, the prefix-map Mw is ~MT and no edge

is active. Thus, in this case, the prefix-forest Fw is the tree ϕ0( ~M
T ). We now prove a relation

between the prefix-forest Fw and the tree-sequence λ0(w).

Proposition 3.23 Let w be a prefix-shuffle. Let h1 < · · · < hk be the dangling heads and

h′1 < · · · < h′l be the rooting heads of the prefix-map Mw (linearly ordered by the appearance



3.4. Correspondence with a bijection due to Cori, Dulucq and Viennot 129

order). The prefix-forest Fw is a collection of k + l trees t1, . . . , tk, t
′
1, . . . , t

′
l. The root of

the tree ti, i = 1, . . . , k is hi and the root of the tree t′i, i = 1, . . . , l is h′i. Moreover, the

tree-sequence λ0(w) is ut1u . . . utkut
′
lv . . . vt

′
1v .

Proof: We use Lemma 3.22 and prove the property by induction on the length of w.

If w is the empty word, the prefix-map Mw is the tree τ reduced to a vertex and a root.

Hence, the prefix-forest Fw is reduced to a single tree τ = t′1. The tree-sequence λ0(w
′) is

equal to uτv thus the property is satisfied. If w′ = wα, we suppose the lemma true for w, we

write λ0(w) = ut1u . . . utkut
′
lv . . . vt

′
1v and study separately the four possible cases.

• Case α = a. The prefix-map Mwa is obtained from Mw by adding an edge e incident to

the last rooting vertex. The edge e is the last active edge of Mwa. It is oriented toward a

new vertex v not present in Mw. The tail of e is deleted in the construction of Fwa and its

head h = h′l+1 is only incident to v. Therefore, Fwa is obtained from Fw by adding the tree

τ = t′l+1 (the tree reduced to a root and a vertex) rooted on the last rooting head h.

By definition, λ0(wa) = ut1u . . . utkuτvt
′
lv . . . vt

′
1v, so we observe that the property is satisfied

by wa.

• Case α = b. The prefix-map Mwb is obtained from Mw by adding a dangling head h = hk+1

in the corner at the left of the last rooting head h′l. Therefore, during the vertex explosion

process h ”steals” the tree t′l rooted on h′l in Fw (see Figure 96). That is, in Fwb the tree

rooted on h′l is reduced to a vertex and the tree rooted on h is t′l. The head h is the last

dangling head of Mwb.

vertex explosion

t′l

t′lh

vertex explosion

In Fw:

In Fwb: h

h′l

b

h′l h′l

h′l

Figure 96: The case α = b.

By definition, λ0(wb) = ut1u . . . utkut
′
luτvt

′
l−1 . . . vt

′
1v, so we observe that the property is

satisfied by wb.

• Case α = a. The prefix-map Mwa is obtained from Mw by inactivating the last active edge

e. The origin v of e is the next-to-last rooting vertex of Mw. Moreover, e is the first edge
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encountered in clockwise order around v starting from h′l−1. In Fwa, the head h′l is part of

the edge e which links the tree t′l to the tree t′l−1 rooted on h′l−1 (see Figure 97). Therefore,

the tree rooted on h′l−1 in Fwa is t = σ(t′l, t
′
l−1).

h′l−1

h′l−1

In Fw: h′l

In Fwa:

h′l
v

h′l−1

a

h′l−1

v

vertex explosion

vertex explosion
e

t′l−1

t′l

t

Figure 97: The case α = a.

By definition, λ0(wa) = ut1u . . . utkutvt
′
l−2 . . . vt

′
1v, so we observe that the property is satis-

fied by wa.

• Case α = b. The prefix-map Mwb is obtained from Mw by adding a tail in the corner at

the left of the last rooting head h′l and connecting it to the last dangling head hk. In Fwb,

the head hk is part of an edge e which links the tree tk to the tree t′l rooted on h′l. Therefore,

the tree rooted on h′l in Fwb is t = σ(tk, t
′
l). The illustration would be the same as Figure 97

except h′l−1, h
′
l, t

′
l−1, t

′
l would be replaced by h′l, hk, t

′
l, tk respectively.

By definition, λ0(wb) = ut1u . . . tk−1utvt
′
l−1v . . . vt

′
1v, so we observe that the property is sat-

isfied by wb.
�

As mentioned above, when w is a parenthesis-shuffle w = Ξ(MT ), the prefix-map Mw is

the tree-oriented map ~MT and the prefix-forest Fw is the tree ϕ0( ~M
T ). Therefore, Proposition

3.23 implies that the tree-sequence λ0(w) is equal to uϕ0( ~M
T )v. Thus, the trees λ′0(w) and

ϕ0( ~M
T ) are the same.

�

3.4.5 The partitions ϕ1( ~M
T ) and Θ ◦ λ′

1(w) are the same

In this subsection, we prove that, when w = Ξ(MT ), the non-crossing partition ϕ1( ~M
T ) is

the image of the binary tree λ′1(w) by the mapping Θ defined in Definition 3.20.
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Let MT be a tree-rooted map. We call partition-tree of MT the tree P = Υ ◦ ϕ1( ~M
T )

(the mapping Υ is represented in Figure 75). Observe that the tree P can be drawn directly

on the map obtained after the vertex explosion process of Figure 78. To do so, one keeps the

cells corresponding to the vertices of ~MT / (These cells are glued to the first corner of the

vertices of the tree ϕ0( ~M
T )). Then, one draws a vertex in each face of MT and in each cell

corresponding to a vertex of MT : this gives the vertices of P . The edges of P join vertices in

adjacent cells and faces. The tree is rooted canonically. In particular, the root-vertex of P

lies in the root-face of MT . This construction is illustrated in Figure 98.

P

Figure 98: The partition-tree of a tree-rooted map.

We want to extend this construction to prefix-maps. We need some extra vocabulary.

Consider a prefix-shuffle w and the corresponding prefix map Mw. We denote by MF
w the

map obtained after the vertex explosion process when one keeps the cells corresponding to

the vertices of Mw. A face of MF
w is said white if it corresponds to a face of Mw and black if

it corresponds to a vertex of Mw. For instance, the map MF
w in Figure 99 has 2 white faces

and 4 black faces. We call regular the edges of Mw, and permeable the edges that separate

black and white faces. The map MF
w inherits the root of Mw. In particular, it has the same

root-face. The map MF
w has k = |w|b −|w|b dangling heads which are all in the root-face. We

can compare these heads according to their order of appearance around the root-face, that

is, when following its border in counterclockwise direction starting from the root. We denote

by h1, . . . , hk the heads of MF
w encountered in this order around the root-face.

We define the partition-tree Pw of the prefix-map Mw as follows. (We shall prove later

that the partition-tree is indeed a tree.) We draw a vertex in each face of MF
w . The vertex v0

drawn in the root-face is called the exterior vertex. We draw k additional vertices v1, . . . , vk

in the root-face, each associated to a dangling head (vi is associated to hi). These are the

vertices of Pw. The edges of Pw are the duals of permeable edges. We need to be more precise.

If e is a permeable edge that is not incident to the root-face, its dual joins the vertices drawn

in the incident black and white faces. If e is a permeable edge incident to the root-face
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the root

h1

h2

Figure 99: The prefix-map associated to w = baabbbaa and the map MF
w .

and a black face f , its dual joins the vertex drawn in f to vi if hi is the last dangling head

encountered before e around the root-face, or to v0 if no dangling head precedes e. Note that

the partition-tree Pw can be drawn in such a way that no edge of Pw intersects another. For

instance, the partition-tree associated to w = baabbbaa is shown in Figure 100.

Moreover the vertices of the partition-tree have an activity. We call white and black the

vertices of Pw corresponding to white and black faces of MF
w . The active white vertices are

v0, . . . , vk. The active black vertices are the vertices corresponding to rooting vertices of Mw

(see Subsection 3.4.3 where the notion of rooting vertex is introduced). The other vertices are

said to be inactive.

It remains to define the root of the partition-tree. Consider the first edge e followed around

the root-face of MF
w . It is a permeable edge. Its dual e∗ in Pw joins the exterior vertex v0 to

the vertex drawn in the black face corresponding to the root-vertex of Mw. The root of Pw is

incident to v0 and follows e∗ in counterclockwise direction around v0. This root is indicated

in Figure 100.

h2

h1

v1

v2

v0

e∗

Figure 100: The partition-tree Pw (thick lines) drawn on MF
w (w = baabbbaa).

Observe that, when w = Ξ(MT ) is a parenthesis-shuffle, the map Mw = ~MT has no dangling

heads and the partition-tree Pw is Υ ◦ ϕ1( ~M
T ).

We now relate the partition-tree Pw to the binary tree λ1(w).

Proposition 3.24 For all prefix-shuffle w, the partition-tree Pw is equal to θ ◦ λ1(w) where

λ1(w) is the binary tree defined in Definition 3.17 and θ is the mapping defined in Definition

3.20.
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Proposition 3.24 implies that for any parenthesis-shuffle w = Ξ(MT ) we have

Pw = θ ◦ λ′1(w). Given that Pw = Υ ◦ ϕ1( ~M
T ), we obtain ϕ1( ~M

T ) = Θ ◦ λ′1(w).

The rest of this subsection is devoted to the proof of Proposition 3.24. We first describe

a recursive construction of the partition-tree Pw. That is, we describe how to obtain

Pwα from Pw when α is a letter in {a, a, b, b} (Lemma 3.25). Then we describe a recursive

construction of θ◦λ1(w) (Lemma 3.26). We conclude the proof by induction on the length of w.

Recursive construction of the partition-tree Pw

The recursive description of the partition-tree requires to define an order on active vertices.

Let w be a prefix-shuffle and Mw be the associated prefix-map. The rooting vertices of

Mw can be compared by their order of appearance around the spanning tree Tw of Mw.

The active black vertices inherit their order from the rooting vertices. The black vertex

of Pw corresponding to the root-vertex of Mw is the first element for this order. We can

also compare the dangling heads h1, . . . , hk of Mw according to their order of appearance

around Tw. This order is the same as the order of appearance around the root-face of

MF
w . Indeed, the order of appearance around the root-face of MF

w is also the order of

appearance around the root-face of Mw. Furthermore, the deletion of an edge of Mw not in

Tw does not modify this order. By deleting all the edges not in Tw we obtain the appearance

order around Tw. The active white vertices inherit their order from the dangling heads.

The exterior vertex v0 is considered the first element. That is, vi precedes vj for 0 ≤ i ≤ j ≤ k.

Let v be a vertex of a tree which is not a leaf. We call leftmost son (resp. rightmost

son) of v the son following (resp. preceding) the father of v (or the root) in counterclockwise

direction around v (see Figure 101).

father

v

rightmost sonleftmost son . . .

Figure 101: A vertex and its leftmost and rightmost sons.

We are now ready to describe the relation between the partition-tree Pw and the partition-

tree Pwα when α is a letter in {a, a, b, b}.

Lemma 3.25 The partition-tree Pw is a tree. Moreover,

• the partition-tree Pwa is obtained from Pw by adding a new leaf which becomes the last
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active black vertex. This leaf is the leftmost son of the last active white vertex,

• the partition-tree Pwb is obtained from Pw by adding a new leaf which becomes the last

active white vertex. This leaf is the rightmost son of the last active black vertex,

• the partition-tree Pwa is obtained from Pw by inactivating the last active black vertex,

• the partition-tree Pwb is obtained from Pw by inactivating the last active white vertex.

To illustrate this lemma we have represented the evolution of a partition-tree in Figure

102. Active vertices are represented by circles and inactive ones by squares. The white (resp.

black) active vertices are denoted v0, v1, . . . (resp. r1, r2, . . .).

a
v2v2

v1

v0

v1

a b

v0

v1

r3

v0

v2

r3

v1r1

r1 r1

v0

r3
b

v0

r2

v1

r3
r1

r2r2

r2r2

r1

Figure 102: Evolution of the partition-tree from w = baabb to w = baabbbaab.

Before we embark on the proof, we need to define a correspondence E (resp. V ) between

the heads of Mw and the edges (resp. vertices distinct from v0) of Pw. The correspondences

E and V are represented in Figure 103.

Consider a head h of Mw and its end v in MF
w . The edge following h in counterclockwise

direction around v is a permeable edge. The dual of this edge in the partition-tree Pw is

denoted E(h). The correspondence E between heads of Mw and edges of Pw is one-to-one.

The edge E(h) is incident to a white and to a black vertex. If h is in the tree Tw (in

particular, if h is the root), we define V (h) as the black vertex incident to E(h). Else V (h)

is the white vertex incident to E(h). The correspondence V is a bijection between heads of

Mw and vertices of Pw distinct from v0. Indeed, black vertices of Pw correspond to vertices

of Mw which are in one-to-one correspondence with heads in Tw, white vertices distinct from

v0, . . . , vk correspond to faces of Mw which are in one-to-one correspondence with heads not

in Tw (a face f is associated with the head we cross when we first enter f during the tour

of Tw), and the vertices v1, . . . , vk are in one-to-one correspondence with the dangling heads

h1, . . . , hk.
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h”

h′

h

h” not in Tw

h′ not in Tw
h in Tw

V (h′)

E(h′)

Toward v0

V (h”)

E(h”)

E(h)

V (h)

Figure 103: Left: a typical vertex of the prefix map Mw incident with three heads: h in Tw

and h′ , h′′ not in Tw. Right: the correspondence E (resp. V ) between heads of Mw and edges

(resp. vertices) of Pw.

Proof: We prove the lemma by induction on the length of w. If w is the empty word, Pw is

a tree. Suppose now, by induction hypothesis, that Pw is a tree. We first show the following

property: for any head h of Mw, the edge E(h) links V (h) to its father in Pw. The mapping

V ◦E−1 is a bijection from the edges of Pw to the vertices of Pw distinct from its root-vertex

v0. Moreover an edge e of Pw is always incident to the vertex V ◦E−1(e) in Pw. Since Pw is

a tree, the only possibility is that any edge e of Pw links the vertex V ◦ E−1(e) to its father

in Pw.

We are now ready to study separately the different cases α = a, a, b, b. We use Lemma

3.22 and denote by c the corner of Mw at the left of the last rooting head of Mw.

• Case α = a.

- The prefix-map Mwa is obtained from Mw by adding a new edge e in the corner c oriented

away from c. Let h be the head of e and s its end. The vertex s is the last rooting vertex

in Mwa. The partition-tree Pwa is obtained from Pw by adding the edge E(h) and the black

vertex V (h) to Pw (see Figure 104). By definition, the vertex V (h) is the last active black

vertex in Pwa.

- By definition, the corner c is situated after any dangling head around Tw. Hence, it is

situated after any dangling head around the root-face of MF
w . Therefore, the edge E(h) joins

V (h) to the last active white vertex vk. Moreover, since V (h) is only incident to E(h) and

Pw is a tree, we check that Pwa is a tree and V (h) a leaf.

- It remains to show that V (h) is the leftmost son of vk. By definition, the permeable edges

that have their dual incident to vk are situated between hk (or the root h0 of MF
w if k = 0)

and c around the root-face of MF
w . The dual of the first of these permeable edge is E(hk)

and the dual of the last of them is E(h). If k 6= 0, we know that E(hk) links vk = V (hk) to

its father in Pw. Therefore, V (h) is the leftmost son of vk. If k = 0, we know (by definition)

that the root of Pw follows E(h0) in counterclockwise direction around v0. Therefore, V (h)

is the leftmost son of v0.
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vk

E(h)

V (h)

h
MF

w

E(hk)

Making the tour of the root-face

last dangling head hk (or the root)

Figure 104: The new vertex V (h) is the leftmost son of vk.

• Case α = b.

We denote by h and v the last rooting head and vertex.

- The prefix-map Mwb is obtained from Mw by adding a dangling head hk+1 in the corner c.

It is the last dangling head of Mwb. The partition-tree Pwb is obtained by adding the vertex

vk+1 = V (hk+1) and the edge E(hk+1) to Pw (see Figure 105). By definition, vk+1 is the last

active white vertex of Pwb.

- The dangling head hk+1 is incident to v in Mwb. Hence, the edge E(hk+1) joins vk+1 to the

last active black vertex V (h) of Pw. Moreover, since vk+1 is only incident to E(hk+1) and Pw

is a tree, Pwb is a tree and vk+1 a leaf.

- It remains to prove that vk+1 is the rightmost son of V (h). By definition, E(hk+1) and E(h)

are respectively the dual of the permeable edges preceding and following the head h in coun-

terclockwise direction around its end. Therefore, E(h) follows E(hk+1) in counterclockwise

direction around V (h). Given that E(h) links V (h) to its father, vk+1 is the rightmost son of

V (h).

vk+1

E(hk+1)

h

hk+1

E(h)
V (h)

Figure 105: The new vertex vk+1 is the rightmost son of V (h).

• Case α = a.

The prefix-map Mwa is obtained from Mw by inactivating the last active edge e. Thus, Pwa

is obtained from Pw by inactivating the last active black vertex.

• Case α = b.

The prefix-map Mwb is obtained from Mw by adding a tail in the corner c and connecting it

to the last dangling head hk. This creates a new face of Mw (hence of MF
w ) and lowers by

one the number of dangling heads. The last active white vertex vk is trapped in the new face

of Mwb. Hence, Pwb is obtained from Pw by inactivating the last active black vertex vk.
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�

Recursive construction of the tree θ ◦ λ1(w).

We continue the proof of Proposition 3.24. We now describe the relation between the trees

θ ◦ λ1(w) and θ ◦ λ1(wα) when α is a letter in {a, a, b, b} (the mapping λ1 is defined in

Definition 3.17).

We first need to define a correspondence between the leaves of a binary tree B and the

vertices of the tree θ(B). An edge of B is said left (resp. right) if it links a node to its

left son (resp. right son). We consider a leaf l of B. If l is a left (resp. right) leaf, the

path from l to the root begins with a non-empty sequence of left (resp. right) edges. By

definition, only the last edge e(l) of this sequence is branching except if l is the first left leaf

in which case no edge is branching. We associate the first left leaf of B with the root-vertex

of θ(B) and we associate any other leaf l with the son of the branching edge e(l) in θ(B).

This correspondence is one-to-one. For instance, the leaves l1, . . . , l6 of the binary tree B in

Figure 106 are associated with the vertices v1, . . . , v6 of the tree θ(B).

θ

l5

l6

v2

v3
v5

v6

v4

l4

l1 l2
l3

v1

Figure 106: Correspondence between leaves of B and vertices of θ(B).

Consider a prefix-shuffle w. In the binary tree λ1(w), leaves are either active or inactive.

We say that a vertex of θ ◦λ1(w) is left, right, active, inactive if the associated leaf of λ1(w) is

so. Moreover, the leaves of the binary tree λ1(w) can be compared by their order of appear-

ance around this tree. The vertices of θ◦λ1(w) inherit this order. For instance, the root-vertex

of θ◦λ1(w) is the first active left vertex (recall that the first left leaf of λ1(w) is always active).

We are now ready to state the last lemma which is the counterpart of Lemma 3.25.

Lemma 3.26 Let T be the tree θ ◦ λ1(w) and Tα = θ ◦ λ1(wα) for α in {a, b, a, b}.

• The tree Ta is obtained from T by adding a new leaf which becomes the first active right

vertex. This leaf is the leftmost son of the last active left vertex.

• The tree Tb is obtained from T by adding a new leaf which becomes the last active left

vertex. This leaf is the rightmost son of the first right vertex.
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• The tree Ta is obtained from T by inactivating the first active right vertex.

• The tree Tb is obtained from T by inactivating the last active left vertex.

Proof: We study separately the four cases α = a, b, a, b.

• Case α = a. By definition of the mapping λ1 (Definition 3.17), the binary tree λ1(wa) is

obtained from λ1(w) by replacing the last active left leaf l by a node with two leaves ll and

lr. The left leaf ll replaces l as the last left leaf. The right leaf lr becomes the first right leaf.

The edge from l to lr is branching. The other branching edges are unchanged. Therefore, Ta

is obtained from T by adding a new leaf. This leaf is associated with lr hence becomes the

first active right vertex. The father of this leaf was associated with l in T and is associated

with ll in Ta. Therefore, it was and remains the last active left vertex. It is easily seen that

the new leaf becomes its leftmost son.

• The case α = b is symmetric to the case α = a. We do not detail it.

• Case α = a. The binary tree λ1(wa) is obtained from λ1(w) by inactivating the first active

right leaf. Therefore, Ta is obtained from T by inactivating the first active right vertex.

• The case α = b is symmetric to the case α = a.
�

Recursive proof of Proposition 3.24.

We want to show that, for any prefix-shuffle w, the partition-tree Pw is the tree θ ◦ λ1(w).

We show by induction the following more precise property: for any prefix-shuffle w,

- the partition-tree Pw is equal to θ ◦ λ1(w) ,

- the active and inactive vertices of Pw and θ ◦ λ1(w) are the same,

- the white (resp. black) vertices of Pw correspond to left (resp. right) vertices of θ ◦ λ1(w),

- the order on white (resp. black) vertices of Pw is equal (resp. inverse) to the order on left

(resp. right) vertices of θ ◦ λ1(w).

Suppose that w is the empty word. The partition-tree Pw has one edge, an active white

vertex which is its root-vertex and an active black vertex. Similarly, θ ◦ λ1(w) has one edge,

an active left vertex which is its root-vertex and an active right vertex. Hence, we check that

the property is true. In view of Lemma 3.25 and Lemma 3.26, it is clear that the property is

true by induction on the set of prefix-shuffles.
�

This concludes the proof of Proposition 3.24 and Theorem 3.21.
�
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In the following chapters, we exhibit and exploit a characterization of the Tutte

polynomial based on combinatorial embeddings. Our characterization is valid for general

graphs (as opposed to planar graphs). In Chapter 5, we define a notion of activity, the

embedding-activity, for spanning trees. We prove that the Tutte polynomial is the generating

function of spanning trees counted by internal and external embedding-activities. We

compare this characterization of the Tutte polynomial to earlier ones. We also take a glimpse

at the applications of our characterization to be developed in the following chapters. In

Chapter 6, we define a partition of the set of subgraphs based on the embedding activities.

Each part of this partition is associated with a spanning tree. The partition of the set of

subgraphs is used in order to define a bijection Φ between subgraphs and orientations. This

bijection extends the correspondence between spanning trees and tree-orientations that we

exhibited in Chapter 3. In Chapter 7, we study the restriction of the bijection Φ to several

classes of subgraphs. Among other results, we obtain an interpretation for all the evaluations

TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial in terms of orientations. For instance the

strongly connected orientations are counted by TG(0, 2) while the acyclic orientations are

counted by TG(2, 0). The strength of our approach is to derive all our results from a

unique bijection Φ specialized in various ways. Some of the results are expressed in terms

of outdegree sequences. For instance, we obtain a bijection between forests and outdegree

sequences (this answers a question by Stanley [Stan 80a]). We also obtain a bijection

between spanning trees and root-connected outdegree sequences. Lastly, in Chapter 8 we

define a bijection between spanning trees and the recurrent configurations of the sandpile

model. Combining our results, we obtain a bijection between recurrent configurations and

root-connected outdegree sequences which leaves the configurations at level 0 unchanged

(this answers a question by Gioan [Gioa 06]).

Before we get started, we summarize the definitions and notations needed for the four

following chapters.

4.1 Definitions and notations

We denote by N the set of non-negative integers. For any set S, we denote by |S| its

cardinality. For any sets S1, S2, we denote by S1 M S2 the symmetric difference of S1 and

S2. If S ⊆ S′ and S′ is clear from the context, we denote by S the complement of S, that is,

S′ \ S. If S ⊆ S ′ and s ∈ S′, we write S + s and S − s for S ∪ {s} and S \ {s} respectively

(whether s belongs to S or not).
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4.1.1 Graphs

In the following chapters we consider finite, undirected graphs. Loops and multiple edges

are allowed. Formally, a graph G = (V,E) is a finite set of vertices V , a finite set of edges

E and a relation of incidence in V × E such that each edge e is incident to either one or

two vertices. The endpoints of an edge e are the vertices incident to e. A cycle is a set of

edges that form a simple closed path. A cut is a set of edges C whose deletion increases

the number of connected components and such that the endpoints of every edge in C are in

distinct components of the resulting graph. A cut is shown in Figure 107. Given a subset

of vertices U , the cut defined by U is the set of edges with one endpoint in U and one

endpoint in U . A cocycle is a cut which is minimal for inclusion (equivalently it is a cut

whose deletion increases the number of connected components by one). For instance, the set

of edges {f, g, h} in Figure 107 is a cocycle.

e

h

i

j

f

g

Figure 107: The cut {e, f, g, h, i, j} and the connected components after deletion of this cut

(shaded regions).

Let G = (V,E) be a graph. A spanning subgraph of G is a graph G′ = (V,E′) where

E′ ⊆ E. All the subgraphs considered in the following chapters are spanning and we shall

not further precise it. A subgraph is entirely determined by its edge set and, by convenience,

we shall identify the subgraph with its edge set. A forest is an acyclic graph. A tree is a

connected forest. A spanning tree is a (spanning) subgraph which is a tree. Given a tree T

and a vertex distinguished as the root-vertex we shall use the usual family vocabulary and talk

about the father, son, ancestors and descendants of vertices in T . By convention, a vertex is

considered to be an ancestor and a descendant of itself. If a vertex of the graph G is distin-

guished as the root-vertex we implicitly consider it to be the root-vertex of every spanning tree.

Let T be a spanning tree of the graph G. An edge of G is said to be internal if it is in T

and external otherwise. The fundamental cycle (resp. cocycle) of an external (resp. internal)

edge e is the set of edges e′ such that the subgraph T − e′ + e (resp. T − e+ e′) is a spanning

tree. Observe that the fundamental cycle C of an external edge e is a cycle contained in T +e

(C is made of e and the path of T between the endpoints of e). Similarly, the fundamental

cocycle D of an internal edge e is a cocycle contained in T + e (D is made of the edges linking

the two subtrees obtained from T by removing e). Observe also that, if e is internal and e ′ is
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external, then e is in the fundamental cycle of e′ if and only if e′ is in the fundamental cocycle

of e.

4.1.2 Embeddings

We recall the notion of combinatorial map introduced by Cori and Mach̀ı [Cori 75, Cori 92].

A combinatorial map (or map for short) G = (H,σ, α) is a set of half-edges H, a permutation

σ and an involution without fixed point α on H such that the group generated by σ and α

acts transitively on H. A map is rooted if one of the half-edges is distinguished as the root.

For h0 ∈ H, we denote by G = (H,σ, α, h0) the map (H,σ, α) rooted on h0. From now on all

our maps are rooted.

Given a map G = (H,σ, α, h0), we consider the underlying graph G = (V,E), where V is

the set of cycles of σ, E is the set of cycles of α and the incidence relation is to have at least

one common half-edge. We represented the underlying graph of the map G = (H,σ, α) on

the left of Figure 108, where the set of half-edges is H = {a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′}, the

involution α is (a, a′)(b, b′)(c, c′)(d, d′)(e, e′)(f, f ′) in cyclic notation and the permutation σ

is (a, f ′, b, d)(d′)(a′, e, f, c)(e′, b′, c′). Graphically, we keep track of the cycles of σ by drawing

the half-edges of each cycle in counterclockwise order around the corresponding vertex.

Hence, our drawing characterizes the map G since the order around vertices give the cycles of

the permutation σ and the edges give the cycles of the involution α. On the right of Figure

108, we represented the map G ′ = (H,σ′, α), where σ′ = (a, f ′, b, d)(d′)(a′, e, c, f)(e′, b′, c′).

The maps G and G ′ have isomorphic underlying graphs.

Note that the underlying graph of a map G = (H,σ, α) is always connected since σ and

α act transitively on H. A combinatorial embedding (or embedding for short) of a connected

graph G is a map G = (H,σ, α) whose underlying graph is isomorphic to G (together with

an explicit bijection between the set H and the set of half-edges of G). When an embedding

G of G is given we shall write the edges of G as pairs of half-edges (writing for instance

e = {h, h′}). Moreover, we call root-vertex the vertex incident to the root and root-edge the

edge containing the root. In the following, we use the terms combinatorial map and embedded

graph interchangeably. We do not require our graphs to be planar.

Intuitively, a combinatorial embedding corresponds to the choice of a cyclic order on the

edges around each vertex. This order can also be seen as a local planar embedding. As

explained in the introduction of this thesis (Subsection 0.1.3), there is a one-to-one corre-

spondence between the combinatorial embeddings of graphs and the cellular embeddings of

graphs in surfaces (defined up to homeomorphism).
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Figure 108: Two embeddings of the same graph.

4.1.3 Orientations and outdegree sequences

Let G be a connected graph and let G be an embedding of G. An orientation is a choice

of a direction for each edge of G, that is to say, a function O which associates to any edge

e = {h1, h2} one of the ordered pairs (h1, h2) or (h1, h2). Note that loops have two possible

directions. We call O(e) an arc, or oriented edge. If O(e) = (h1, h2) we call h1 the tail and

h2 the head. We call origin and end of O(e) the endpoint of the tail and head respectively.

Graphically, we represent an arc by an arrow going from the origin to the end (see Figure 109).

tail head
origin end

Figure 109: Half-edges and endpoints of arcs.

A directed path is a sequence of arcs (a1, a2, . . . , ak) such that the end of ai is the origin

of ai+1 for 1 ≤ i ≤ k− 1. A directed cycle is a simple directed closed path. A directed cocycle

is a set of arcs a1, . . . , ak whose deletion disconnects the graph into two components and such

that all arcs are directed toward the same component. If the orientation O is not clear from

the context, we shall say that a path, cycle, or cocycle is O-directed. An orientation is said

to be acyclic if there is no directed cycle (resp. cocycle). An orientation is said to be totally

cyclic or strongly connected if there is no directed cocycle.

We say that a vertex v is reachable from a vertex u if there is a directed path

(a1, a2, . . . , ak) such that the origin of a1 is u and the end of ak is v. If v is reachable from

u in the orientation O denote it by u O
→v. An orientation is said to be u-connected if every

vertex is reachable from u. Observe that an orientation O is totally cyclic if and only if the

origin of every arc is reachable from its end. Equivalently, O is totally cyclic if every pair of

vertices are reachable from one another.

The outdegree sequence of an orientation O of the graph G = (V,E) is the function

δ : V 7→ N that associates to every vertex the number of incident tails. We say that O is a
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δ-orientation. The outdegree sequences are strongly related to the cycle flips, that is, the

reversing of every edge in a directed cycle. Indeed, it is known that the outdegree sequences

are in one-to-one correspondence with the equivalence classes of orientations up to cycle flips

(see Lemma 7.12).

There are nice characterizations of the functions δ : V 7→ N that are outdegree sequences.

Given a function δ : V 7→ N we define the excess of any subset of vertices U ⊆ V by

excδ(U) =

(

∑

u∈U

δ(u)

)

− |GU |,

where |GU | is the number of edges of G having both endpoints in U . By definition, if δ is the

outdegree sequence of an orientation O, the sum
∑

u∈U δ(u) is the number of tails incident

with vertices in U . From this number, exactly |GU | are part of edges with both endpoints

in U . Hence, the excess excδ(U) corresponds to the number of tails incident with vertices

in U in the cut defined by U . This property is illustrated in Figure 110. It is clear that if

δ : V 7→ N is an outdegree sequence, then the excess of V is 0 and the excess of any subset

U ⊆ V is non-negative. In fact, the converse is also true: every function δ : V 7→ N satisfying

these two conditions is an outdegree sequence [Fels 04].

2

U

3

1 2

4 0

Figure 110: The excess of the subset U is excδ(U) = (4 + 2 + 1) − 4 = 3.

We now prove that the reachability properties between vertices in a directed graph only

depend on the outdegree sequence of the orientation.

Lemma 4.1 Let G = (V,E) be a graph and let u, v be two vertices. Let O be an orientation

of G and let δ be its outdegree sequence. Then v is reachable from u if and only if there is no

subset of vertices U ⊆ V containing u and not v and such that excδ(U) = 0.

Proof: Lemma 4.1 is illustrated in Figure 111. Observe that the excess of a subset U ⊆ V is

0 if and only if the cut defined by U is directed toward U .

• Suppose there is a subset of vertices U ⊆ V containing u and not v such that excδ(U) = 0.

Then, the cut defined by U is directed toward U . Thus, there is no directed path from U to

U . Hence v is not reachable from v.
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• Conversely, suppose v is not reachable from u. Consider the set of vertices U reachable from

u. The subset U contains u but not v. Moreover, the cut defined by U is directed toward U ,

hence excδ(U) = 0.
�

u vU U

Figure 111: Reachability is a property of the outdegree sequence.

Since the reachability properties only depend on the outdegree sequence of the orienta-

tion, we can define an outdegree sequence δ to be u-connected or strongly connected if the

δ-orientations are. The u-connected outdegree sequences were considered in [Gioa 06] in

connection with the cycle/cocycle reversing system (see Section 7.7.1).

Remark: From the characterization of outdegree sequences given above and Lemma 4.1

it is possible to characterize u-connected and strongly connected outdegree sequences. Let

G = (V,E) be a graph and δ : V 7→ N be a mapping such that
∑

v∈V δ(v) = |E|. The

mapping δ is a strongly connected outdegree sequence if and only if the excess of any subset

U ( V is positive. The mapping δ is a u-connected outdegree sequence if and only if the

excess of any subset U ( V is non-negative and is positive whenever u ∈ U .

4.1.4 The sandpile model

The sandpile model is a dynamical system introduced in statistical physics in order to study

self-organized criticality [Bak 87, Dhar 90]. It appeared independently in combinatorics

as the chip firing game [Björ 91]. Roughly speaking, the model consists of grains of sand

toppling through edges when there are too many on the same vertex. Recurrent configura-

tions play an important role in the model: they correspond to configurations that can be

observed after a long period of time. Despite its simplicity, the sandpile model displays in-

teresting enumerative [Cori 03, Dhar 92, Meri 97] and algebraic properties [Cori 00, Dhar 95].

Let G = (V,E) be a graph with a vertex v0 distinguished as the root-vertex. A config-

uration of the sandpile model is a function S : V 7→ N, where S(v) represents the number

of grains of sand on v. A vertex v is unstable if S(v) is greater than or equal to its degree

deg(v). An unstable vertex v can topple by sending a grain of sand through each of the

incident edges. This leads to the new configuration S ′ defined by S ′(u) = S(u)+deg(u, v) for

all u 6= v and S ′(v) = S(v)−deg(v, ∗), where deg(u, v) is the number of edges with endpoints
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u, v and deg(v, ∗) is the number of non-loop edges incident to v. We denote this transition by

S v
99K

S ′. An evolution of the system is represented in Figure 112.

v0

v2

v1 v3

v0
99K

v1
99K

v2
99K

v3
99K

Figure 112: A recurrent configuration and the evolution rule.

A configuration is stable if every vertex v 6= v0 is stable. A stable configuration S is

recurrent if S(v0) = deg(v0) and if there is a labeling of the vertices in V by v0, v1, . . . , v|V |−1

such that S v0

99K
S1

v1

99K
. . . v|V |−1

99K
S|V | = S. This means that after toppling the root-vertex v0,

there is a valid sequence of toppling involving each vertex once that gets back to the initial

configuration. For instance, the configuration at the left of Figure 112 is recurrent. The level

of a recurrent configuration S is

level(S) =

(

∑

v∈V

S(v)

)

− |E|.

4.1.5 The Tutte polynomial

We recall the subgraph expansion of the Tutte polynomial. We postpone the presentation of

the other characterizations of this polynomial to Chapter 5 (Section 5.3).

Definition 4.2 The Tutte polynomial of a graph G = (V,E) is

TG(x, y) =
∑

S⊆E

(x− 1)c(S)−c(G)(y − 1)c(S)+|S|−|V |, (79)

where the sum is over all subgraphs S and c(S) (resp. c(G)) denotes the number of connected

components of S (resp. G).

For example, if G is the triangle K3 there are 8 subgraphs. The subgraph with no edge has

contribution (x− 1)2, each subgraph with one edge has contribution (x − 1), each subgraph

with two edges has contribution 1 and the subgraph with three edges has contribution (y−1).

Summing up these contributions, we get TK3
(x, y) = (x−1)2+3(x−1)+3+(y−1) = x2+x+y.

The subgraph expansion (79) of the Tutte polynomial is the generating function of

subgraphs according to two parameters: the (normalized) number of connected components

c(S) − c(G) and the cyclomatic number c(S) + |S| − |V |. The cyclomatic number is the

maximum number of edges that can be removed from S without increasing the number of
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connected components. In particular, c(S) + |S| − |V | = 0 if and only if S is a forest. From

the subgraph expansion (79), it is easy to check that whenever G is the disjoint union of

two graphs G = G1 ∪ G2, then TG(x, y) = TG1
(x, y) × TG2

(x, y). This relation allows us

to restrict our attention to connected graphs. In the following chapters, all the graphs we

consider are connected.

Before we close this section, we recall the relations of induction satisfied by the Tutte poly-

nomial [Tutt 54]. (These relations reminiscent of the relations of induction of the chromatic

polynomial [Whit 32a] are easy to prove from (79)).

Proposition 4.3 (Tutte) Let G be a graph and e be any edge of G. The Tutte polynomial

of G satisfies:

TG(x, y) = x · TG/e(x, y) if e is an isthmus,

y · TG\e(x, y) if e is a loop,

TG/e(x, y) + TG\e(x, y) if e is neither a loop nor an isthmus.

(80)

This concludes our presentation of the notions needed for the four following chapters. We

will now present a new characterization of the Tutte polynomial and exploit its numerous

consequences.



Chapter 5

Characterization of the Tutte

polynomial via combinatorial

embeddings

Abstract: We give a new characterization of the Tutte polynomial of graphs. Our

characterization is formally close (but inequivalent) to the original definition given by Tutte

as the generating function of spanning trees counted according to activities. Tutte’s notion of

activity requires to choose a linear order on the edge set. We define a new notion of activity,

the embedding-activity, which requires to choose a combinatorial embedding of the graph,

that is, a cyclic order of the edges around each vertex. We prove that the Tutte polynomial

equals the generating function of spanning trees counted according to embedding-activities.

Résumé : Nous présentons une nouvelle caractérisation du polynôme de Tutte des

graphes. Notre caractérisation est proche dans sa formulation (mais non équivalente) à

la première définition donnée par Tutte comme la série génératrice des arbres couvrants

comptés selon leurs activités. La caractérisation de Tutte demande d’ordonner linéaire-

ment l’ensemble des arêtes. Nous définissons une nouvelle notion d’activité, l’activité de

plongement, qui demande de choisir un plongement combinatoire du graphe, soit un ordre

cyclique des arêtes autour de chaque sommet. Nous montrons que le polynôme de Tutte

est égal à la série génératrice des arbres couvrants comptés selon leurs activités de plongement.

149
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5.1 Introduction

In 1954, Tutte defined a graph invariant that he named dichromate because he thought of it

as a bivariate generalization of the chromatic polynomial [Tutt 54]. The first definition by

Tutte was a generating function of spanning trees counted according to their activities. Since

then, this polynomial, which is now known as the Tutte polynomial, has been widely studied

(see for instance, [Bryl 91] and references therein). We refer the reader to [Boll 98, Chapter

X] for an easy-to-read but comprehensive survey of the properties and applications of the

Tutte polynomial.

In this chapter, we give a new characterization of the Tutte polynomial of graphs. Our

characterization is formally close (but not equivalent) to the original definition by Tutte in

terms of the ordering-activities of spanning trees (compare (85) and (84)). Tutte’s notion

of activity requires to choose a linear order on the edge set. The Tutte polynomial is then

the generating function of spanning trees counted according to their (internal and external)

ordering-activities (this generating function being, in fact, independent of the linear order).

Our characterization of the Tutte polynomial requires instead to choose an embedding of

the graph, that is, a cyclic order for the incidences of edges around each vertex. Once

the embedding is chosen, one can define the (internal and external) embedding-activities of

spanning trees. We prove that the Tutte polynomial is equal to the generating function of

spanning trees counted according to their (internal and external) embedding-activities (this

generating function being, in fact, independent of the embedding).

This chapter is organized as follows. In Section 5.2, we study the tour of spanning trees.

In Section 5.3, we define the embedding activities and characterize the Tutte polynomial as

the generating function of spanning trees counted by embedding-activities. We also compare

this characterization to earlier definitions of the Tutte polynomial. In Section 5.4, we give

the proof of the characterization of the Tutte polynomial by embedding activities. Lastly, in

Section 5.5, we take a glimpse at the results to be developed in the following chapters.

5.2 The tour of spanning trees

We first define the tour of spanning trees. Informally, the tour is a walk around the tree that

follows internal edges and crosses external edges. A graphical representation of the tour is

given in Figure 113. We already encountered this notion in chapter 3 in the case of planar

embeddings. We will now define it below for general embeddings.

Let G = (H,σ, α) be an embedding of the graph G = (V,E). Given a spanning tree T , we
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dd′
eb f ′ f

a
Tour of the tree

c′

c
a′

b′ e′

Figure 113: Intuitive representation of the tour of a spanning tree (indicated by thick lines).

define the motion function t on the set H of half-edges by:

t(h) = σ(h) if h is external,

σα(h) if h is internal.
(81)

Clearly, the motion function t is a bijection on H (since the inverse mapping is easily seen

to be t−1(h) = σ−1(h) if σ−1(h) is external and t−1(h) = ασ−1(h) if σ−1(h) is internal).

In fact, we will prove shortly that the motion function t is a cyclic permutation. For

instance, the motion function of the embedded graph in Figure 113 is the cyclic permutation

(a, e, f, c, a′, f ′, b, c′, e′, b′, d, d′). The cyclic order defined by the motion function t on the set

of half-edges is what we call the tour of the tree T .

Our proof that the motion function t is a cyclic permutation is by induction on the number

of edges of the graph. This proof requires to define the deletion and contraction of edges in

embedded graphs. Our definitions preserve the cyclic order of the half-edges around each

vertex. We represented the result of deleting and contracting the edge e = {b, b ′} in Figure

114.

c′

c
a′a

b′ e′

dd′
eb f ′ f

f

a′add′
f ′ c

e′ f ec′
Contraction

Deletion

c′

c
a′a

e′

dd′
ef ′

Figure 114: Deletion and contraction of the edge e = {b, b′}.

Let G be a graph and let e be an edge. If e is not an isthmus (resp. loop), we denote by

G\e (resp. G/e) the graph obtained by deleting e (resp. contracting e). Let G = (H,σ, α)

be an embedding of the graph G and let e = {h1, h2} be an edge. If e is not an isthmus,
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we define the embeddings G\e = (H ′, σ′, α\e) of G\e by H ′ = H \ {h1, h2}, the involution α′

equals the involution α restricted to H ′ and

σ\e(h) = σσσ(h) if (σ(h) = h1 and σ(h1) = h2) or (σ(h) = h2 and σ(h2) = h1),

σσ(h) if (σ(h) = h1 and σ(h1) 6= h2) or (σ(h) = h2 and σ(h2) 6= h1),

σ(h) otherwise.

(82)

Similarly, if e is not a loop, we define the embeddings G/e = (H ′, σ′, α/e) of G/e by H ′ =

H \ {h1, h2}, the involution α′ equals the involution α restricted to H ′ and

σ/e(h) = σσ(h) if (σ(h) = h1 and σ(h2) = h2) or (σ(h) = h2 and σ(h1) = h1),

σασ(h) if (σ(h) = h1 and σ(h2) 6= h2) or (σ(h) = h2 and σ(h1) 6= h1),

σ(h) otherwise.

(83)

We now describe the effect of a contraction or deletion on the motion function.

Lemma 5.1 Let G = (H,σ, α) be an embedded graph, let T be a spanning tree and let t be

the corresponding motion function. For all external (resp. internal) edge e = {h1, h2}, the

spanning tree T (resp. T − e) of G\e (resp. G/e) defines a motion function t′ on H \ {h1, h2}
such that

t′(h) = t ◦ t ◦ t(h) if (t(h) = h1 and t(h1) = h2) or (t(h) = h2 and t(h2) = h1),

t ◦ t(h) if (t(h) = h1 and t(h1) 6= h2) or (t(h) = h2 and t(h2) 6= h1),

t(h) otherwise.

Proof: Lemma 5.1 follows immediately from the definitions and Equations (82) and (83). �

Remark: Another way of stating Lemma 5.1 is to say that the cycles of the permutation t ′

are obtained from the cycles of t by erasing h1 and h2. Consider, for instance, the embedded

graph and the spanning tree represented in Figure 113. The motion function is the cycle

t = (a, e, f, c, a′, f ′, b, c′, e′, b′, d, d′). If we delete the edge the external edge {e, e′} (resp.

internal edge {b, b′}), the motion function becomes t′ = (a, f, c, a′, f ′, b, c′, b′, d, d′) (resp.

t′ = (a, e, f, c, a′, f ′, c′, e′, d, d′)).

We are now ready to prove the main result this section:

Proposition 5.2 For any embedded graph and any spanning tree, the motion function is a

cyclic permutation.

Proof: We prove the lemma by induction on the number of edges of the graph. The property

is obviously true for the graph reduced to a loop and the graph reduced to an isthmus.

We assume the property holds for all graphs with at most n ≥ 1 edges and consider an

embedded graph G with n + 1 edges. Let T be a spanning tree and t the corresponding

motion function. We know that t is a permutation, that is, a product of cycles. We consider
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an edge e = {h1, h2}.
• In any cycle of the motion function t, there is a half-edge h 6= h1, h2.

First note that t(hi) 6= hi for i = 1, 2. Indeed, if e is external, this would mean σ(hi) = hi

which is excluded or e would be an isthmus not in the spanning tree. Similarly, if e is

internal, we would have σα(hi) = hi which is excluded or e would be a loop in the spanning

tree. Moreover, we cannot have (t(h1) = h2 and t(h2) = h1). Indeed, this would mean that e

is either an isolated loop (if e is external) or an isolated isthmus (if e is internal) contradicting

our hypothesis that G is connected and has more than one edge.

• The motion function is cyclic.

If e is external (resp. internal), we consider the motion function t′ defined by the spanning

tree T (resp. T − e) on G\e (resp. G/e). By Lemma 5.1, the cycles of t′ are the cycles of t

where the half-edges h1, h2 are erased. Suppose now that t is not cyclic. Then t has at least

two cycles each containing a half-edge h 6= h1, h2. Therefore, t′ has at least two non-empty

cycles, which contradicts our induction hypothesis.
�

5.3 The Tutte polynomial of embedded graphs

We now define the embedding-activities of spanning trees. We consider an embedded graph

G and a spanning tree T . By Proposition 5.2, the motion function is a cyclic permutation on

the set H of half-edges, hence defines a cyclic order on H. If the embedding G is rooted, that

is, a half-edge h ∈ H is distinguished as the root, we can consider the linear order for which

h is the smallest element.

Definition 5.3 Let G = (H,σ, α, h) be an embedded graph and let T be a spanning tree. We

define the (G, T )-order on the set H of half-edges by h < t(h) < t2(h) < . . . < t|H|−1(h),

where t is the motion function. (Note that the (G, T )-order is a linear order on H since t is

a cyclic permutation.) We define the (G, T )-order on the edge set by setting e = {h1, h2} <
e′ = {h′1, h′2} if min(h1, h2) < min(h′1, h

′
2). (Note that this is also a linear order.)

Example: Consider the embedded graph G rooted on a and the spanning tree T

represented in Figure 113. The (G, T )-order on the half-edges is a < e < f < c <

a′ < f ′ < b < c′ < e′ < b′ < d < d′. Therefore, the (G, T )-order on the edges is

{a, a′} < {e, e′} < {f, f ′} < {c, c′} < {b, b′} < {d, d′}.

We are now ready to define the embedding-activity.

Definition 5.4 Let G be a rooted embedded graph and T be a spanning tree. We say that an

external (resp. internal) edge is (G, T )-active (or embedding-active if G and T are clear from

the context) if it is minimal for the (G, T )-order in its fundamental cycle (resp. cocycle).
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Example: In Figure 113, the (G, T )-order on the edges is {a, a′} < {e, e′} < {f, f ′} <

{c, c′} < {b, b′} < {d, d′}. Hence, the internal active edges are {a, a′} and {d, d′} and there is

no external active edge. For instance, {e, e′} is not active since {a, a′} is in its fundamental

cycle.

We are now ready to give a characterization of the Tutte polynomial based on

embedding-activities. This characterization of the Tutte polynomial by embedding-activities

is reminiscent of Tutte’s original characterization [Tutt 54]. We urge to say that these two

characterizations are not equivalent.

Theorem 5.5 Let G be any rooted embedding of the connected graph G (with at least one

edge). The Tutte polynomial of G is equal to

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ), (84)

where the sum is over all spanning trees and I(T ) (resp. E(T )) is the number of (G, T )-active

internal (resp. external) edges.

Example: We represented the spanning trees of K3 in Figure 115. If the embedding is

rooted on the half-edge a, then the embedding-active edges are the one indicated by a ?.

Hence, the spanning trees (taken from left to right) have respective contributions x, x2 and

y and the Tutte polynomial is TK3
(x, y) = x2 + x+ y.

? ??
a

c′

a

c′

a

c′b bb

b′ b′ b′c c c
a′ a′a′

?

Figure 115: The embedding-activities of the spanning trees of K3.

Note that Theorem 5.5 implies that the sum in (84) does not depend on the embedding,

whereas the summands clearly depends on it. We postpone the proof of Theorem 5.5 to the

next section. In the rest of this section we present some other characterizations of the Tutte

polynomial which will serve as an element of comparison with the present work.

The characterization of the Tutte polynomial given in Theorem 5.5 is reminiscent of the

first definition given by Tutte in 1954 [Tutt 54]. Tutte’s characterization is also a generating

function of spanning trees counted according to some activities, the ordering-activities. In

order to define the ordering-activities we need to choose a linear ordering of the edge set

(instead of an embedding). Let G be a graph whose edge set is linearly ordered. Then,
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given a spanning tree T , an external (resp. internal) edge is said to be ordering-active if it is

minimal in its fundamental cycle (resp. cocycle). Tutte proved in [Tutt 54] that

TG(x, y) =
∑

T spanning tree

xi(T )ye(T ), (85)

where the sum is over all spanning trees and i(T ) (resp. e(T )) is the number of internal (resp.

external) ordering-active edges. We indicated the ordering-activities of the spanning trees of

K3 in Figure 116.

c
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b

?
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a
?

b?b

a

c

?

Figure 116: The ordering-activities of the spanning trees of K3 (indicated by a ?) for the linear

order a < b < c. The spanning trees (taken from left to right) have respective contribution

x2, x and y.

Tutte’s characterization implies that the sum in (85) does not depend on the ordering of

the edge set (whereas the summands clearly depends on that order). This characterization

is easily proved by induction. Indeed, it is simple to prove that the induction relation of

Proposition 4.3 holds for the edge having the largest label.

We emphasize that Theorem 5.5 is not a special case of Tutte’s result since the (G, T )-

order is a linear order on the edge set that depends on the tree T .

The characterization of the Tutte polynomial in terms of the ordering-activities of

spanning trees is sometimes thought of as slightly unnatural. It is true that the dependence

of this characterization on a particular linear ordering of the edge set is a bit puzzling. We

want to argue that an embedding may be a less arbitrary structure than a linear order on the

edge set. As a matter of fact, there are a number of mathematical conjectures dealing with

the Tutte polynomial, or sometimes the chromatic polynomial, of planar graphs. A graph

is planar if and only if can be embedded in the sphere. Equivalently, it has an embedding

(H,σ, α) with Euler characteristic equal to 2. For instance, the four color theorem can be

stated as: TG(−3, 0) 6= 0 for any loopless planar embedding G.

We now present a characterization of the Tutte polynomial given by Las Vergnas as the

generating function of orientations counted according to their cyclic-activities [Las 84b]. Let

G be a graph whose edge set is linearly ordered. Given an orientation O, a cyclic (resp.

acyclic) edge is said to be cyclic-active (resp. acyclic-active) if it is minimal in an O-directed
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cycle (resp. cocycle). It was proved in [Las 84b] that

TG(x, y) =
∑

O orientation

(x

2

)ic(O) (y

2

)ec(O)
, (86)

where the sum is over all orientations and ic(O) (resp. ec(O)) is the number of cyclic-active

(resp. acyclic-active) edges. We indicated the cyclic-activities of the orientations of K3 in

Figure 117.

? ? ?bc
a
? ? ?

?

? ? ? ? ?

Figure 117: The cyclic-activities of the spanning trees of K3 (indicated by a ?) for the linear

order a < b < c. The orientations have respective contribution
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Comparing the Characterizations (85) and (86) makes it appealing to look for a

correspondence between spanning trees and orientations in which each spanning tree T

having ordering-activities (i(T ), e(T )) is associated with 2i(T )+e(T ) orientations O having

cyclic-activities (ic(O), ec(O)) = (i(T ), e(T ). This was first done in [Las 84a]. Another

correspondence was defined in [Gioa 05] which has the advantage of being extendable to the

context of oriented matroids. In some senses, the correspondence we establish in Chapter

6 between subgraphs and orientations can be seen as the counterpart of [Gioa 05] for

embedding activities.

Lastly, Gessel and Wang [Gess 79] introduced a notion of external activity, the DFS-

activity (based on the depth-first search algorithm) which was further investigated in [Gess 95,

Gess 96]. Consider a connected graph G, a linear order on the vertex set and a linear order

on the edge set (the latter can be derived from the former if G is simple). Consider a forest

F of G. We define the root-vertex of any tree T of F as the smallest vertex in T . An edge

e /∈ F having both endpoints in the same tree T of F is called external. The fundamental

cycle C of e is the union of e and the path in T between its two endpoints. The external edge

e is DFS-active if one of its endpoints, say u, is the ancestor of the other and e < eu, where

eu is the internal edge in C incident to u. It was proved in [Gess 96] that

TG(x, y) =
∑

F forest

(x− 1)c(F )−1yed(F ), (87)

where the sum is over all forests and ed(F ) is the number of external DFS-active edges. We

indicated the external DFS-active edges for the forests of K3 in Figure 118.
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?1 2
bc

3

a

Figure 118: The external DFS-active edges of the 7 forests the of K3 for the linear order

a < b < c. There only one external DFS-active edge which is indicated by a ?. The forests

have respective contribution (x− 1)2, (x− 1), (x − 1), (x − 1), 1, 1 and y.

We will prove shortly (Lemma 5.8) a characterization for external embedding-active

edges which is very close (in its formulation) to the definition of external DFS-active edges.

In fact it is the same except that in the case of embedding-activities the comparison between

e and eu is made according to the (G, T )-order. In other words, the condition e < eu for

DFS-activity is replaced by the condition that e0, e, eu are in cyclic order around u for

embedding-activity, where e0 is the edge linking u to its father in T (or the root-edge if u is

the root-vertex). It does not seem to exist a nice way of defining a DFS-activity for internal

edges. The intuitive reason for this is that linear local orders (as opposed to cyclic local

orders) do not behave well when an edge is contracted.

5.4 Proofs of the characterization of the Tutte polynomial by

embedding activities

In this section we prove the characterization of the Tutte polynomial given by Theorem 5.5.

We also establish several lemmas that will be useful in the following chapters.

Lemma 5.6 Let G be an embedded graph. Let T be a spanning tree and let e = {h1, h2} be

an internal edge. Assume that h1 < h2 (for the (G, T )-order) and denote by v1 and v2 the

endpoints of h1 and h2 respectively. Then, v1 is the father of v2 in T . Moreover, the half-edges

h such that h1 < h ≤ h2 are the half-edges incident to a descendant of v2.

Proof: Let t be the motion function associated to the tree T (t is defined by (81)). We

consider the subtrees T1 and T2 obtained from T by deleting e with the convention that h1 is

incident to T1 and h2 is incident to T2. Let h be any half-edge distinct from h1 and h2. By

definition of t, the half-edges h and t(h) are incident to the same subtree Ti. Therefore, the

(G, T )-order is such that h0 < l1 < · · · < li < h1 < l′1 < · · · < l′j < h2 < l′′1 < · · · < l′′k where

l′1, . . . , l
′
j , h2 are the half-edges incident with the subtree T2 not containing the root-vertex v0.

Since the subtree T2 does not contain v0 its vertices are the descendants of v2 in T .
�
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Lemma 5.7 With the same assumption as in Lemma 5.6, let e = {h1, h2} with h1 < h2 be

an internal edge and let e′ = {h′1, h′2} with h′1 < h′2 be an external edge.

• Then, e is in the fundamental cycle of e′ (equivalently, e′ is in the fundamental cocycle of

e) if and only if h1 < h′1 < h2 < h′2 or h′1 < h1 < h′2 < h2.

• Suppose that e is in the fundamental cycle of e′ and denote by v1, v2, v
′
1, v

′
2 the endpoints of

h1, h2, h
′
1, h

′
2 respectively. Recall that v1 is the father of v2 in T (Lemma 5.6) and that exactly

one of the vertices v′1, v
′
2 is a descendant of v2. If e < e′, then v′1 is the descendant of v2, else

it is v′2.

Proof:

• Let V2 be the set of descendants of v2. Recall that the edge e′ is in the fundamental cocycle

of e if and only if it has one endpoint in V2 and the other in V2. By Lemma 5.6, this is

equivalent to the fact that exactly one of the half-edges h′
1, h

′
2 is in {h′ : h1 < h′ ≤ h2}. Thus,

e′ is in the fundamental cocycle of e if and only if h1 < h′1 < h2 < h′2 or h′1 < h1 < h′2 < h2.

• Suppose that e is in the fundamental cycle of e′. By the preceding point, e < e′ implies

h1 < h′1 < h2 < h′2. In this case, h′1 is incident to a descendant of v2 by Lemma 5.6. Similarly,

e′ < e implies h′1 < h1 < h′2 < h2, hence h′2 is incident to a descendant of v2.
�

Lemma 5.8 An external edge e′ = {h′1, h′2} with h′1 < h′2 is (G, T )-active if and only if the

endpoint of h′1 is an ancestor of the endpoint of h′2.

Proof: Denote by v′1 and v′2 the endpoints of h′1 and h′2 respectively.

• Suppose v′1 is an ancestor of v′2. We want to prove that e′ is active. Let e = {h1, h2} with

h1 < h2 be an internal edge in the fundamental cycle of e′. The edge e is in the path of T

between v′1 and v′2. Denote by v1 and v2 the endpoints of h1 and h2 respectively. Recall that

v1 is the father of v2 (Lemma 5.6). Since v′2 is a descendant of v2, we have e′ < e by Lemma

5.7. The edge e′ is less than any edge in its fundamental cycle hence it is (G, T )-active.

• Suppose that v′1 is not an ancestor of v′2. Then the edge e = {h1, h2} with h1 < h2 linking

v′1 to its father in T is in the fundamental cycle of e′. If we denote by v1 and v2 the endpoints

of h1 and h2 respectively, we get v2 = v′1 by Lemma 5.6. Since the endpoint v′1 of h′1 is a

descendant of the endpoint v2 of h2, we get e < e′ by Lemma 5.7. Thus, e′ is not (G, T )-active.

�

Lemma 5.9 Let G be a rooted embedded graph with edge set E and half-edge set H. Let T

be a spanning tree and e = {h1, h2} be an edge not containing the root. If e is external (resp.

internal), the (G\e, T )-order (resp. (G/e, T − e)-order) on H \ {h1, h2} and E − e is simply

the restriction of the (G, T )-order to these sets.
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Proof: By Lemma 5.1, we see that if e is external (resp. internal), the (G\e, T )-order (resp.

(G/e, T−e)-order) on the half-edge set H \{h1, h2} is simply the restriction of the (G, T )-order

to this set. The same property follows immediately for the edge set.
�

Proof of Theorem 5.5: We associate to the rooted embedded graph G the polynomial

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ),

where I(T ) (resp. E(T )) is the number of embedding-active internal (resp. external) edges.

We want to show that the polynomial TG(x, y) is equal to the Tutte polynomial TG(x, y) of

G. We proceed by induction on the number of edges, using the induction relations (80) of the

Tutte polynomial.

• The graphs with one edge are the graph L reduced to a loop and the graph I reduced to an

isthmus. The graph L (resp. I) has a unique rooted embedding L (resp. I). We check that

TL(x, y) = y = TL(x, y) and TI(x, y) = x = TI(x, y).

• We assume the property holds for all (connected) graphs with at most n ≥ 1 edges and

consider a rooted embedding G = (H,σ, α, h0) of a graph G with n+1 edges. We denote by v0

the vertex incident to the root h0 and e0 the edge containing h0. We denote by h∗ = σ−1(h0)

the half-edge preceding h0 around v0 and by e∗ = {h∗, h′∗} the edge containing h∗.

We study separately the 3 different cases of the induction relation (80).

Case 1: The edge e∗ is neither an isthmus nor a loop.

The set T of spanning trees of G can be partitioned into T = T1 ∪ T2, where T1 (resp. T2)

is the set of spanning trees containing (resp. not containing) the edge e∗. The set T1 (resp.

T2) is in bijection by the mapping Φ1 : T 7→ T − e∗ (resp. Φ2 : T 7→ T ) with the spanning

trees of G/e∗ (resp. G\e∗). We want to show e∗ is never embedding-active and that the

mappings Φi preserve the embedding-activities: for any tree T in T1 (resp. T2), an edge is

(G, T )-active if and only if it is (G/e∗ , T − e∗)-active (resp. (G\e∗ , T )-active). We are going to

prove successively the following four points:

• The edges e∗ and e0 are distinct.

First note that h0 6= h∗ or we would have σ(h∗) = h∗ implying that v0 has degree one hence

that e∗ is an isthmus. Also, h0 6= h′∗ or we would have σ(h∗) = α(h∗) implying that e∗ is a

loop. Thus, e∗ = {h∗, h′∗} does not contain h0.

• Given any spanning tree, the edge e∗ is maximal in its fundamental cycle or cocycle.

Let T be a spanning tree of G. Suppose first that the edge e∗ is internal. In this case, the

motion function t satisfies, t(h′∗) = σα(h′∗) = h0. Hence, h′∗ is the greatest half-edge for the

(G, T )-order. Let e = {h, h′} with h < h′ be an edge in the fundamental cocycle of e∗. By

Lemma 5.7, the half-edges h, h′, h∗, h′∗ satisfy h < h∗ < h′ < h′∗. Hence, the edge e is less
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than e∗. Thus, the edge e∗ is maximal in its fundamental cocycle. Suppose now that the

edge e∗ is external. In this case, t(h∗) = σ(h∗) = h0 hence, h∗ is the greatest half-edge for

the (G, T )-order. Let e = {h, h′} with h < h′ be an edge in the fundamental cycle of e∗. By

Lemma 5.7, the half-edges h, h′, h∗, h′∗ satisfy h < h′∗ < h′ < h∗, hence, the edge e is less than

e∗. Thus, the edge e∗ is maximal in its fundamental cycle.

• For any tree T in T1 (resp. T2), the (G, T )-active and (G/e∗ , T − e∗)-active (resp. (G\e∗ , T )-

active) edges are the same.

First note that e∗ is never alone in its fundamental cycle or cocycle (or e∗ would be a loop or

isthmus). Hence, by the preceding point, e∗ is never embedding-active. We now look at the

embedding-activities of the other edges. Let T be a tree in T1 (i.e. containing e∗). Let e be

an external (resp. internal) edge distinct from e∗ and let C be its fundamental cycle (resp.

cocycle). The fundamental cycle (resp. cocycle) of e in (G/e∗ , T − e∗) is C − e∗. Note that

the (G, T )-minimal element of C is in C − e∗ (since, if e∗ is in C then e is in the fundamental

cycle of e∗ hence e < e∗ for the (G, T )-order). Moreover, by Lemma 5.9, the (G, T )-order

and (G/e∗ , T − e∗)-order coincide on C − e∗. Hence, the (G, T )-minimal element of C is the

(G/e∗ , T − e∗)-minimal element in C − e∗. Therefore, the edge e is (G, T )-active if and only if

it is (G/e∗ , T − e∗)-active.

The case where T is a tree in T2 (i.e. not containing e∗) is identical.

• The polynomial TG(x, y) is equal to the Tutte polynomial TG(x, y).

From the properties above, we have

TG(x, y) ≡
∑

T spanning tree of G

xI(T )yE(T )

=
∑

T∈T1

xI(T )yE(T ) +
∑

T∈T2

xI(T )yE(T )

=
∑

T∈T1

xI
′(T−e∗)yE

′(T−e∗) +
∑

T∈T2

xI
′′(T )yE

′′(T ) (88)

where I ′(T−e∗), E ′(T−e∗), I ′′(T ), I ′′(T ) are respectively the number of internal (G/e∗ , T−e∗)-
active, external (G/e∗ , T − e∗)-active, (G\e∗ , T )-active and external (G\e∗ , T )-active edges.

In the right-hand side of (88) we recognize the polynomials TG/e∗
(x, y) and TG\e∗

(x, y). By the

induction hypothesis, these polynomials are the Tutte polynomials TG/e∗
(x, y) and TG\e∗

(x, y).

Thus,

TG(x, y) = TG/e∗
(x, y) + TG\e∗

(x, y) = TG/e∗
(x, y) + TG\e∗

(x, y). (89)

In view of the induction relation of Proposition 4.3, this is the Tutte polynomial TG(x, y).

Case 2: The edge e∗ is an isthmus.

Since e∗ is an isthmus, it is in every spanning tree. Moreover, being alone in its fundamental
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cocycle, it is always active. We want to show that for any spanning tree T , the embedding-

activity of any edge other than e∗ is the same in (G, T ) and in (G/e∗ , T − e∗). Before we do

that, we must cope with a (little) technical difficulty: the edge e∗ might be equal to e0 in

which case we should specify how to root the graph G/e∗ .

First note that h0 6= h′∗ or we would have σ(h∗) = α(h∗) implying that e∗ is a loop. Suppose

now that h0 = h∗ (equivalently, σ(h∗) = h∗). In this case, we define the root of G/e∗ to be

h1 = σ(h′∗) (h1 is not an half-edge of e∗ or e∗ would be an isolated isthmus).

• For any spanning tree T of G, the (G, T )-order and the (G/e∗ , T − e∗)-order coincide on

E − e∗.

If e∗ 6= e0 the property is given by Lemma 5.9. Now suppose that e∗ = e0 (that is h∗ = h0).

Since e∗ is internal, the motion function t satisfies t(h′∗) = h0 and t(h0) = h1. Therefore,

the (G, T )-order on half-edges is h0 = h∗ < h1 < t(h1) < . . . < h′∗. Let us denote by G1 the

embedded graph G rooted on h1. The (G1, T )-order on half-edges is h1 < t(h1) < . . . < h′∗ <

h0 = h∗. Thus, the (G1, T )-order and (G, T )-order coincide on E − e∗. Moreover, by Lemma

5.9, the (G1, T )-order and (G/e∗ , T )-order coincide on E − e∗.

• For any spanning tree T , the set of (G, T )-active edges distinct from e∗ is the set of (G/e∗ , T−
e∗)-active edges.

For any tree T and any external (resp. internal) edge e 6= e∗, the fundamental cycle (resp.

cocycle) of e does not contain e∗ and is the same in (G, T ) and in (G/e∗ , T − e∗). Since the

(G, T )-order and the (G/e∗ , T − e∗)-order coincide on E− e∗, the edge e is (G, T )-active if and

only if it is (G/e∗ , T − e∗)-active.

• The polynomial TG(x, y) is equal to the Tutte polynomial TG(x, y).

From the properties above, we have

TG(x, y) ≡
∑

T spanning tree of G

xI(T )yE(T )

=
∑

T spanning tree of G

x1+I′(T−e∗)yE
′(T−e∗)

= x ·
∑

T spanning tree of G

xI
′(T−e∗)yE

′(T−e∗) (90)

where I ′(T − e∗) and E ′(T − e∗) are respectively the number of internal (G/e∗ , T − e∗)-active

and external (G/e∗ , T − e∗)-active edges.

In the right-hand side of (90) we recognize the sum as being TG/e∗
(x, y). By the induction

hypothesis, we know this polynomial to be equal to the Tutte polynomial TG/e∗
(x, y). Thus,

TG(x, y) = x · TG/e∗
(x, y) = x · TG/e∗

(x, y). (91)

In view of the induction relation of Proposition 4.3, this is the Tutte polynomial TG(x, y).
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Case 3: The edge e∗ is a loop.

This case is dual to Case 2.

Since e∗ is a loop, it is always external and always active. We want to show that for any

spanning tree T , the embedding-activity of any edge other than e∗ is the same in (G, T )

and in (G\e∗ , T ). Before we do that, we must choose a root for G\e∗ when e∗ = e0. We see

that h0 6= h∗ or we would have σ(h∗) = h∗ implying that e∗ is an isthmus. Suppose now

that h0 = h′∗ (equivalently, α(h∗) = σ(h∗)). In this case, we define the root of G\e∗ to be

h1 = σ(h0) (h1 is not an half-edge of e∗ or e∗ would be an isolated loop).

• For any spanning tree T of G, the (G, T )-order and the (G\e∗ , T )-order coincide on E − e∗.

The proof of Case 2 can be copied verbatim except “e∗ is internal” is replaced by “e∗ is

external”.

• For any spanning tree T , the set of (G, T )-active edges distinct from e∗ is the set of (G\e∗ , T )-

active edges.

The proof of Case 2 can be copied verbatim.

• The polynomial TG(x, y) is equal to the Tutte polynomial TG(x, y).

From the properties above, we have

TG(x, y) ≡
∑

T spanning tree of G

xI(T )yE(T )

= y ·
∑

T spanning tree of G

xI
′′(T )yE

′′(T ) (92)

where I ′′(T ) and E ′′(T ) are respectively the number of internal (G\e∗ , T )-active and external

(G\e∗ , T )-active edges.

In the right-hand side of (92) we recognize the sum as being TG\e∗
(x, y). By the induction

hypothesis, we know this polynomial to be equal to the Tutte polynomial TG\e∗
(x, y). Thus,

TG(x, y) = y · TG\e∗
(x, y) = y · TG\e∗

(x, y). (93)

In view of the induction relation of Proposition 4.3, this is the Tutte polynomial TG(x, y).
�

5.5 A glimpse at the results contained in the next chapters

We now take a glimpse at the results to be developed in the following chapters. In order

to present these results, we define two mappings Γ and Λ on the set of spanning trees of a

graph. Consider a graph G with a distinguished vertex v0. The mapping Γ is a bijection

between the spanning trees of G and the v0-connected outdegree sequences. The mapping

Λ is a bijection between the spanning trees of G and the recurrent configurations of the

sandpile model. These two bijections are very close in their formulations (see Definitions
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5.10 and 5.11) and are both related to a mapping Φ from spanning trees to orientations.

The mapping Φ will be extended into a bijection between subgraphs and orientations in

Chapter 6. The bijection Γ between spanning trees and v0-connected outdegree sequences

will be extended into a bijection between forests and outdegree sequences in Chapter 7. The

bijection Λ between spanning trees and recurrent sandpile configurations will be studied in

Chapter 8.

We first define a mapping Φ between from spanning trees to orientations. The mapping

Φ is reminiscent of the mapping δ studied in Chapter 3 between spanning trees and

tree-orientations. We only give here a reformulation based on combinatorial embeddings

(this presentation is more convenient for the extensions to be presented in the following

chapters). Consider an embedded graph G = (H,σ, α, h0). Recall that the tour of a spanning

tree T has been defined in Subsection 4.1.2 as a way of visiting every half-edge of G in cyclic

order. This tour is based on the motion function (giving the next half-edge in the cyclic

order) defined on H by (81). The tour of T defines a linear order, the (G, T )-order, on H for

which the root h0 is the least element.

We now define an orientation OT of G associated to the spanning tree T by:

For any edge e = {h1, h2} with h1 < h2, OT (e) = (h1, h2) if e is internal,

(h2, h1) if e is external.
(94)

We illustrate this definition in Figure 119 (left).
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Figure 119: Left: Orientation OT associated the spanning tree T (indicated by thick lines)

and active edges (indicated by a star). Middle: outdegree sequence Γ(T ). Right: recurrent

configuration of the sandpile model Λ(T ).

Let v0 be the root-vertex of G. Observe that the spanning tree T is oriented from its

root-vertex v0 to its leaves in OT . Indeed, it is clear from the definitions and Lemma 5.6

that every internal edge is oriented from father to son. This property implies that for every

spanning tree T the orientation OT is v0-connected.

The mapping Φ : T 7→ OT from spanning trees to v0-connected orientations is not

bijective. However, it is injective and in Chapter 6 we will extend it into a bijection between
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subgraphs and orientations. For the time being, let us observe (the proof will be given

in Chapter 6) that the tree T can be recovered from the orientation OT by the following

procedure:

Procedure Construct-tree:

Initialization: Initialize the current half-edge h to be the root h0. Initialize the tree T and

the set of visited arcs F to be empty.

Core: Do:

C1: If the edge e containing h is not in F and h is a tail then add e to T .

Add e to F .

C2: Move to the next half-edge around T :

If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until the current half-edge h is h0.

End: Return the tree T .

In the procedure Construct-tree we keep track of the set F of edges already visited.

The decision of adding an edge e to the tree T or not is taken when e is visited for the first

time. The principle of procedure Construct-tree, which consists in constructing a tree T

while making its tour, will appear again in the next chapters.

Building on the mapping Φ : T 7→ OT we define two mappings Γ and Λ.

Definition 5.10 Let G be an embedded graph. The mapping Γ associates with any spanning

tree T the outdegree sequence of the orientation OT .

Definition 5.11 Let G be an embedded graph and let V be the vertex set. The mapping Λ

associates with any spanning tree T the configuration ST : V 7→ N, where ST (v) is the number

of tails plus the number of external (G, T )-active heads incident to v in the orientation OT .

The mappings Γ and Λ are illustrated in Figure 119. As observed above, the orientation

OT is always v0-connected. We shall prove in Chapter 7 that Γ is a bijection between

spanning tree and v0-connected outdegree sequences. As for the mapping Λ, we shall prove

in Chapter 8 that it is a bijection between spanning trees and recurrent configurations of the

sandpile model. Moreover, the number of external (G, T )-active edges is easily seen to be

the level of the configuration Λ(T ). This gives a new bijective proof of a result by Merino

linking external activities to the level of recurrent sandpile configurations [Cori 03, Meri 97]

(see Chapter 8). The two mappings Γ and Λ are very similar and coincide on internal

trees, that is, trees that have external activity 0. Thus, the mapping Γ ◦ Λ−1 is a bijection

between recurrent configurations of the sandpile model and v0-connected outdegree sequences

that leaves the configurations at level 0 unchanged. This answers a problem raised by

Gioan [Gioa 06].
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We now highlight a relation (to be exploited in Chapter 7) between the embedding-

activities of the spanning tree T and the acyclicity or strong connectivity of the associated

orientation OT .

Lemma 5.12 Let G be an embedded graph ant let T be a spanning tree. The fundamental

cycle (resp. cocycle) of an external (resp. internal) edge e is OT -directed if and only if e is

(G, T )-active.

Lemma 5.12 is illustrated by Figures 120 and 121. From this lemma we deduce that if

OT is acyclic (resp. strongly connected) then T is internal (resp. external), that is, has no

external (resp. internal) active edge. In fact, we shall prove in Chapter 7 that the converse

is true: if the tree T is internal (resp. external), then the orientation OT is acyclic (resp.

strongly connected).

h0
h0

?

Figure 120: Fundamental cocycles of an active internal edge (left) and of a non-active internal

edge (right).

h0

?

h0

Figure 121: Fundamental cycles of an active external edge (left) and of a non-active external

edge (right).

Proof: Consider an edge e = {h1, h2} with h1 < h2 and denote by v1 and v2 the endpoints

of h1 and h2 respectively.

• Suppose that e is internal. We want to prove that the fundamental cocycle D of e is directed

if and only if e is (G, T )-active. Recall that v1 is the father of v2 by Lemma 5.6. Let V2 be

the set of descendants of v2. Recall that D is the cocycle defined by V2. By definition, the
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arc OT (e) is directed toward v2 ∈ V2. By Lemma 5.7, for all edge e′ = {h′1, h′2} with h′1 < h′2
in D − e, the arc OT (e′) = (h′2, h

′
1) is directed toward V2 if and only if e < e′. Therefore, the

fundamental cocycle D is directed if and only if e is minimal in D, that is, if e is (G, T )-active.

• Suppose that e is external. We want to prove that the fundamental cycle C of e is directed

if and only if e is (G, T )-active. Recall that C − e is the path in T between v1 and v2. Since

OT (e) is directed toward v1, the cycle C is directed if and only if the path C − e is directed

from v1 to v2. Since every edge in C − e ⊆ T is directed from father to son (Lemma 5.6), the

cycle C is directed if and only if v1 is an ancestor of v2. This is precisely the characterization

of external (G, T )-active edges given by Lemma 5.8.
�

Until now we have looked at mappings defined on the set of spanning trees. In order to

extend these mappings to general subgraphs we will now associate a spanning tree to every

subgraph. This will be our first task in the next chapter.



Chapter 6

Partition of the set of subgraphs

and a bijection between subgraphs

and orientations

Abstract: In the previous chapter, we defined the embedding activities of spanning trees.

In the present chapter, we define a partition of the set of subgraphs based on embedding

activities. Each part of the partition is associated to a spanning-tree. We use this partition

in order to define a bijection Φ between subgraphs and orientations that displays nice

properties. The bijection Φ will be further investigated in the next chapter.

Résumé: Dans le chapitre précèdent nous avons défini les activités de plongement des

arbres couvrants. Dans le présent chapitre, nous définissons une partition de l’ensemble

des sous-graphes basée sur les activités de plongement. Chaque part de la partition est

associée à un arbre couvrant. Nous utilisons cette partition des sous-graphes pour définir

une bijection Φ entre les sous-graphes et les orientations qui a des propriétés intéressantes.

Nous étudierons la bijection Φ plus en détail dans le prochain chapitre.

167
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6.1 Introduction

In the previous chapter we defined the embedding-activities of edges. This definition was

based on the tour of spanning trees. We then characterized the Tutte polynomial as the

generating function of spanning trees counted by internal and external embedding-activities.

In the present chapter we use the embedding-activities in order to define a partition of the

set of subgraphs. Our partition is the counterpart for embedding-activities of some partitions

based on other characterizations of the Tutte polynomial [Tutt 54, Gess 79]. Indeed, a

partition of the set of subgraphs was defined for the notion of ordering-activity introduced by

Tutte in [Tutt 54] as well as for the notion of external DFS-activities introduced by Gessel

and Wang in [Gess 79] (these two notions were recalled in Section 5.3 of Chapter 5). These

partitions have been used extensively to extract informations about the Tutte polynomial

[Bari 79, Crap 69, Gess 95, Gess 96, Gess 79, Gord 90].

In Chapter 5 (Section 5.5) we defined a mapping Φ between spanning trees and orienta-

tions. This mapping was just a reformulation of the bijection between spanning trees and

tree-orientations defined in Chapter 3. Building on our partition of the set of subgraphs we

will extend the mapping Φ into a general bijection between subgraphs and orientations. We

shall see in the next chapter that the mapping Φ has a lot of interesting specializations.

The outline of this chapter is as follows. In Section 6.2, we define a partition of the set

of subgraphs indexed by spanning trees. In Section 6.3, we exploit our partition in order

to define a general bijection between subgraphs and orientations. Lastly, in Section 6.4 we

comment on the case of planar graphs and on the computational aspects of our bijection.

6.2 A partition of the set of subgraphs indexed by spanning

trees

In this section we define a partition of the set of subgraphs for any embedded graph. Each

part of this partition is associated with a spanning tree.

Let G be an embedded graph. Given a spanning tree T , we consider the set of subgraphs

that can be obtained from T by removing some internal (G, T )-active edges and adding some

external (G, T )-active edges. Observe that this set is an interval in the boolean lattice of the

subgraphs of G (i.e. subsets of edges). We call tree-interval and denote by [T −, T+] the set of

subgraphs obtained from a spanning tree T . We represented the tree-intervals corresponding

to each of the 5 spanning trees of the embedded graph in Figure 122.
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h0 ?

?

? ?

?

? ?

?

Figure 122: The tree-intervals corresponding to each of the 5 spanning trees (first line). Active

edges are indicated by a ?.

We first give some properties of the subgraphs in the tree-interval [T −, T+].

Lemma 6.1 Let G be an embedded graph and let T be a spanning tree. Let e be an internal

(resp. external) (G, T )-active edge. The fundamental cocycle (resp. cycle) of e is contained

in S + e (resp. S + e) for any subgraph S in [T−, T+].

Proof: If e is internal and (G, T )-active, no edge in its fundamental cocycle D is (G, T )-active

(since their fundamental cycle contains e). Since no edge of D− e is in T nor is (G, T )-active,

none is in S. Hence, D ⊆ S+ e. Similarly, if e is external (G, T )-active, its fundamental cycle

is contained in S + e.
�

Lemma 6.2 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph

in [T−, T+] having c(S) connected components. Then c(S) − 1, (resp. e(S) + c(S) − |V |) is

the number of edges in S ∩ T (resp. S ∩ T ).

Proof: Consider any subgraph S in [T−, T+]. By Lemma 6.1, removing an internal (G, T )-

active edge from S increases c(S) by one and leaves e(S)+ c(S) unchanged. Similarly, adding

an external (G, T )-active edge to S leaves c(S) unchanged and increases e(S) + c(S) by one.

Moreover, c(T ) − 1 = 0 and e(T ) + c(T ) − |V | = 0. Therefore, Lemma 6.2 holds for every

subgraph S in [T−, T+] by induction on the number of edges in S M T .
�

By Lemma 6.2, the connected subgraphs in [T−, T+] are the subgraphs in [T, T+]

(the subgraphs obtained from T by adding some external (G, T )-active edges). Simi-

larly, the forests in [T−, T+] are the subgraphs in [T−, T ] (the subgraphs obtained from T



170 Chapter 6. A bijection between subgraphs and orientations

by removing some internal (G, T )-active edges). These properties are illustrated in Figure 123.

T+

T

co
n
n
ec

te
d

fo
re

st

T−

Figure 123: The tree-interval [T−, T+], the sub-interval [T, T+] of connected subgraphs and

the sub-interval [T−, T ] of forests.

We are now ready to state and comment on the main result of this section.

Theorem 6.3 Let G = (V,E) be a graph and let G be an embedding of G. The tree-intervals

form a partition of the set of subgraphs of G:

2E =
⊎

T spanning tree

[T−, T+],

where the disjoint union is over all spanning trees of G.

The counterpart of this theorem is known for the notion of ordering-activity introduced

by Tutte in [Tutt 54] as well as for the notion of external DFS-activities introduced by Ges-

sel and Wang in [Gess 79] (these two notions were recalled in Section 5.3 of Chapter 5).

This property has been used extensively to extract informations about the Tutte polynomial

[Bari 79, Crap 69, Gess 95, Gess 96, Gess 79, Gord 90]. Theorem 6.3 constitutes the key

link between the subgraph expansions (79) and spanning tree expansions (84) of the Tutte

polynomial. Indeed, given Lemma 6.2, we get

∑

S∈[T−,T+]

(x− 1)c(S)−1(y − 1)e(S)+c(S)−|V | = (x− 1 + 1)I(T )(y − 1 + 1)E(T ) = xI(T )yE(T ),

where I(T ) (resp. E(T )) is the number of internal (resp. external) (G, T )-active edges.

Summing over all spanning trees gives the identity:

∑

S subgraph

(x− 1)c(S)−1(y − 1)e(S)+c(S)−|V | =
∑

T spanning tree

xI(T )yE(T ).
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Remark. As observed in [Gord 90], the partition of the set of subgraphs gives several other

expansions of the Tutte polynomial. For instance, the tree-intervals can be partitioned into

forest-intervals. The forest-interval of a forest F in [T −, T+] is the set [F, F+] of subgraphs

obtained from F by adding some external (G, T )-active edges. Since

[T−, T+] =
⊎

F forest in [T−,T+]

[F, F+],

the partition into tree-intervals given by Theorem 6.3 leads to a partition into forest-intervals:

2E =
⊎

F forest

[F, F+].

Given Lemma 6.2, we get

∑

S∈[F,F+]

(x− 1)c(S)−1(y − 1)e(S)+c(S)−|V | = (x− 1)c(F )−1(y − 1 + 1)E(T ) = (x− 1)c(F )−1yE(T ),

for any forest in [T−, T+]. Summing up over forests, gives the forest expansion

TG(x, y) =
∑

F forest

(x− 1)c(F )−1yE(F ),

where E(F ) is the number of (G, T )-active edges for the spanning tree T such that

F ∈ [T−, T+]. Observe the similarity with the characterization (87) of the Tutte polynomial

based on DFS-activities.

In order to prove Theorem 6.3 we define a mapping ∆ from subgraphs to spanning trees.

Definition 6.4 Let G be an embedded graph rooted on h0 and let S be a subgraph. The

spanning tree T = ∆(S) is defined by the following procedure:

Initialization: Initialize the current half-edge h to be the root h0. Initialize the tree T and

the set of visited edges F to be empty.

Core: Do:

C1: If the edge e containing h is not in F , then decide whether to add e to T according to

the following rule:

If (e is in S and is in no cycle C ⊆ S ∩ F ) or

(e is not in S and is in a cocycle D ⊆ S ∩ F ),

Then add e to T .

Endif.

Endif.

Add e to F .

C2: Move to the next half-edge around T :

If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until the current half-edge h is h0.

End: Return the tree T .
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An execution of the procedure ∆ is illustrated in Figure 124.

∆

h0

Figure 124: The mapping ∆ and some intermediate steps. The dashed lines correspond to

the set F of unvisited edges.

There is a direct proof that the mapping ∆ is well defined on every subgraph (that is,

the procedure terminates and returns a spanning tree). But we shall only prove an (a priory

weaker) result: the mapping ∆ is well defined on every tree-interval and ∆(S) = T for any

subgraph S in [T−, T+] (Proposition 6.5). This will prove that the tree-intervals are disjoint.

Moreover, the cardinality of the tree-interval [T −, T+] is 2I(T )+E(T ), where I(T ) and E(T ) are

the number of internal and external (G, T )-active edges. Therefore, the number of subgraphs

contained in some tree-intervals is
∣

∣

∣

∣

∣

∣

⋃

T spanning tree

[T−, T+]

∣

∣

∣

∣

∣

∣

=
∑

T spanning tree

∣

∣[T−, T+]
∣

∣ =
∑

T spanning tree

2I(T )+E(T ).

By Theorem 5.5, this sum is the specialization TG(2, 2) of the Tutte polynomial counting the

subgraphs of G (as is clear from (79)). This counting argument proves that every subgraph

belongs to a tree-interval. Thus, we only need to prove the following proposition.

Proposition 6.5 Let G be an embedded graph. Let T be a spanning tree and let S be a

subgraph in the tree-interval [T−, T+]. The procedure ∆ is well defined on S and returns the

tree T .

Before proving Proposition 6.5, we need to recall a classical result of graph theory.

Lemma 6.6 (Elimination) The symmetric difference of two cycles (resp. cocycles) C and

C ′ is a union of cycles (resp. cocycles).

Lemma 6.6 is illustrated by Figure 125.

We now characterize the edges in the symmetric difference S M T .
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Figure 125: Two cycles (resp. cocycles) C and C ′ (thin and thick lines) and their intersection

(dashed lines).

Lemma 6.7 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph

in the tree-interval [T−, T+].

(i) An edge e is in S ∩ T if and only if e is minimal (for the (G, T )-order) in a cycle C ⊆ S.

(ii) An edge e is in S∩T if and only if e is minimal (for the (G, T )-order) in a cocycle D ⊆ S.

Proof: We give the proof of (i); the proof of (ii) is similar.

• Suppose e is in S ∩T . Then e is (G, T )-active, that is, e is minimal in its fundamental cycle

C. Moreover, by Lemma 6.1, C is contained in S.

• Suppose e is minimal in a cycle C ⊆ S. We want to prove that e is in T . Suppose the

contrary. Then, there is an edge e′ 6= e in C ∩ T (since T has no cycle). Take the least edge

e′ in C ∩ T and consider its fundamental cycle C ′. The edge e′ is (G, T )-active, that is, e′ is

minimal in C ′. In particular, e is not in C ′. This situation is represented in Figure 126. Since

e is in C M C ′ and e′ is not, there is a cycle C1 ⊆ C M C ′ containing e and not e′ (Lemma 6.6).

By Lemma 6.1, the fundamental cycle C ′ of e′ is contained is S + e′, thus C1 ⊆ C M C ′ ⊆ S.

Note that e is minimal in the cycle C1 ⊆ S (since e is minimal in C and e′ > e is minimal in

C ′). Moreover, the least edge in C1 ∩T (this edge exists since T has no cycle) is in C ∩T − e′

(since C ′ ⊆ T + e′), hence is greater than e′. We can repeat this operation again in order to

produce an infinite sequence C0 = C,C1, C2, . . . of cycles with e minimal in Ci and Ci ⊆ S for

all i ≥ 0. But the minimal element of Ci ∩ T is strictly increasing with i. This is impossible.

�

Proof of Proposition 6.5. We consider a subgraph S in the tree-interval [T −
0 , T

+
0 ]. We

denote by H the set of half-edges. We denote by t the motion function associated with

spanning tree T0 and we denote by hi = ti(h0) the ith half-edge for the (G, T0)-order. For any

half-edge h, we denote Fh = {e = {h1, h2}/min(h1, h2) < h} and Th = T0 ∩ Fh.

We adopt the notations h, e, F and T of the procedure ∆ (for instance, h denotes the current

half-edge) and we compare half-edges according to the (G, T0)-order. We want to prove that,

for all i ≤ |H|, at the beginning of the ith core step, h = hi, F = Fh and T = Th. We

proceed by induction on i. The property holds for the first core step (i = 0) since h = h0 and
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C1

C

e′

e

Figure 126: The cycle C (circle), some edges in the tree T (indicated by thick lines) and the

edges e and e′.

Fh0
= Th0

= ∅. Consider now the ith core step. Suppose first that the edge e containing the

current half-edge h is not in F . By the induction hypothesis, F = Fh thus e is greater than

any edge in F and less than any edge in F − e. By Lemma 6.7, if e is in S, then it is in T0

if and only if it is in a cycle C ⊆ S ∩ F . Also, if e is in S, then it is in T0 if and only if it is

in a cocycle D ⊆ S ∩ F . Therefore, the edge e is added to T at the step C1 if and only if it

is in T0. Suppose now that the edge e is already in F at the beginning of the ith core step.

Then, by the induction hypothesis, e is in T = Th = T0 ∩ Fh = T0 ∩ F if and only if it is in

T0. Whether the edge e is in F or not at the beginning of the step C1, the edge e is in T at

the beginning of the step C2 if and only if it is in T0. Therefore, the current half-edge at the

beginning of the (i+1)th core step, is t(h) = hi+1. Thus, the property holds for all i ≤ |H| by

induction. In particular, the procedure ∆ stops after |H| core steps and returns the spanning

tree T = Th|H|−1
= T0.

�

This concludes the proof of Theorem 6.3.
�

6.3 A bijection between subgraphs and orientations

In this section we define a bijection Φ between subgraphs and orientations. This task might not

seem very challenging but we will prove in the next section that Φ has numerous interesting

specializations. The bijection Φ is an extension of the correspondence T 7→ OT between

spanning trees and orientations defined in Chapter 5 (Section 5.5). For instance, the image

by Φ of the spanning tree T and the image of a subgraph S in [T −, T+] are shown in Figure

127.

Definition 6.8 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph

in the tree-interval [T−, T+]. The orientation OS = Φ(S) is defined as follows. For any edge

e = {h1, h2} with h1 < h2 (for the (G, T )-order), the arc OS(e) is (h1, h2) if and only if -
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either e is in T and its fundamental cocycle contains no edge in the symmetric difference

S M T - or if e is not in T and its fundamental cycle contains some edges in S M T ; the arc

OS(e) is (h2, h1) otherwise.

Recall that a subgraph S is in the tree-interval [T −, T+] if and only if every edge in the

symmetric difference S M T is (G, T )-active. Let S be a subgraph in [T −, T+] and let e be

any edge of G. We say that the arc OS(e) is reverse if OS(e) 6= OT (e). Observe that the

arc OS(e) is reverse if and only if the fundamental cycle or cocycle of e (with respect to the

spanning tree T ) contains an edge of S M T (compare for instance the orientations OS and

OT in Figure 127). In particular, Definition 6.8 of the mapping Φ extends the definition (94)

given for spanning trees in in Chapter 5.

h0

?
?

?
?

h0

M

M

?

Figure 127: The orientations OT and OS associated with a spanning tree T and a subgraph

S in [T−, T+]. The edges in the symmetric difference S M T are indicated by a M.

The main result of this section is that the mapping Φ is a bijection between subgraphs

and orientations. For instance, we have represented in Figure 128 the image by Φ of the

subgraphs represented in Figure 122.

Theorem 6.9 Let G be an embedded graph. The mapping Φ establishes a bijection between

the subgraphs and the orientations of G.

Figure 128: The image by Φ of the subgraphs in Figure 122.
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In order to prove Theorem 6.9, we define a mapping Ψ from orientations to subgraphs.

We shall prove that Ψ is the inverse of Φ.

Definition 6.10 Let G be an embedded graph and let O be an orientation. We define the

subgraph S = Ψ(O) by the procedure described below. The procedure Ψ visits the half-edges in

sequential order. The set of visited edges is denoted by F . If C is a set of edges that intersects

the set F of visited edges, we denote by efirst(C) and hfirst(C) the first visited edge and half-

edge of C respectively (efirst(C) contains hfirst(C)). In this case, C is said to be tail-first if

hfirst(C) is a tail and head-first otherwise.

Initialization: Initialize the current half-edge h to be the root h0. Initialize the subgraph S,

the tree T and the set of visited edges F to be empty.

Core: Do:

C1: If the edge e containing h is not in F , then decide whether to add e to S and T :

• If h is a tail, then

(a) If e is in a directed cycle C ⊆ F , then add e to S but not to T .

(b) If e is in a head-first directed cocycle D * F such that for all directed cocycle D ′

with efirst(D
′) = efirst(D) either e ∈ D′ or (D M D′ * F and efirst(D M D′) ∈ D′), then

do not add e to S nor to T .

(c) Else, add e to S and to T .

• If h is a head, then

(a′) If e is in a directed cocycle D ⊆ F , then add e to T but not to S.

(b′) If e is in a tail-first directed cycle C * F such that for all directed cycle C ′ with

efirst(C
′) = efirst(C) either e ∈ C ′ or (C M C ′ * F and efirst(C M C ′) ∈ C ′), then add e

to S and to T .

(c′) Else, do not add e to S nor to T .

Add e to F .

C2: Move to the next half-edge around T :

If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until the current half-edge h is h0.

End: Return the subgraph S.

In the procedure Ψ the conditions (a) and (b) (resp. (a′) and (b′)) are incompatible.

Indeed the following lemma is a classical result of graph theory [Mint 66].

Lemma 6.11 [Mint 66] Every arc (of an oriented graph) is either in a directed cycle or a

directed cocycle but not both.

Proof: (Hint) is the origin of the arc reachable from its end?
�
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We are now going to prove that Φ and Ψ are inverse mappings.

Proposition 6.12 Let G be an embedded graph and let S be a subgraph. The mapping Ψ is

well defined on the orientation Φ(S) (the procedure terminates) and Ψ ◦ Φ(S) = S.

Proposition 6.12 implies that the mapping Φ is injective. Since there are as many

subgraphs and orientations (2|E|), it implies that Φ is bijective and that Ψ and Φ are reverse

mappings. The rest of this section is devoted to the proof of proposition 6.12. Observe that

Ψ is a variation on the procedure Construct-tree presented in Chapter 5 (Section 5.5). The

differences lie in the extra Conditions (a), (b), (a′), (b′) which are now needed in order to

cope with reverse edges. In Lemmas 6.13 to 6.17 we express some properties characterizing

reverse edges.

We first need some definitions. Let G be an embedded graph and O be an orientation.

Suppose that the edges and half-edges of G are linearly ordered. For any set of edges C,

we denote by emin(C) and hmin(C) the minimal edge and half-edge of C respectively. We

say that C is tail-min if hmin(C) is a tail and head-min otherwise. A directed cycle (resp.

cocycle) is tight if any directed cycle (resp. cocycle) C ′ 6= C with emin(C ′) = emin(C) satisfies

emin(C M C ′) ∈ C ′. For instance, if the edges of the graph in Figure 129 are ordered by

a < b < c < d < e < f < g, the directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight

whereas (a, h, g, d, c) is not.

bd

f h

e ac

g

Figure 129: The directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight whereas (a, h, g, d, c)

is not.

In Lemmas 6.13 to 6.17 we consider an embedded graph G, a spanning tree T and a

subgraph S in the tree-interval [T−, T+]. We consider the orientation OS = Φ(S) and

compare edges and half-edges according to the (G, T )-order.

Lemma 6.13 The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp. S ∩ T ) is

OS-directed and tail-min (resp. head-min).

Proof: If e is in S ∩ T (resp. S ∩ T ), then every edge e′ in its fundamental cycle (resp.

cocycle) C is reverse (OS(e′) 6= OT (e′)). By Lemma 5.12, the cycle (resp. cocycle) C is

OT -directed, hence it is OS-directed. Since e is (G, T )-active, the minimal edge emin(C) is e.
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Hence, hmin(C) is the least half-edge of e. By definition of OS , the least half-edge of OS(e) is

a tail (resp. head). Hence, C is tail-min (resp. head-min).
�

Lemma 6.14 Let e be a reverse edge (OS(e) 6= OT (e)). Then, e is in S if an only if it is in

a directed cycle (otherwise it is in a directed cocycle by Lemma 6.11).

Proof:

• Suppose that e is in S. We want to prove that e is in a directed cycle. If e is in S ∩ T , its

fundamental cycle is directed by Lemma 6.13. If e is in S ∩ T there is an edge e′ ∈ S ∩ T
in its fundamental cocycle (since e is reverse). Therefore, e is in the fundamental cycle of e ′

which is directed by Lemma 6.13.

• A similar argument proves that if e is in S, then it is in a directed cocycle. In this case, e

is not in a directed cycle by Lemma 6.11.
�

We now need to recall a classical result of graph theory (which is closely related to the

axioms of oriented matroid theory [Björ 93]).

Lemma 6.15 (Orthogonality) Let D be a cocycle and let V1 and V2 be the connected com-

ponents after deletion of D. If a directed cycle C contains an arc oriented from V1 to V2 then

it also contains an arc oriented from V2 to V1.

Lemma 6.15 is illustrated by Figure 130.

D C
V2

V1

Figure 130: A directed cycle crossing a cocycle.

Lemma 6.16 An edge e is in S ∩ T (resp. S ∩ T ) if and only if it is minimal in a tail-min

(resp. head-min) directed cycle (resp. cocycle).

Proof: We only prove that if an edge is minimal in a tail-min directed cycle then it is in

∈ S ∩ T . The reverse implication is given by Lemma 6.13. The proof of the dual equivalence

(e is minimal in a tail-min directed cycle if and only if e is in S ∩ T ) is similar.

Let e = {h1, h2} with h1 < h2 be a minimal edge in a tail-min directed cycle C. We want to

prove that e is in S ∩ T . Observe first that OS(e) = (h1, h2) (since hmin(C) = h1 and C is

tail-min). We now prove successively the following points.

- The edge e is not in S ∩ T . Otherwise, the edge e would be both in a directed cycle C and
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in a directed cocycle by Lemma 6.13.

- The edge e is not in S∩T . Suppose the contrary. Since e is in T , the arc OS(e) = (h1, h2) =

OT (e) is not reverse. Let D be the fundamental cocycle of e. Let v1 and v2 be the endpoints

of h1 and h2 respectively and let V2 be set of descendants of v2. Recall that v1 is the father

of v2 in T (Lemma 5.6) and that D is the cocycle defined by V2. Since the cycle C is directed

and the arc OS(e) in C ∩D is directed toward V2, there is an edge e′ in C ∩D with OS(e′)

directed away from V2 by Lemma 6.15. This situation is represented in Figure 131. Since e

is minimal in the cycle C, we have e < e′. Therefore, the arc OT (e′) is directed toward V2

by Lemma 5.7. Thus, e′ is reverse. The edge e′ is reverse and contained in a directed cycle,

therefore it is in S by Lemma 6.14. We have shown that e′ is in S ∩T . But this is impossible

since e < e′ is in the fundamental cycle of e′.

- The edge e is in S ∩ T . We know from the preceding points that e is in T . Hence,

OT (e) = (h2, h1) 6= OS(e). Thus, e is reverse in a directed cycle. Therefore, e is in S by

Lemma 6.14.
�

e

e′

v1

D
v2

C

Figure 131: The directed cycle C, the fundamental cocycle D and the edges e and e ′.

Lemma 6.17 The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp. S ∩ T ) is

tight.

Proof: We prove that the fundamental cycle of an edge in S ∩ T is tight. The proof of

the dual property (concerning edges in S ∩ T ) is similar. Let e∗ be in S ∩ T . Recall that

e∗ = emin(C). By Lemma 6.13, the fundamental cycle C of e∗ is directed. We want to prove

that C is tight. Suppose not and consider a directed cycle C ′ with emin(C
′) = emin(C) = e∗

and e = emin(C M C ′) ∈ C. The edge e is in the fundamental cycle C of e∗, hence e∗ is in

fundamental cocycle D of e. This situation is represented in Figure 132. Let v1 and v2 be

the endpoints of e with v1 father of v2 in T . Let V2 be the set of descendants of v2. Recall

that D is the cocycle defined by V2. The edge e is in the fundamental cycle of e∗ which is

(G, T ) active, hence e∗ < e. Therefore, the arc OT (e∗) is directed away from V2 by Lemma

5.7. Since e∗ is in S ∩ T , the arc OS(e∗) is reverse, hence is directed toward V2. Since the

cycle C ′ is directed and the arc O(e∗) in C ′ ∩D is directed toward V2, there is an arc OS(e′)

in C ′ ∩D oriented away from V2 by Lemma 6.15. Observe that e′ is not in the fundamental

cycle C since C ⊆ T + e∗ and D ⊆ T + e. Thus, e′ is in C M C ′ and e′ > e. Hence, by Lemma

5.7, the arc OT (e′) in the fundamental cocycle D of e is directed toward V2. Thus, the arc
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OS(e′) 6= OT (e′) is reverse. Since e′ is reverse and contained in a directed cycle, it is in S

by Lemma 6.14. We have shown that e′ is in S ∩ T . But this is impossible. Indeed e′ is not

(G, T )-active since its fundamental cycle contains e which is less than e′.
�

e′
e

C ′

CD v2

v1
e∗

Figure 132: The directed cycles C and C ′ and the cocycle D.

Proof of Proposition 6.12. We consider a subgraph S0 in the tree-interval [T−
0 , T

+
0 ] and the

orientation OS0
= Φ(S0). We want to prove that the procedure Ψ returns the subgraph S0.

We compare edges and half-edges according to the (G, T0)-order denoted by <: we say that

an edge or half-edge is greater or less than another. We also compare edges and half-edges

according to their order of visit during the algorithm: we say that an edge or half-edge is

before or after another. We denote by t the motion function associated with T0. We denote

by hi = ti(h0) the ith half-edge for the (G, T0)-order. Also, for every half-edge h, we denote

Fh = {e = {h1, h2} such that min(h1, h2) < h}, Th = T0 ∩ Fh and Sh = S0 ∩ Fh.

We want to prove that at the beginning of the ith core step, h = hi, F = Fh, T = Th, S = Sh,

where h is the current half-edge. We proceed by induction on the number of core steps.

The property holds for the first (i = 0) core step since h = h0 and Fh0
= Th0

= Sh0
= ∅.

Suppose the property holds for all i ≤ k. By the induction hypothesis, the (G, T0)-order and

the order of visit coincide on the edges and half-edges of F . In particular, if C is any set

not contained in F , then hmin(C) = hfirst(C) and emin(C) = efirst(C). Suppose the edge e

containing the current half-edge h is not in F = Fh. In this case, the current half-edge h

(resp. edge e) is less than any other half-edge (resp. edge) in F . We consider the different

cases (a), (b), (c), (a′), (b′), (c′). We will prove successively the following properties.

• Condition (a) is equivalent to e ∈ S0 ∩ T0.

- Suppose Condition (a) holds: h is a tail and e is in a directed cycle C ⊆ F . Since,

C ⊆ F , the current half-edge h is minimal in C. Since h is a tail, the directed cycle C

is tail-min. Thus, e is in S0 ∩ T0 by Lemma 6.16.

- Conversely, if e is in S0∩T0, then e is minimal in a tail-min directed cycle C by Lemma

6.16. Therefore, h is a tail and C ⊆ F .

• Condition (a′) is equivalent to e ∈ S0 ∩ T0.

The proof is the similar to the proof of the preceding point.
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• Condition (b) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

- Suppose Condition (b) holds: h is a tail and e is in a head-first directed cocycle

D * F such that for all directed cocycle D ′ with efirst(D
′) = efirst(D) either e ∈ D′

or D M D′ * F and efirst(D M D′) ∈ D′. Since the (G, T0)-order and the order of

visit coincide on F we have hmin(D) = hfirst(D). Since the cocycle D is head-first, it

is tail-min. The edge e∗ := emin(D) is minimal in a head-min directed cocycle, hence

e∗ is in S0 ∩ T0 by Lemma 6.16. Let D∗ be the fundamental cocycle of e∗. Recall that

emin(D
∗) = e∗ = emin(D) We want to prove that e is in D∗. Suppose e is not in D∗. By

Condition (b), we have D M D∗ * F and efirst(D M D∗) ∈ D∗. But this is impossible

since emin(D M D∗) = efirst(D M D∗) and D∗ is tight by Lemma 6.17. Thus, e is indeed

in the fundamental cocycle D∗ of e∗. Since e∗ is in S0 ∩ T0, the edge e is in T0 and also

in S0 by Lemma 6.1. Moreover the arc OS0
(e) is reverse.

- Conversely, suppose that e is in S0∩T0 and that the arc OS0
(e) is reverse. The current

half-edge h is the least half-edge of e. Since e is external, h is the head of the arc OT0
(e)

and the tail of the reverse arc OS0
(e). Since OS0

(e) is reverse, the external edge e is in the

fundamental cocycle D of an edge e∗ ∈ S0∩T0. The cocycle D is head-min, directed and

tight by Lemmas 6.13 and 6.17. Since e∗ = emin(D), the edge e∗ is less than e. Therefore

e∗ is before e and D * F . The cocycle D is head-first since hfirst(D) = hmin(D).

Consider any directed cocycle D′ such that efirst(D
′) = efirst(D) = e∗ and e /∈ D′. We

want to prove that D M D′ * F and efirst(D M D′) ∈ D′. Since D is tight, the edge

e′ = emin(D M D′) is in D′. Since e is in D M D′, the edge e′ is less than e, hence it is

in F . Therefore, D M D′ * F and efirst(D M D′) = emin(D M D′) = e′ is in D′.

• Condition (b′) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

The proof is the similar to the proof of the preceding point.

• Condition (c) is equivalent to e ∈ S0 ∩ T0 and is not reverse.

- Suppose Condition (c) holds. In this case, Conditions (a), (a′), (b), (b′) do not hold.

Hence (by the preceding points), the edge e is not in S0 M T0 and the arc OS0
(e) is not

reverse. Since OS0
(e) is not reverse and the half-edge h (which is the least half-edge of

e) is a tail, the edge e is in T0. Since e is not in S0 M T0, it is in S0.

- Conversely, suppose that e is in S0∩T0 and that OS0
(e) is not reverse. By the preceding

points, none of the conditions (a), (a′), (b), (b′) holds. Moreover, the half-edge h (which

is the least half-edge of e) is a tail.

• Condition (c′) is equivalent to e ∈ S0 ∩ T0 and is not reverse.

The proof is the similar to the proof of the preceding point.

By the preceding points, e is added to S (resp. T ) in the procedure Ψ if and only if e is in S0

(resp. T0). Hence, the next half-edge will be t(h) = σα(h) if h is in T0 and σ(h) otherwise.

Thus, all the properties are satisfied at the beginning of the (k + 1)th core step.
�
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This concludes the proof of Theorem 6.9. We have also proved the following property that

will be useful in the next chapter.

Lemma 6.18 During the execution of the procedure Ψ on an orientation O, the half-edges

are visited in (G, T )-order, where T is the spanning tree ∆ ◦ Ψ(O).

6.4 Concluding remarks

6.4.1 The planar case and duality

In this subsection we restrict our attention to planar graphs. Our goal is to highlight

some nice properties of our bijections with respect to duality. Therefore we will handle

simultaneously a planar embedding and its dual. In order to avoid confusion we shall indicate

the implicit embedding G for the tree-intervals and the mapping Φ by writing [T −, T+]G and

ΦG .

Let G = (V,E) be a planar graph. The graph G can be drawn properly on the

sphere, that is, in such a way the edges only intersect at their endpoints. If the graph

G is properly drawn on the sphere, the dual graph G∗ is obtained by putting a vertex in

each face of G and an edge across each edge of G. A drawing of a graph on the oriented

sphere defines an embedding G = (H,σ, α) where the permutation σ corresponds to the

counterclockwise order around each vertex. Proper drawings on the sphere correspond

to planar embedding, that is, embeddings having Euler characteristic 0, where the Euler

characteristic is the number of vertices (cycles of σ) plus the number of faces (cycles

of σα) minus the number of edges (cycles of α) minus 2. If G = (H,σ, α, h0) is a planar

embedding of G, then G∗ = (H,σα, α, h0) is a planar embedding of G∗ (observe that G∗∗ = G).

Consider a planar embedding G. Observe that the edges, subgraphs and orientations of G
can also be considered as edges, subgraphs and orientations of G∗. Given a subgraph S of G
we denote by S

∗
the co-subgraph, that is, the complement of S considered as a subgraph of

G∗. Given an orientation O of G we denote by O∗
the co-orientation, that is, the orientation

obtained from O by reversing all arcs considered as an orientation of G∗. Observe that for

any subgraph S and any orientation O, we have S
∗∗

= S and O∗∗
= O. From the Jordan

Lemma, a subgraph S is connected if and only if the co-subgraph S
∗

is acyclic. This implies

the well known property (see [Mull 67]) that a subgraph T is a spanning tree of G if and only

if the co-subgraph T
∗

is a spanning tree of G∗. It follows that the fundamental cycle (resp.

cocycle) of an internal (resp. external) edge e with respect to G and T is the fundamental

cocycle (resp. cycle) of e with respect to G∗ and T
∗
. Moreover, it follows directly from the

definitions that the motion function of the spanning tree T of G and the motion function of
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the spanning tree T
∗

of G∗ are equal. In particular, the (G, T )-order and the (G∗, T
∗
)-order

are the same. Hence, an edge is (G, T )-active if and only if it is (G∗, T
∗
)-active. Thus, the

mapping S 7→ S
∗

induces a bijection between the tree-intervals [T −, T+]G and [T
∗−
, T

∗+
]G∗ .

It follows directly from this property and the definitions that the mappings ΦG and ΦG∗ are

related by the relation

for any subgraph S of G, ΦG(S)
∗

= ΦG∗(S
∗
).

6.4.2 An alternative algorithmic description of the mappings Φ and Ψ in

the planar case.

In this subsection, we give an alternative algorithmic description of the bijections Φ and

Ψ between subgraphs and orientations in the case of planar embeddings. More precisely,

we give two algorithms ϕ and ψ performing the bijection Φ and Ψ respectively in a linear time.

During the algorithms ϕ and ψ it is necessary to keep track of the number of times each

half-edge has been visited. This is done by initializing a function f (an array) to be 0 on

every half-edge h and increment the value f(h) each time the half-edge h is visited.

Definition 6.19 Let G = (H,σ, α, h0) be an embedded graph. Given a subgraph S the

procedure ϕ returns the orientation O defined by the following procedure.

Initialization: Initialize the current half-edge h to be the root h0. Initialize the function f

to be 0 on every half-edge. Initialize the subgraph T to be S.

Core: Do:

C1: Let e be the edge containing the current half-edge h.

• Increment f(h).

• If f(h) = 1 and f(α(h)) = 0, then orient the edge e:

If e is in S, then set O(e) = (h, α(h)) else set O(e) = (α(h), h).

• If f(h) = 2 and f(α(h)) = 0 then

If e is in T then remove it from T else add it to T .

C2: Move to the next half-edge:

• If f(h) = 1 and e is in S M T then set h to be α(h).

• If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until h = h0 and f(h0) = 2.

End: Return the orientation O.

Definition 6.20 Let G = (H,σ, α, h0) be an embedded graph. Given an orientation O the

procedure ψ returns the subgraph S defined by the following procedure.

Initialization: Initialize the current half-edge h to be the root h0. Initialize the function f

to be 0 on every half-edge. Initialize the subgraphs S and T to be empty.
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Core: Do:

C1: Let e be the edge containing the current half-edge h.

• Increment f(h).

• If f(h) = 1 and f(α(h)) = 0, then

If h is a tail, then add it to S and T .

• If f(h) = 2 and f(α(h)) = 0 then

If e is in T then remove it from T else add it to T .

C2: Move to the next half-edge:

• If f(h) = 1 and e is in S M T then set h to be α(h).

• If e is in T , then set the current half-edge h to be σα(h), else set it to be σ(h).

Repeat until h = h0 and f(h0) = 2.

End: Return the subgraph S.

An execution of the procedure ϕ (resp. ψ) is represented in Figure 133 (resp. 134).

h0

ϕ

Figure 133: The mapping ϕ and some intermediate steps.

Theorem 6.21 Let G = (H,σ, α, h0) be an embedded graph and S be a subgraph. If G is

planar or S is a forest, then the procedure ϕ terminates and returns the orientation Φ(S). In

these cases, the number of core steps of the procedure ϕ is 2|H|, hence this procedure performs

in a time linear in the number of edges of G.

Theorem 6.22 Let G = (H,σ, α, h0) be an embedded graph and O be an orientation. If G is

planar or Ψ(O) is a forest, then the procedure ψ terminates and returns the subgraph Ψ(O). In
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h0

ψ

Figure 134: The mapping ψ and some intermediate steps.

these cases, the number of core steps of the procedure ψ is 2|H|, hence this procedure performs

in a time linear in the number of edges of G.

We do not give the proofs of Theorems 6.21 and 6.22.
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Chapter 7

Specializations of the bijection

between subgraphs and orientations

Abstract: We study several restrictions of the bijection Φ between subgraphs and

orientations. For instance, we prove that the restriction of Φ to connected subgraphs

induces a bijection between connected subgraphs and root-connected orientations. Since the

connected subgraphs are counted by the evaluation TG(1, 2) of the Tutte polynomial, we

obtain an interpretation of this evaluation in terms of orientations. We will, in fact, give

an interpretation for each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial

in terms of orientations. The strength of our approach is to derive all our results from the

same bijection Φ specialized in various ways. Some of the results are expressed in term

of outdegree sequences. For instance, we obtain a bijection between forests (counted by

TG(2, 1)) and outdegree sequences, and also a bijection between spanning trees (counted by

TG(1, 1)) and root-connected outdegree sequences.

Résumé : Nous étudions plusieurs restrictions de la bijection Φ entre les sous-graphes et les

orientations. Par exemple, nous montrons que la restriction de Φ aux sous-graphes connexes

induit une bijection entre les sous-graphes connexes et les orientations racine-accessibles.

Puisque les sous-graphes connexes sont comptés par l’évaluation TG(1, 2) du polynôme de

Tutte, nous obtenons une interprétation de cette évaluation en termes d’orientations. Nous

allons, en fait, donner une interprétation pour chacune des évaluations TG(i, j), 0 ≤ i, j ≤ 2

du polynôme de Tutte en termes d’orientations. La force de notre approche est de déduire

tous nos résultats d’une unique bijection que nous spécialisons de diverses manières. Certains

résultats sont exprimés en termes de suites de degrés. Par exemple, nous obtenons une

bijection entre les forets (comptées par TG(2, 1)) et les suites de degrés et aussi une bijection

entre les arbres couvrants (comptés par TG(1, 1)) et les suites de degrés racine-accessibles.

187
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7.1 Introduction

The Tutte polynomial of a connected graph G = (V,E) can be defined by its subgraph

expansion

TG(x, y) =
∑

S spanning subgraph

(x− 1)c(S)−1(y − 1)c(S)+|S|−|V |,

where the sum is over all subgraphs S (equivalently, subsets of edges), c(S) denotes

the number of connected components of S and |.| denotes cardinality. From this defini-

tion, it is easy to see that TG(1, 1) (resp. TG(2, 1), TG(1, 2)) counts the spanning trees

(resp. forests, connected subgraphs) of G. A somewhat less interesting specialization

is TG(2, 2) = 2|E| counting the subgraphs of G. Note that this is also the number of

orientations of G. As a matter of fact, all the specializations TG(i, j), 0 ≤ i, j ≤ 2

as well as some of their refinements have nice interpretations in terms of orientations

[Bryl 91, Gess 96, Gioa 06, Gree 83, Lass 01, Stan 73, Wind 66, Las 84b]. This makes it

appealing to look for bijections between subgraphs and orientations that would allow us to

prove these interpretations bijectively.

There is number of papers devoted to combinatorial proofs of the interpretations of the

Tutte polynomial [Gebh 00, Gess 96, Gioa 06, Gioa 05, Lass 01]. In this chapter, we give new

purely bijective proofs of the interpretations of TG(i, j), 0 ≤ i, j ≤ 2 in terms of orientations.

The strength of our approach is to derive all these interpretations from a single bijection Φ

(defined in Chapter 6) between subgraphs and orientations that we specialize in various ways.

For instance, we derive a bijection between connected subgraphs (counted by TG(1, 2)) and

root-connected orientations. We also derive a bijection between forests (counted by TG(2, 1))

and outdegree sequences (this answers a question of Stanley [Stan 80a]). In particular, we

derive a bijection between spanning trees (counted by TG(1, 1)) and root-connected outdegree

sequences. These sequences first enumerated in [Gioa 06] are in bijection with equivalence

classes of orientations up to cycle and cocycle flips.

The outline of this chapter is as follows. In Section 7.2, we define several classes of

subgraphs and prove that they are counted by evaluations of the Tutte polynomial. This

counting properties are easily proved thanks to the characterization of the Tutte polynomial

by embedding-activities established in Chapter 5. In Section 7.3, we study the restriction of Φ

to connected and to external subgraphs. In Section 7.4, we study the restriction of Φ to forest

and to internal subgraphs. The forest are seen to be in bijection with a class of orientation

called minimal. In Section 7.5, the minimal orientations are proved to be in bijection with

outdegree sequences. In Section 7.6, we summarize our results and explore some refinements.

We conclude in Section 7.7 by some remarks about the cycle/cocycle reversing systems and

some algorithmic applications.
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7.2 Enumerative results for several classes of subgraphs

In this section we define several classes of subgraphs and obtain counting results for these

classes by using the characterization (84) of the Tutte polynomial established in Chapter 5.

Let G be an embedded graph and let T be a spanning tree. Recall that the spanning

tree T of G is said to be internal (resp. external) if it has no external (resp. internal)

(G, T )-active edge. In Figure 122, the first and second spanning trees (from left to right)

are internal while the fourth and fifth are external. We say that a subgraph S in [T −, T+]

is internal or external if the spanning tree T is. The notion of internal subgraph is close to

Whitney’s notion of subgraphs without broken circuit [Whit 32b]. Observe that by Lemma

6.2 any internal subgraph is a forest and any external subgraph is connected (the converse

is, of course, false). In Figure 135 we represented the subgraphs of figure 122 in each of the

categories defined by the four criteria forest, internal, connected, external.

Proposition 7.1 Let G be an embedded graph. The number of subgraphs in each category

defined by the criteria forest, internal, connected, external is given by the following special-

ization of the Tutte polynomial:

General Connected External

General TG(2, 2) = 2|E| TG(1, 2) TG(0, 2)

Forest TG(2, 1) TG(1, 1) TG(0, 1)

Internal TG(2, 0) TG(1, 0) TG(0, 0) = 0

Proof: Let T be a spanning tree with I(T ) internal and E(T ) external (G, T )-active edges.

By Lemma 6.2, the connected subgraphs in [T−, T+] are obtained by adding some external

(G, T )-active edges to T . Hence, there are 1I(T )2E(T ) connected subgraphs in [T−, T+]. Thus,

given the partition of the set of subgraphs into tree-intervals given by Theorem 6.3, the graph

G has
∑

T spanning tree

1I(T )2E(T )

connected subgraphs. This sum is equal to TG(1, 2) by the characterization (84) of the Tutte

polynomial (that we established in Chapter 5). Observe that there are 0I(T )2E(T ) external

(connected) subgraphs in the interval [T−, T+]1. Hence there are TG(0, 2) external subgraphs

of G. Every other category admits a similar treatment.
�

We will now study the restriction of the bijection Φ to each category of subgraphs.

1Here, as everywhere in this chapter, the convention is that 00 = 1.
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ConnectedGeneral External

Root-connectedGeneral Strongly connected

In
te

rn
al

F
or

es
t

G
en

er
al

A
cy

cl
ic

G
en

er
al

M
in

im
al

Figure 135: Subgraphs in each category defined by the four criteria forest, internal, connected,

external and the corresponding orientations. The categories goes from the most general to

the most constrained from left to right and from up to down. The non-connected subgraphs

(resp. non-external connected subgraphs, external subgraphs) are in column 1 (resp. 2, 3).

The subgraphs that are not forests (resp. the forests that are not internal, the internal forests)

are in line 1 (resp. 2, 3).
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7.3 Connected subgraphs and external subgraphs

In this section we study the restriction of Φ to connected and to external subgraphs.

Proposition 7.2 Let G be an embedded graph and let v0 be the root-vertex. The orientation

OS is v0-connected if and only if the subgraph S is connected.

Lemma 7.3 Let G be an embedded graph and let T be a spanning tree. Let D be a cut and let

G0 be the connected component of G containing the root-vertex v0 after D is removed. Then,

the half-edge hmin(D) is incident to G0. Moreover, every half-edge not in G0 is greater than

or equal to hmin(D).

Proof: Let t be the motion function of T . If a half-edge h is incident to G0 and is not in D

then t(h) is incident to G0. Since the root h0 is incident to G0, the half-edge hmin(D) is also

incident to G0 and is less than any half-edge not in G0. �

Lemma 7.4 An orientation is v0-connected if and only if it has no head-min directed cocycle.

Proof:

• If there is a head-min directed cocycle, this cocycle is directed toward the component

containing v0 by Lemma 7.3. Therefore, the vertices in the other components are not reachable

from v0 and the orientation is not v0-connected.

• If the orientation is not v0-connected we consider the cut D defined by the set V0 of vertices

reachable from v0. The cut D is directed toward V0, hence is head-min by Lemma 7.3. Let

v1 be the endpoint of the edge e = emin(D) that is not in V0. Let V1 be the set of vertices in

the connected component containing v1 after the cut D is deleted. The set of edges D1 with

one endpoint in V0 and one endpoint in V1 is a cocycle contained in D. Since every edge in

D1 is directed away from V0 the cocycle D1 directed. Since hmin(D1) = hmin(D) is a head,

the cocycle D1 is head-min.
�

Proof of Proposition 7.2. Let S be a subgraph in [T −, T+]. The orientation OS is v0-

connected if and only if there is no head-min directed cocycle by Lemma 7.4. An edge is in

S∩T if and only if it is minimal in a head-min directed cocycle by Lemma 6.16. Thus, OS is

v0-connected if and only if S ∩T = ∅. And S ∩T = ∅ if and only if S is connected by Lemma

6.2.
�

We now study the restriction of the bijection Φ to external subgraphs.

Proposition 7.5 Let G be an embedded graph and let S be a subgraph. The orientation OS

is strongly connected if and only if S is external.
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Lemma 7.6 Let T be a spanning tree and let e be an edge of T . Let u and v be the endpoints

of e with the convention that u is the father of v. For any connected subgraph S in [T −, T+],

the vertex v is Os-reachable from its father u.

Proof: For any connected subgraph S in [T−, T+], the set S ∩ T is empty by Lemma 6.2. If

the fundamental cocycle of the edge e contains no edge of S ∩ T , then the arc OS(e) is not

reverse. In this case, the arc OS(e) = OT (e) is directed from u to v by Lemma 5.6. Suppose

now that the fundamental cocycle of e contains an edge e∗ of S ∩ T . In this case, e is in the

fundamental cycle C∗ of e∗ which is OS-directed by Lemma 6.13. Therefore, the vertex v is

Os-reachable from u (and vice-versa).
�

Lemma 7.7 Let G be an embedded graph. Let T be a spanning tree and let S be a connected

subgraph in [T−, T+]. An edge e is minimal in an OS-directed cocycle if and only if e is an

internal (G, T )-active edge.

Proof: Since the subgraph S is connected, the subset S ∩ T is empty by Lemma 6.2 and the

orientation OS is v0-connected by Lemma 7.2.

• Suppose that the edge e is an internal (G, T )-active edge. The edge e is minimal in its

fundamental cocycle D. We want to prove that D is OS-directed. Note first that e is not

in S M T (since e is in T and S ∩ T = ∅). No other edge of D is in S M T since none is

(G, T )-active. Hence, OS(e) = OT (e). Let e′ 6= e be an edge in the fundamental cocycle D of

e. The fundamental cycle of e′ does not contain any edge of S ∩ T since this edge is empty.

Hence, OS(e′) = OT (e′). Thus, the orientations OS and OT coincide on the cocycle D. By

Lemma 5.12, the cocycle D is OT -directed, hence it is OS-directed.

• Suppose that e = {h1, h2} with h1 < h2 is minimal in an OS-directed cocycle D. We want to

prove that e is an internal (G, T )-active edge. We prove successively the following properties:

- The half-edge h1 is a tail. Otherwise, the cocycle D is head-min. (This is impossible by

Lemma 7.4 since OS is is v0-connected.) - The edge e is in T . If e is not in T , then the arc

OS(e) = (h1, h2) is reverse. Thus, the fundamental cycle C of e contains an edge of S M T .

Since C ⊆ T + e and S ∩ T = ∅, the edge e is in S ∩ T . Thus, the cycle C is OS-directed

by Lemma 6.13. This is impossible since e cannot be both is a directed cycle and a directed

cocycle.

- The edge e is (G, T )-active. Since the edge e is in T , the arc OS(e) = (h1, h2) = OT (e) is not

reverse. Let v1 and v2 be the endpoints of h1 and h2 respectively. Let G2 be the connected

component of G containing v2 once the cocycle D is removed. The arc OS(e) is directed

toward v2, thus the cocycle D is directed toward G2. By Lemma 7.6, all the descendants of v2

are reachable from v2, hence they are all in G2. Let e′ be an edge in the fundamental cocycle

D′ of e. Since one of the endpoints of e′ is a descendant of v2, the edge e′ is either in D or in

G2. Since the minimal half-edge h1 of D is not incident to G2, every edge in D ∪G2 is greater
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than or equal to e by Lemma 7.3. Thus, e′ is greater than e. The edge e is minimal in its

fundamental cocycle D, that is, e is (G, T )-active.
�

Proof of Proposition 7.5. Let S be a subgraph in [T −, T+].

• Suppose that the subgraph S is external. The subgraph S is connected and there is no (G, T )-

active edge, hence there is no OS-directed cocycle by Lemma 7.7. Thus, the orientation OS

is strongly connected.

• Suppose that the orientation OS is strongly connected. The subgraph S is connected (since

OS is v0-connected) and there is no OS-directed cocycle, hence there is no (G, T )-active edge

by Lemma 7.7. Thus, the subgraph S is external.
�

7.4 Forests and internal forests

In this section we study the restriction of the bijection Φ to forests and to internal subgraphs.

Let G be an embedded graph and let O be an orientation. We compare half-edges according

to the (G, T )-order, where T = ∆ ◦ Ψ(O). We say that the orientation O is minimal if there

is no tail-min O-directed cycle. We shall see (Lemma 7.11) that for any out degree sequence

δ there is a unique minimal δ-orientation.

Proposition 7.8 The orientation OS is minimal if and only if the subgraph S is a forest.

Proof: Let T = ∆(S). By Lemma 6.16, an edge is in S ∩ T if and only if it is minimal in a

tail-min directed cycle. Thus, the orientation OS is minimal if and only if S ∩ T = ∅. And

S ∩ T = ∅ if and only if S is a forest by Lemma 6.2.
�

Proposition 7.9 The orientation OS is acyclic if and only if the subgraph S is internal.

In order to prove Proposition 7.9 we need to define a linear order, the postfix order, on the

vertex set. For any vertex v 6= v0 we denote by hv the half-edge incident to v and contained

in the edge linking v to its father in T . The postfix order, denoted by <post, is defined by

v <post v0 for v 6= v0 and v <post v
′ if hv < hv′ for v, v′ 6= v0. The postfix order is illustrated

in Figure 136.

Lemma 7.10 Let T be a spanning tree and let e be an edge. The arc OT (e) is directed toward

its greatest endpoint (for the postfix order) if and only if the edge e is external (G, T )-active.

Lemma 7.10 is illustrated by Figure 136.



194 Chapter 7. Specializations

Proof: Recall from Lemma 5.7 that a half-edge h is incident to a descendant of v if and only

if h′v < h ≤ hv , where h′v = α(hv) is the other half of the edge containing hv.

• Consider an internal edge e. Let u and v be the endpoints of e with u father of v. By Lemma

5.6, the arc OT (e) is directed toward v. We want to prove that v <post u. If u = v0, the

inequality holds. Else, the half-edges hu and hv exist. Moreover, the half-edge hv is incident

to a descendant of u, hence hv < hu and v <post u.

• Consider an external edge e. We write e = {h1, h2} with h1 < h2 and denote by u and v

the endpoints of h1 and h2 respectively. By definition, the arc OT (e) is directed toward u.

We want to prove that v ≤post u if and only if e is (G, T )-active.

- Suppose the edge e is (G, T )-active. Then, the vertex v is a descendant of u by Lemma 5.8.

The half-edge hv is incident to a descendant of u, hence hv ≤ hu and v ≤post u.

- Suppose that v ≤post u. If u = v0, the vertex v is a descendant of u and the edge e is

(G, T )-active by Lemma 5.8. Else, the half-edges hu and hv exist and hv ≤ hu. In this case,

α(hu) < h1 < h2 < hv ≤ hu (indeed, h2 < hv since h2 is incident to v and α(hu) < h1 since h1

is incident to u), hence v is a descendant of u by Lemma 5.7. Thus, the edge e is (G, T )-active

by Lemma 5.8.
�
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Figure 136: A spanning tree T , the postfix order, the orientation OT and the external active

edges (indicated by a ?).

Proof of Proposition 7.9. Let S be a subgraph in the tree-interval [T −, T+]. We compare

half-edges according to the (G, T )-order.

• Suppose that the subgraph S is internal (i.e. the tree T is internal). Recall that S ∩ T = ∅.
We want to prove that the orientation OS is acyclic. Observe first that the orientation OT is

acyclic since the vertices are strictly decreasing (for the postfix order) along any OT -directed

path by Lemma 7.10. Suppose now that there is an OS-directed cycle C. The OS-directed

cycle C contains a reverse arc O(e) or C would be OT -directed. Since S ∩ T = ∅, the reverse

edges are in the fundamental cocycle of an edge of S∩T . Thus, the edge e is in the fundamental

cocycle D of an edge of S ∩ T . The cocycle D is directed by Lemma 6.13. This is impossible

since e cannot be both in a directed cycle and in a directed cocycle.

• Suppose that the orientation OS is acyclic. We want to prove that the subgraph S is internal
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(i.e. the tree T is internal). Suppose there is an external (G, T )-active edge e. Let C be the

fundamental cycle of e. Since OS is minimal, we know (by Proposition 7.8) that S ∩ T is

empty. Therefore, the reverse edges are in the fundamental cocycle of an edge of S∩T . Since

e is active, it is not in the fundamental cocycle of an edge of S ∩ T . Since the other edges

of C are not active (they are less than e) they are not in S ∩ T . Moreover, since they are

in T , they are not in the fundamental cocycle of an edge of S ∩ T . Thus, the orientations

OS and OT coincide on the cycle C. By Lemma 5.12, the cycle C is OT -directed, hence it is

OS-directed. This is impossible since OS is acyclic.
�

7.5 Minimal orientations and out-degree sequences

In the previous section we proved that the bijection Φ induces a bijection between forests and

minimal orientations (Proposition 7.8). We are now going to link minimal orientations and

out-degree sequences.

Proposition 7.11 Let G be an embedded graph. For any outdegree sequence δ there exists a

unique minimal δ-orientation.

The rest of this section is devoted to the proof of Proposition 7.11. We first recall the

link between outdegree sequences and the cycle-flips.

Consider an orientation O and an O-directed cycle (resp. cocycle) C. Flipping the O-

directed cycle (resp. cocycle) C means reversing every arc in C. We shall talk about cycle-

flips and cocycle-flips. Observe that flipping a directed cycle does not change the outdegree

sequence. Therefore, any orientation O ′ obtained from O by a sequence of cycle-flips has the

same outdegree sequence as O. It was proved in [Fels 04] that the converse is also true.

Lemma 7.12 [Fels 04] Two orientations O and O ′ have the same outdegree sequence if and

only if they can be obtained from one another by a sequence of cycle-flips. Moreover, the

flipped cycles can be chosen to be contained in the set {e/O(e) 6= O ′(e)}.

Lemma 7.12 is a direct consequence of the following result proved in [Fels 04].

Lemma 7.13 [Fels 04] Let G be a graph and let O and O ′ be two orientations having the

same outdegree sequence. For any edge e in the set K = {e′/O(e) 6= O′(e)}, there is an

O-directed cycle C ⊆ K containing e.

Proof: (Hint) Start from the end v of O(e) and look for an edge e1 in K directed away from

v. This edge exists except if v is also the origin of e (since the number of edges directed away

from v is the same in O and O′). Repeat the process until arriving to the origin of e.
�
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Recall that any very arc of an oriented graph is either in a directed cycle or a directed

cocycle but not both (Lemma 6.11). We say that an arc a is cyclic or acyclic depending on

a being in a directed cycle or in a directed cocycle. We call cyclic part (resp. acyclic part)

of an orientation the set of cyclic (resp. acyclic) edges.

It is well known that the cyclic and acyclic parts are unchanged by a cycle-flip or a cocycle

flip [Fels 04, Gioa 06, Prop 93]. Indeed, it is easily seen that the cyclic part of an orientation

can only grow when a directed cocycle D is flipped (since no directed cycle intersects with

D). Since we return to the original orientation by flipping D twice, we conclude that the

cyclic and acyclic parts are unchanged by a cocycle-flip. Similarly, the cyclic and acyclic

parts are unchanged by a cycle-flip.

We will also need the following classical result (closely related to an axioms of oriented

matroids theory [Björ 93]).

Lemma 7.14 (Elimination) Let O be an orientation and let C and C ′ be two O-directed

cycles (resp. cocycles). Let O′ be the orientation obtained from O by flipping C ′. Then,

the symmetric difference of C and C ′ is a union of O′-directed cycles (resp. cocycles). In

particular, any edge in the O-directed cycle (resp. cocycle) C is in an O ′-directed cycle (resp.

cocycle) C ′′ ⊆ C ∪ C ′.

Lemma 7.14 is illustrated by Figure 137.

Figure 137: The O-directed cycles (resp. cocycles) C and C ′ (thin and thick lines) and their

intersection (dashed lines).

We are now ready to prove Proposition 7.11. A false proof of the uniqueness of the

minimal δ-orientation in this proposition is as follows. If there are two different δ-orientations

O and O′, then these orientations differ on a directed cycle C. Hence, the cycle C is

tail-min in either O or O′. A false proof of the existence (of a minimal δ-orientation)

is as follows. Take any δ-orientation and starts flipping cycles until no more tail-min

directed cycle remains. Of course, both the uniqueness and existence proofs are false in

this version since flipping a cycle changes the associated subgraph, hence the spanning tree
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and the order on the half-edges. However being a bit careful, one can make both proofs correct.

We consider the procedure Ψ on orientations (see Definition 6.10). For an orientation O
we denote by Ψ[O] the execution of Ψ on O. Recall (from Lemma 6.18) that the half-edges

are visited in (G, T )-order during Ψ[O], where T is the spanning tree ∆ ◦ Ψ(O). Therefore,

the orientation O is minimal if and only if Condition (a) never holds during the execution

Ψ[O].

Lemma 7.15 Let O be an orientation. Consider the current half-edge h, the edge e and the

sets F , S and T at the beginning of a given core step of the execution Ψ[O]. Let Cf ⊆ F + e

be an O-directed cycle and let O′ be the orientation obtained from O by flipping Cf . We

want to prove that Condition (a) (resp. (b), (c), (a′), (b′), (c′)) holds for the orientation O if

and only if it holds for the orientation O ′. (Let us insist that when evaluating the Conditions

(a), · · · , (c′) for the orientation O′, the symbols F , S, T , hfirst and efirst continue to refer to

the execution of Ψ[O].)

Proof: Note first that the orientations O and O ′ coincide on the current half-edge h since

e /∈ Cf . We now study separately the different conditions.

• Recall that O and O′ coincide on their acyclic part: the directed cocycles of O and O ′ are

the same. Therefore, Condition (b) (resp. (a′)) holds for O if and only if it holds for O ′.

• Suppose now that Condition (a) holds for O: the current half-edge h is a tail and the edge

e is in an O-directed cycle C ⊆ F . By Lemma 7.14, the edge e is also in an O ′-directed

cycle C ′ ⊆ C ∪ Cf ⊆ F . Thus, Condition (a) holds for O′. The same argument proves that

if Condition (a) holds for O′, then it holds for O (O is obtained from O ′ by flipping the

O′-directed cycle Cf ).

• Suppose now that Condition (b′) holds for O: the current half-edge h is a head and the

edge e is in a tail-first O-directed cycle C * F such that for all O-directed cycle C ′ with

efirst(C
′) = efirst(C) either e ∈ C ′ or (C M C ′ * F and efirst(C M C ′) ∈ C ′). By Lemma 7.14,

the edge e∗ = efirst(C) is in an O′-directed cycle C1 ⊆ C ∪ Cf . Note that efirst(C1) = e∗. We

want to prove that Condition (b′) holds for O′ by considering the O′-directed cycle C1. We

prove successively the following properties.

• The edge e is in C1.

The edge e∗ is in the O′-directed cycle C1 and not in Cf . By Lemma 7.14, there is an

O-directed cycle C2 ⊆ C1 ∪ Cf containing e∗ (since O is obtained from O′ by flipping

Cf ). Note that efirst(C2) = e∗. Suppose that e is not in C2. By Condition (b′) on C,

we have C M C2 * F and efirst(C M C2) ∈ C2. This is impossible since C ∩ C2 ⊆ Cf

(since C2 ⊆ C1 ∪ Cf ⊆ C ∪ Cf ) and the edge e in C ∩ C2 is visited before any edge in

Cf . Thus e ∈ C2. Since e ∈ C2 ⊆ C1 ∪Cf and e is not in Cf , it is in C1.
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• For all O′-directed cycle C ′
1 with efirst(C

′
1) = efirst(C1) either e ∈ C ′

1 or (C1 M C ′
1 * F

and efirst(C1 M C ′
1) ∈ C ′

1). (This proves that Condition (b′) is satisfied for O′).

Let C ′
1 be an O′-directed cycle not containing e and such that efirst(C

′
1) = efirst(C1) = e∗.

We want to prove that C1 M C ′
1 ⊆ F and efirst(C1 M C ′

1) ∈ C ′
1. The edge e∗ is in the

O′-directed cycle C ′
1 but not in Cf . By Lemma 7.14, there exists an O-directed cycle

C ′ ⊆ C ′
1 ∪ Cf containing e∗. Note that efirst(C

′) = e∗ and that e /∈ C ′ (since e is not

in Cf nor in C ′
1 by hypothesis). By Condition (b′) on C, we have C M C ′ * F and

eM = efirst(C M C ′) ∈ C ′. We now prove the following properties.

- The edge eM is in C1 ∩ C ′
1.

The edge eM is in C ′
1 since eM /∈ Cf and eM ∈ C ′ ⊆ C ′

1 ∪ Cf . Moreover, eM is not in C1

since eM /∈ C, eM /∈ Cf and C1 ⊆ C ∪ Cf . Thus, eM is in C1 ∩ C ′
1.

- Any edge in C1 ∩ C ′
1 is visited after eM during the execution Ψ[O].

Let e′ be an edge in C1 ∩ C ′
1. If e′ is in Cf , it is visited after eM. Else, e′ is in C since

e′ ∈ C1, e
′ /∈ Cf and C1 ⊆ C ∪ Cf . Moreover, e′ is not in C ′ since e′ /∈ C ′

1, e
′ /∈ Cf and

C ′ ⊆ C1 ∪ Cf . Since e′ ∈ C M C ′, the edge e′ is visited after eM = efirst(C M C ′) during

the execution Ψ[O].

Since eM is in C1∩C ′
1 and any edge in C1∩C ′

1 is visited after eM, the edge efirst(C1 M C ′
1)

is in C ′
1. Thus, Condition (b′) holds for O′.

We have proved that if Condition (b′) holds for O, then it holds for O′. The same argument

proves that if Condition (b′) holds for O′, then it holds for O.

• Condition (c) holds for O if h is a tail and Conditions (a) and (b) do not hold for O By

the preceding points this is true if and only if h is a tail and Conditions (a) and (b) do not

hold for O′. Therefore, Condition (c) holds for O if and only if it holds for O ′. Similarly,

Condition (c′) holds for O if and only if it holds for O ′.
�

Lemma 7.16 Consider two orientations O and O ′ having the same outdegree sequence. We

consider the executions Ψ[O] and Ψ[O ′]. For all 0 ≤ i < |H|, we denote by hi, Fi, Ti and

Si the current half-edge and the sets F , T and S at the beginning of the ith core step of the

execution Ψ[O] (see Definition 6.10). We define h′i, F
′
i , T

′
i and S′

i similarly for the orientation

O′. We want to prove that if the orientations O and O ′ coincide on hi for all i < k (that is,

O(ei) = O′(ei) where ei is the edge containing hi), then the k first core steps of the executions

Ψ[O] and Ψ[O′] are the same. In particular, hi = h′i, Fi = F ′
i , Si = S′

i, and Ti = T ′
i for all

i ≤ k.

Proof: We proceed by induction on k. Recall from Lemma 7.12 that the orientation O ′ can

be obtained from O by a sequence of cycle-flips such that the flipped cycles are contained

in the set K = {e/O(e) 6= O′(e)}. For k = 0 the property obviously holds. Now suppose

that the property holds for k and suppose that O and O ′ coincide on hi, i < k + 1. By the
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induction hypothesis the current half-edge hk = h′k and the sets F = Fk = F ′
k, S = Sk = S′

k,

and T = Tk = T ′
k are the same at the beginning of the (k + 1)th core step of the procedures

Ψ[O] and Ψ[O′]. Moreover, the set K = {e′/O(e′) 6= O′(e′)} of reverse edges is contained in

F + e. Since O′ is obtained from O by a sequence of flips of cycles contained in F + e, we

know by induction on Lemma 7.15 that Condition (a) (resp. (b), (c), (a′), (b′), (c′)) holds for

the orientation O if and only if it holds for the orientation O ′. Therefore, the (k + 1)th core

step is the same for the two executions Ψ[O] and Ψ[O ′]. In particular, the sets F , S, and T

are modified in the same way in both executions and hk+1 = h′k+1. Thus, the property holds

by induction.
�

Proof of Proposition 7.11. Recall that an orientation O is minimal if and only if Condition

(a) never holds during the execution Ψ[O]. Thus, we need to prove that for any outdegree

sequence δ there exists a unique δ-orientation O such that Condition (a) never holds during

the execution Ψ[O].

• Uniqueness: Let O and O′ be two (distinct) orientations having the same outdegree

sequence. We take the same notations hi, Fi, Ti, Si, h
′
i, F

′
i , T

′
i , S

′
i as in Lemma 7.16. Let k

be the first index such that O and O′ differ on hk. By Lemma 7.16, we have hk = h′k and

Fk = F ′
k, Tk = T ′

k, Sk = S′
k. We can suppose without loss of generality that hk is a tail in O

and a head in O′. We now prove that Condition (a) holds for O. By hypothesis, the edge e

containing h is such that O(e) 6= O′(e). Hence, by Lemma 7.13, the edge e is contained in an

O-directed cycle C ⊆ K = {e/O(e) 6= O′(e)}. Since O and O′ coincide on hi for i < k, the

set K is contained in Fi. Since C ⊆ Fi is O-directed, Condition (a) holds for O.

• Existence: Let δ be an outdegree sequence. We want to find a δ-orientation O such that

Condition (a) never holds during the execution Ψ[O]. Let O0 be any δ-orientation. We are

going to define a set of δ-orientations O0,O1, . . . ,O|H| such that Condition (a) is not satisfied

during the i first core steps of the execution Ψ[Oi]. We prove that Ok exists by induction

on k. Suppose the δ-orientation Ok−1 exists. We consider the current half-edge h, the edge

e and the sets F , S and T at the beginning of the kth core step of Ψ[Ok−1]. If either e ∈ F

or Condition (a) does not hold, we define Ok = Ok−1. Else, the current half-edge hk is a

tail (for the orientation Ok−1) and there is an Ok-directed cycle C ⊆ F containing e. In this

case, we define Ok to be the orientation obtained from Ok−1 by flipping the cycle C. Observe

that Ok is a δ-orientation in which hk is a head. Moreover, since C ⊆ F the two orientations

Ok−1 and Ok coincide on the half-edges hi for i < k, where hi is the current half-edge at

the beginning of the ith core step of the execution Ψ[Ok−1]. Thus, by Lemma 7.16, the k

first core steps of the executions Ψ[Ok−1] and Ψ[Ok] are the same. Moreover, the current

half-edge h = hk at the beginning of the kth core step of Ψ[Ok] is a head (for the orientation

Ok). Hence, Condition (a) does not hold at this core step. Thus, Ok is a δ-orientation such

that Condition (a) does not hold during the kth first core steps of the execution Ψ[Ok]. The

orientations O0,O1, . . . ,O|H| exist by induction. In particular, the δ-orientation O|H| is such



200 Chapter 7. Specializations

that Condition (a) never holds during the execution Ψ[O|H|]. �

From Proposition 7.8 and 7.11 one obtains the following bijection between outdegree

sequences and forests. This answers a question raised by Stanley in [Stan 80a].

Proposition 7.17 Let G be an embedded graph. The mapping Γ which associates with any

subgraph S the outdegree sequence of the orientation OS establishes a bijection between the

forests and the outdegree sequences of G.

7.6 Summary of the specializations and further refinements

From Propositions 7.2, 7.5, 7.8 and 7.9 we can characterize the orientations associated with

each class of subgraphs defined by the criteria forest, internal, connected, external. Each class

of subgraphs is counted by a specialization of the Tutte polynomial given in Proposition 7.1.

Our results are summarized in the following theorem.

Theorem 7.18 Let G be an embedded graph and let v0 be the root-vertex.

1. The v0-connected orientations are in bijection with the connected subgraphs counted by

TG(1, 2).

2. The strongly connected orientations are in bijection with the external subgraphs counted

by TG(0, 2).

3. The outdegree sequences are in bijection with minimal orientations, which are in bijec-

tion with forests, counted by TG(2, 1).

4. The acyclic orientations are in bijection with internal forests counted by TG(2, 0).

5. The v0-connected outdegree sequences are in bijection with v0-connected minimal orien-

tations which are in bijection with spanning trees counted by TG(1, 1).

6. The strongly connected outdegree sequences are in bijection with strongly connected min-

imal orientations which are in bijection with external spanning trees counted by TG(0, 1).

7. The v0-connected acyclic orientations are in bijection with internal spanning trees

counted by TG(1, 0).

Theorem 7.18 is illustrated by Figure 135. The enumeration of acyclic orientations by

TG(2, 0) was first established by Winder in 1966 [Wind 66] and rediscovered by Stanley 1973

[Stan 73]. The result of Winder was stated as an enumeration formula for the number of

faces of hyperplanes arrangements and was independently extended to reel arrangements by

Zaslavsky [Zasl 75] and to orientable matroids by Las Vergnas [Las 75]. The enumeration of

v0-connected acyclic orientations by TG(1, 0) was found by Greene and Zaslavsky [Gree 83].



7.6. Summary of the specializations and further refinements 201

In [Gess 96], Gessel and Sagan gave a bijective proof of both results. In [Gebh 00], Gebhard

and Sagan gave three other proofs of Greene and Zaslavsky’s result. The enumeration

of strongly connected orientations by TG(0, 2) is a direct consequence of Las Vergnas’

characterization of the Tutte poynomial [Las 84b]. The enumeration of outdegree sequences

by TG(2, 1) was discovered by Stanley [Bryl 91, Stan 80a]. The enumeration of v0-connected

orientations by TG(1, 2), the enumeration of v0-connected outdegree sequences by TG(1, 1)

and the enumeration of strongly connected outdegree sequences by TG(0, 1) were proved by

Gioan [Gioa 06].

Refinements. It is possible to refine the results of Theorem 7.18. For instance, we have

proved that the acyclic orientations of a graph G are counted by TG(2, 0). This is the sum

of the coefficients of the polynomial TG(1 + x, 0) (which is closely related to the chromatic

polynomial of G). Let us generically denote by [xi]P (x) the coefficient of xi in a polynomial

P (x). The identities

∑

i∈N

[xi]TG(1 + x, 0) = TG(2, 0) = |{acyclic orientations}|,

and
∑

i∈N

[xi]TG(x, 0) = TG(1, 0) = |{v0-connected acyclic orientations}|,

make it appealing to look for a partition of the acyclic orientations (resp. root-connected

acyclic orientations) in parts of size [xi]TG(1 + x, 0), i ≥ 0 (resp. [xi]TG(x, 0)). Such

partitions were defined by Lass in [Lass 01] using set functions algebra. More generally,

one can try to interpret the coefficients of TG(x, 1), TG(1 + x, 1), TG(x, 2), TG(1 + x, 2)

etc. in terms of orientations in order to interpolate between the different specializations

TG(i, j), 0 ≤ i, j ≤ 2. Observe that the coefficients of each of these polynomials can be given

an interpretation in terms of subgraphs. For instance, [xi]TG(1 + x, 0) counts internal forests

with i+ 1 trees (by Theorem 6.3 and Lemma 6.2) and [xi]TG(x, 0) counts internal spanning

trees with i internal embedding-active edges (by Theorem 5.5).

We will give an interpretation of the coefficients [xi]TG(1+x, j) for i ≥ 0 and j = 0, 1, 2 in

terms of orientations. Let O be an orientation. We define the partition of the vertex set V into

root-components V =
⊎

0≤i≤k Vi as follows. The first root-component V0 is the set of vertices

reachable from the root-vertex v0. If Wk = ∪0≤i≤kVi ( V , we consider the minimal edge ek

with one vertex in Wk and one vertex vk in Wk (the edges are compared according to the

(G, T )-order, where T = ∆(Ψ(O))). Then, the (k + 1)th root-component is the set of vertices

in Wk that are reachable from vk. For instance, the root-components have been indicated for

the orientation in Figure 138 (left). It is clear that v0-connected orientations have only one

root-component. Given a v0-connected orientation O, we define the partition of the vertex set

V into root-strong-components V =
⊎

0≤i≤k Ui as follows. The first root-strong-component



202 Chapter 7. Specializations

U0 is the set of vertices that can reach the root-vertex v0. If Wk = ∪0≤i≤kUi ( V , we consider

the minimal edge ek with one vertex in Wk and one vertex vk in Wk. Then, the (k + 1)th

root-strong-component is the set of vertices in Wk that can reach vk. For instance, the root-

strong-components have been indicated for the v0-connected orientation in Figure 138 (right).

e2

U1

U0

V0

e1 e2

e3V3

h0 V1

V2 U2

h0

e1

Figure 138: Left: root-components of an orientation. Right: root-strong-components of a

v0-connected orientation. The thick edges correspond to the subgraph associated with the

orientation by the bijection Ψ.

Theorem 7.19 Let G be an embedded graph and let v0 be the root-vertex. The coefficient

[xi]TG(1 + x, 2) (resp. [xi]TG(1 + x, 1), [xi]TG(1 + x, 0)) counts orientations (resp. minimal

orientations, acyclic orientations) with i + 1 (non-empty) root-components. The coefficient

[xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts v0-connected orientations (resp. minimal

v0-connected orientations, acyclic v0-connected orientations) with i + 1 (non-empty) root-

strong-components.

As mentioned above, the coefficients [xi]TG(1 + x, 0) and [xi]TG(x, 0) had already been

interpreted by Lass in [Lass 01]. We now prove Theorem 7.19.

Lemma 7.20 Let G be an embedded graph and let O be an orientation. We consider the

spanning tree T = ∆(Ψ(O)) and compare the half-edges and edges according to the (G, T )-

order. Let V0, . . . , Vk be the root-components and let Wi = ∪0≤j≤iVj. Let Di for i = 1 . . . k be

the cut defined by Wi−1 and let ei be the minimal edge in Di. Then, an edge is minimal in a

head-min directed cocycle if and only if it is in the set {e1, . . . , ek}.

Proof:

• We first prove that for all 1 ≤ i ≤ k the edge ek is minimal in a head-min directed cocycle.

Clearly, every edge in the set Di is directed toward the vertices in Wi−1. Let vi be the

endpoint of ei = emin(D) which is not in Wi−1. Let Xi be the set of vertices contained in the

connected component containing vi once the cut D is removed. The set D of edges with one

endpoint in Wi−1 and one endpoint in Xi is a directed cocycle contained in Di. Thus, the



7.6. Summary of the specializations and further refinements 203

edge ei is minimal in the directed cocycle D directed toward Wi−1. Since the cocycle D is

directed toward the component containing the root-vertex, it is head-min by Lemma 7.3.

• Consider an edge e minimal in a head-min directed cocycle D. We want to prove that e is

in {e1, . . . , ek}. Let G0 and G1 be the connected components after the cocycle D is removed

with the convention that G0 contains the root-vertex v0. The directed cocycle D is head-min,

hence it is directed toward G0 by Lemma 7.3. Let i be the first index such that the root-

component Vi contains a vertex v of G1. The cocycle D is directed toward G0, hence no edge

of G1 is reachable from v0 and the index i is positive. Let ui and vi be the endpoints of ei

in Wi−1 and Wi−1 respectively. By definition, the endpoint ui is in G0. Moreover, the vertex

v ∈ G1 is reachable from vi, hence the endpoint vi is in G1. Thus, the edge ei is in D and

ei ≥ e = emin(D). We will now prove that ei ≤ e. The subset of vertices Wi−1 contains the

root-vertex and the subset of edges Di separate Wi−1 and Wi−1, hence every edge with one

endpoint in Wi−1 is greater than ei = emin(Di) by Lemma 7.3. The edge e has one endpoint

in G1 ⊆Wi−1, hence ei ≤ e. Thus, e = ei.
�

Here is a counterpart of Lemma 7.20 for root-strong-components.

Lemma 7.21 Let G be an embedded graph and let O be a v0-connected orientation. We

consider the spanning tree T = ∆(Ψ(O)) and compare the half-edges and edges according to

the (G, T )-order. Let U0, . . . , Uk be the root-strong-components and let Wi = ∪0≤j≤iUj. Let

Di for i = 1 . . . k be the cut defined by Wi−1 and let ei be the minimal edge in Di. Then, an

edge is minimal in a directed cocycle if and only if it is in the set {e1, . . . , ek}.

Proof: The proof of Lemma 7.21 very similar to the proof of Lemma 7.20 and is left to the

reader.
�

Proof of Theorem 7.19.

• We first prove that the coefficient [xi]TG(1 + x, 2) (resp. [xi]TG(1 + x, 1), [xi]TG(1 + x, 0))

counts orientations (resp. minimal orientations, acyclic orientations) with i + 1 root-

components. Let T be a spanning tree with I(T ) internal and E(T ) external (G, T )-active

edges. By Lemma 6.2, the coefficient [xi](1 + x)I(T )2E(T ) counts the subgraphs S in the tree-

interval [T−, T+] having i edges in S∩T . Given that the tree-intervals form a partition of the

set of subgraphs, the coefficient [xi]
∑

T spanning tree (1 + x)I(T )2E(T ) counts the subgraphs S

having i edges in S ∩ ∆(S). Moreover, by the characterization (84) of the Tutte polynomial,

the sum
∑

T (1+x)I(T )2E(T ) is equal to TG(1+x, 2). Similarly, the coefficient [xi]TG(1+x, 1)

(resp. [xi]TG(1+x, 0)) counts the forests (resp. internal forests) S having i edges in S∩∆(S).

By Theorem 7.18 and Lemma 6.16, the coefficient [xi]TG(1 + x, 2) (resp. [xi]TG(1 + x, 1),

[xi]TG(1 + x, 0)) counts the orientations (resp. minimal orientations, acyclic orientations)

having exactly i edges which are minimal in some head-min directed cocycle. Moreover, by
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Lemma 7.20, an orientation has i edges which are minimal in some head-min directed cocycle

if and only if it has i+ 1 root-components.

• We now prove that the coefficient [xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts v0-

connected orientations (resp. minimal v0-connected orientations, acyclic v0-connected ori-

entations) with i + 1 root-strong-components. Let T be a spanning tree with I(T ) internal

(G, T )-active edges and E(T ) external (G, T )-active edges. By Lemma 6.2, the coefficient

[xi]xI(T )2E(T ) is the number of connected subgraphs in the tree-interval [T −, T+] if I(T ) = i

and 0 otherwise. Given that the tree-intervals form a partition of the set of subgraphs,

the coefficient [xi]
∑

T spanning tree x
I(T )2E(T ) counts the connected subgraphs S such that the

tree T = ∆(S) has i internal (G, T )-active edges. Moreover, by the characterization (84) of

the Tutte polynomial, the sum
∑

T x
I(T )2E(T ) is equal to TG(x, 2). Similarly, the coefficient

[xi]TG(x, 1) (resp. [xi]TG(x, 0)) counts the spanning trees (resp. internal spanning trees)

T having i internal (G, T )-active edges. By Theorem 7.18 and Lemma 7.7, the coefficient

[xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts the v0-connected orientations (resp. min-

imal v0-connected orientations, acyclic v0-connected orientations) having exactly i edges which

are minimal in some directed cocycle. Moreover, by Lemma 7.20, an orientation has i edges

which are minimal in some directed cocycle if and only if it has i+1 root-strong-components.

�

One specialization of this result is of special interest: the coefficient [x1]TG(x, 0) counts

bipolar orientations. Given two vertices u and v, a (u, v)-bipolar orientation is an acyclic

orientation such that u is the unique source and v is the unique sink. The bipolar orientations

are of crucial importance for many graph algorithms [Mend 94]. Moreover, a bijection be-

tween spanning trees of ordering-activities (1, 0) and bipolar orientation is the building block

used in [Gioa 05] in order to define a general activity preserving correspondence between

spanning trees and orientations.

Proposition 7.22 Let G be an embedded graph, let v0 be the root-vertex and let v1 be the other

endpoint of the root-edge. The mapping Φ establishes a bijection between the spanning trees

having embedding-activities (I(T ), E(T )) = (1, 0) (counted by [x1]TG(x, 0)) and the (v0, v1)-

bipolar orientations.

Proposition 7.22 is illustrated by Figure 139.

Proof: Observe first that an acyclic orientation O is (v0, v1)-bipolar if and only if any vertex

is reachable from v0 and can reach v1. By Theorem 7.19 the coefficient [x1]TG(x, 0) counts

acyclic v0-connected orientation having 2 root-strong-components. No vertex v 6= v0 can reach

v0 in an acyclic v0-connected orientation (there would be a directed path from v0 to v and

back). Hence the first root-component U0 of an acyclic v0-connected orientation is reduced
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v0 v1

Figure 139: A bipolar orientation and the corresponding spanning tree (indicated by thick

lines).

to {v0}. The minimal edge with one endpoint in U0 = {v0} and one endpoint outside U0

is the root-edge. Hence an acyclic v0-connected orientation has 2 root-strong-components if

and only if every vertex can reach v1. Thus, the coefficient [x1]TG(x, 0) counts (v0, v1)-bipolar

orientations.
�

7.7 Concluding remarks

7.7.1 The cycle and cocycle reversing systems

Let us consider the cycle reversing system and the cocycle reversing system. A transition

in the cycle (resp. cocycle) reversing system consists in flipping a directed cycle (resp.

cocycle). The cycle and cocycle reversing systems appear implicitly in many works (e.g.

[Fels 04, Fray 01, Prop 93, Boni 05]). The cycle-cocycle reversing system in which a transition

consists in flipping either a directed cycle or a directed cocycle was introduced in [Gioa 06].

It was observed in this paper that the cycle and cocycle flips are really independant since

they act on the cyclic part and acyclic part respectively and do not modify the other part.

It is known from [Prop 93] that there is a unique v0-connected orientation (equivalently,

orientation without head-min directed cocycle by Lemma 7.4) in each equivalence class of

the cocycle reversing system. The counterpart of this property for the cycle reversing system

is given by Proposition 7.11. Indeed, it is clear from Lemma 7.12 that the equivalence classes

of the cycle reversing system are in one-to-one correspondence with outdegree sequences.

Thus, Proposition 7.11 proves that there is a unique minimal orientation (that is, orientation

without tail-min directed cycle) in each equivalence class of the cycle reversing system. Since

the cycle and cocycle flips are really independant, there is a unique v0-connected minimal

orientation in each equivalence class of the cycle-cocycle reversing system.

As observed in [Gioa 06], the enumerative results of Theorem 7.18 can be expressed in

terms of cycle/cocycle reversing systems. For instance, the equivalence classes of the cocycle

reversing system (in bijection with minimal orientations) are counted by TG(1, 2), the

equivalence classes of the cocycle reversing system reduced to one element (equivalently, the
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stongly connected orientations) are counted by TG(0, 2) etc.

7.7.2 Algorithmic applications

The bijections exhibited in this chapter have interesting applications in the framework of

random sampling. Indeed, the bijection Φ allows us to turn a random sampling algorithm for

a class of subgraphs (e.g. spanning trees, forests, internal subgraphs) into a random sampling

algorithm for the corresponding class of orientations (see Theorem 7.18). The bijection Ψ

allows us to perform the converse operation.

We have seen in the previous chapter (Subsection 6.4.2) that in certain cases the mappings

Φ and Ψ could be performed in linear time. Hence, in these cases there is no increase of

complexity in the transfer between subgraphs and orientations. In particular, in the planar

case any random sampling algorithm for a class of subgraphs gives a random sampling algo-

rithm with the same complexity for the corresponding class of orientations and conversely.

Moreover, the mapping Φ restricted to forest can always be performed in linear time. Hence,

any algorithm for the random generation of forests (resp. spanning tree [Wils 96]) gives an

algorithm for the random generation of outdegree sequences (resp. v0-connected outdegree

sequences) with the same complexity.



Chapter 8

A bijection between spanning trees

and recurrent sandpile

configurations

Abstract: We define a bijection between spanning trees and recurrent configurations of the

sandpile model. The image of any spanning tree having k external embedding-active edges

is a recurrent configuration at level k. This gives a new bijective proof that the coefficient of

yk in the specialization TG(1, y) of the Tutte polynomial counts the recurrent configurations

at level k. (This result of Merino [Meri 97] was already proved bijectively by Cori and Le

Borgne [Cori 03].) In the previous chapter, we established a bijection between spanning

trees and root-connected outdegree sequences. Combining our results, we obtain a bijection

between recurrent configurations and root-connected outdegree sequences which leaves the

configurations at level 0 unchanged. This answers a question raised by Gioan [Gioa 06].

Résumé : Nous définissons une bijection entre les arbres couvrants et les configurations

récurrentes du modèle du tas de sable. L’image d’un arbre couvrant ayant k arêtes externes

actives par plongement est une configuration récurrente au niveau k. Cela constitue une

nouvelle preuve bijective du fait que le coefficient de yk dans la spécialisation TG(1, y) du

polynôme de Tutte compte les configurations récurrentes au niveau k. (Ce résultat dû à

Merino [Meri 97] avait déjà été prouvé bijectivement par Cori et Le Borgne [Cori 03]). Dans

le chapitre précédent, nous avons établi une bijection entre les arbres couvrants et les suites

de degrés racine-accessibles. En combinant nos résultats nous obtenons une bijection entre

les configurations récurrentes et les suites de degrés racine-accessibles qui laisse inchangées

les configurations au niveau 0. Nous répondons ainsi à une question posée par Gioan [Gioa 06].

207
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8.1 Introduction

In this chapter we deal with the sandpile model (a short introduction to this model is

given in Subsection 4.1.4). The sandpile model was originally defined in statistical physics

[Bak 87, Dhar 90]. It appeared independently in combinatorics as the chip firing game

[Björ 91]. In this model, a configuration is an attribution of a non-negative integer to

each vertex of the graph: the number of sand grains on this vertex. A vertex having a

number of sand grains not less than its degree can topple and send a grain through each

of the incident edges. The sandpile model is appreciated in physics because it provides an

analytically tractable model of self-organized criticality. The sandpile model is also studied in

combinatorics for its algebraic properties. Indeed, the formal sum of configurations (that is,

the vertex by vertex sum of the number of sand grains) induces a group structure displaying

interesting properties [Cori 00]. Recurrent configurations play an important role in the sand-

pile model. From the physical point of view, the recurrent configurations are the one that can

be observed after a long period of time. Moreover, from the algebraic perspective, each el-

ement of the group defined by the sandpile model is associated with a recurrent configuration.

It is known that the recurrent configurations of the sandpile model on G are counted

by TG(1, 1) [Dhar 92]. Observe that this is the number of spanning trees. The following

refinement is also true: the coefficient of yk in TG(1, y) is the number of recurrent config-

urations at level k [Meri 97]. A bijective proof of this result was given in [Cori 03]. We

give an alternative bijective proof based on the characterization of the Tutte polynomial

via embedding-activities. We also answer a question of Gioan [Gioa 06] by establishing

a bijection between recurrent configurations of the sandpile model and root-connected

outdegree sequences that leaves the configurations at level 0 unchanged.

In Section 8.2, we define a mapping Λ from spanning trees to configurations of the sandpile

model. We prove that the image of any spanning tree is a recurrent configuration. In Section

8.3, we define a mapping Υ from recurrent configurations to spanning trees. The mapping Υ

is reminiscent of the burning algorithm introduced by Dhar in order to distinguish between

recurrent and non-recurrent configurations [Dhar 90]. We proceed to prove that Λ and Υ are

inverse bijections between spanning trees and recurrent sandpile configurations.

8.2 A bijection between spanning trees and recurrent config-

urations

In chapter 5 (Section 5.5), we defined a mapping Λ : T 7→ ST from spanning trees to config-

urations of the sandpile model. Recall from Definition 5.11 that the number of grains ST (v)

on the vertex v in the configuration ST = λ(T ) is the number of tails plus the number of
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external (G, T )-active heads incident to v in the orientation OT = Φ(T ). In this chapter, we

prove that the mapping Λ is a bijection between spanning trees and recurrent configurations

of the sandpile model. From now on, the recurrent configurations of the sandpile model are

simply called recurrent configurations .

Theorem 8.1 Let G be an embedded graph. The mapping Λ : T 7→ ST is a bijection between

the spanning trees and the recurrent configurations of G.

Let G = (V,E) be the graph underlying the embedding G. Observe that the level of

the configuration ST , that is,
∑

v∈V ST (v) − |E|, is the number of external (G, T )-active

edges. Indeed, every edge of G has contribution 1 to the sum
∑

v ST (v) except the external

(G, T )-active edges which have contribution 2.

Corollary 8.2 Let G be an embedded graph. The number of recurrent configurations at level

i is the number [yi]TG(1, y) of spanning trees having i external (G, T )-active edges.

As mentioned above, Corollary 8.2 is not new. It was first proved recursively in [Meri 97]

and then bijectively in [Cori 03] (by using the order-activities of Tutte [Tutt 54]). The

Theorem 8.1 and Corollary 8.2 are illustrated by Figure 140.

h0 ? ? ?

?
3 1 0 2 23 3 1 33

11010

Figure 140: The spanning trees (thick lines) and the corresponding recurrent configurations.

The external active edges are indicated by a ?.

We first prove that the image of any spanning tree is a recurrent configuration.

Proposition 8.3 Let G be an embedded graph. For any spanning tree T , the configuration

ST = Λ(T ) is a recurrent configuration.

Proof: Let v0 be the root-vertex. We consider the orientation OT and prove successively the

following properties.

• The configuration ST is stable. Let v be any vertex distinct from v0. We want to prove that

ST (v) < deg(v). Observe that any half-edge incident to v has contribution at most one to

ST (v). Moreover, the half-edge hv incident to v and contained in the edge of T linking v to its

father is a head by Lemma 5.6. Thus, hv has no contribution to ST (v), and ST (v) ≤ deg(v)−1.

• ST (v0) = deg(v0). We must prove that every half-edge incident to v0 has contribution 1 to

ST (v0). By Lemma 5.6, the internal edges are oriented from father to son in OT . Therefore

any internal half-edge incident to v0 is a tail, hence has contribution 1 to ST (v0). Let h be an

external half-edge incident to v0. By definition, if the half-edge h is greater than the half-edge
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h′ = α(h), then h is a tail. Else, the edge e = {h, h′} is (G, T )-active by Lemma 5.8 (since the

endpoint v0 of h is an ancestor of the endpoint of h′). Thus, any external half-edge incident

to v0 has contribution 1 to ST (v0).

• The configuration ST is recurrent. We want to prove that there is a labeling of the vertices

v0, v1, . . . , v|V |−1 such that the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S |V |

T is valid. Ob-

serve that in this case the configuration ST is recurrent. Indeed, the final configuration S |V |
T

is equal to ST since every vertex v has been toppled once, hence has sent and received exactly

deg(v, ∗) grains during the sequence of topplings (recall that deg(v, ∗) is the number of non-

loop edges incident to v). In Chapter 7, we defined a linear order, the postfix order, on the

vertex set V (see Lemma 7.10). The root-vertex v0 is the maximal element for this order. We

want to prove that taking the unique labeling such that v0 > v1 > · · · > v|V |−1 for the postfix

order, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S |V |

T is valid. From the preceding point,

the toppling of v0 is valid. Suppose that the sequence ST
v0

99K
S1

T
v1

99K
· · · vi−1

99K
Si

T is valid. After

these topplings, the number of grains on the vertex vi is S i
T (vi) = ST (vi) +

∑

j<i deg(vi, vj)

(recall that deg(vi, vj) is the number of edges linking vi and vj). We want to prove that vi can

be toppled, that is, S i
T (vi) ≥ deg(vi). By Lemma 7.10, any arc OT (e) is directed toward its

least endpoint (for the postfix order) unless e is external (G, T )-active. Let h be an half-edge

in an edge linking vi to a vertex vj, j ≥ i. The vertex vj is less than or equal to vi for the

postfix order, hence h is either a tail or an external (G, T )-active half-edge. In both cases, the

half-edge h has contribution 1 to ST (vi). Hence,

ST (vi) ≥
∑

j≥i

deg(vi, vj).

Thus,

Si
T (vi) = ST (vi) +

∑

j≥i

deg(vi, vj) ≥
∑

j≥0

deg(vi, vj) = deg(vi)

and vi can be toppled. By induction, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S |V |

T is

valid.
�

It remains to prove that Λ : T 7→ ST is a bijection between the spanning trees and

the recurrent configurations. This will be done in the next section by defining the inverse

mapping Υ.

8.3 The inverse bijection

In this section we define a mapping Υ that we shall prove to be the inverse of Λ. This

mapping Υ is a variant of the burning algorithm introduced by Dhar in order to distinguish

between recurrent and non-recurrent configurations [Dhar 90]. The spanning tree returned

by the algorithm can be seen as the path through which the fire (the sequence of topplings)
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propagates. The intuitive principle of the algorithm is to decompose each toppling and

consider its effect grain after grain. When a grain makes another vertex topple, we add the

edge by which the grain has traveled into the tree. Different variants of this algorithm have

been proposed [Cori 03, Cheb 05]. These variants differ by the rule used for choosing the

next grain to be sent, and also differ from the procedure Υ given below. Let us insist that

these variants are really unequivalent.

If v is a vertex and F ⊆ E be a subgraph, we denote by degF (v) the degree of v in the

subgraph F .

Definition 8.4 Let G = (H,σ, α, h0) be an embedded graph. The mapping Υ associates with

a recurrent configuration S of the sandpile model the spanning tree defined by the following

procedure.

Initialization: Initialize the current half-edge h to be h′
0 = σ−1(h0). Initialize the tree T

and the set of visited edges F to be empty.

Core: Do:

C1: Let e be the edge containing h, let u be the vertex incident to h and let v be the other

endpoint of e.

If e is not in F , then

- Add e to F .

- If u is not connected to v by T and S(v) + degF (v) ≥ deg(v) then

Add e to T .

C2: Move to the next half-edge clockwise around T :

If e is in T , then set the current half-edge h to be σ−1α(h), else set it to be σ−1(h).

Repeat until the current half-edge h is h′0.

End: Return the tree T .

Observe that during the procedure Υ our motion (step C2) around the spanning tree is

reverse (compared to our previous algorithms). This way of visiting the half-edges would be

the usual tour of the spanning tree in the embedded graph G ′ = (H,σ−1, α, h′0).

We represented the intermediate steps of the procedure Υ in Figure 141.

We will now prove that Υ and Λ are inverse bijections. We first prove that the mapping

Υ is well defined on recurrent configurations and returns a spanning tree (Proposition 8.5).

Then we prove that Υ and Λ are inverse mappings (Propositions 8.12 and 8.13).

Proposition 8.5 The procedure Υ is well defined on recurrent configurations and returns a

spanning tree.
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h0
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Figure 141: The mapping Υ. Some intermediate steps of the procedure are represented in the

middle line. The set F of unvisited edges is indicated by dashed lines. The number associated

to each vertex v is equal to S(v) + degF (v). In the bottom line are represented the burning

algorithm representation of each of the intermediate steps.

Lemma 8.6 Let S be a recurrent configuration. Then, at any time of the execution of the

procedure Υ on S, the endpoint u of the current half-edge h is connected to v0 by T .

Proof: The property holds at the beginning of the execution. Clearly, it remains true each

time a step C2 is performed.
�

Proof of Proposition 8.5. Let S be a recurrent configuration. We denote by Υ[S] the

execution of the procedure Υ on S. We prove successively the following properties on the

execution Υ[S].

• At any time of the execution, the subgraph T is a tree incident to v0. The property holds

at the beginning of the execution. Suppose that it holds at the beginning of a given core step

and consider the edge e with endpoints u and v containing the current half-edge. If the edge

e is added to T , the subgraph T remains acyclic since u is not connected to v by T . Moreover

the subgraph T remains connected and incident to v0 since (by Lemma 8.6) the vertex u is

connected to v0 by T .

• No half-edge is visited twice, hence the execution terminates. Suppose that a half-edge h is

visited twice during the execution. We consider the first time this situation happens. First

note that h 6= h′0 or the execution would have stopped just before the second visit to h. Let

h1 and h2 be respectively the current half-edge just before the first and second visit to h..

Let T1 and T2 be the trees constructed by the procedure Υ at the time of the first and second

visit to h. Let e be the edge containing σ−1(h). For i = 1, 2 we have h = σ−1α(hi) if e is in
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Ti and h = σ−1(hi) otherwise. Since h1 6= h2 and T1 ⊆ T2, the edge e is in T2 but not in T1.

This is impossible since after the visit of h1 the edge e is in F and cannot be added to the

tree T anymore.

We denote by T0 the tree returned by the execution Υ[S] and by F0 the set of visited edges

at the end of this execution.

• If e = {h1, h2} is an edge in T0 = Υ(S) and the endpoint of h1 is the father of the endpoint

of h2, then h1 is visited during the execution Υ[S]. Consider the core step at which the edge

e is added to the tree T . Let h be the current half-edge, let u be the vertex incident to h and

let v be the other endpoint of e. By Lemma 8.6, the vertex u is connected to v0 by T ⊆ T0−e,
hence u is the father of v. Hence h1 = h is visited during the execution Υ.

• At the end of the execution, any edge adjacent to T0 is in F0. We want to show that any

half-edge incident to T0 is visited during the execution Υ[S]. First observe that no edge can be

added to T after its first visit. Therefore, when a step C2 is performed, the edge e containing

the current half-edge is in T if and only if it is in T0. Let h be a half-edge incident to T0 which

has not been visited during the execution Υ. If the half-edge σ−1(h) is not in T0 then it has

not been visited (or h would have been the next half-edge visited during the execution). Thus

by applying σ−1 repeatedly we find an unvisited half-edge h such that σ−1(h) is in T0. Then,

the half-edge ασ−1(h) has not been visited during the execution Υ (or h would have been the

next half-edge visited during the execution). Thus (by the preceding point) the endpoint of

ασ−1(h) is the son of the endpoint of σ−1(h). We have proved that if there is an unvisited

half-edge h incident to T0, then there is an unvisited half-edge incident to one of its sons in

T0. We reach an impossibility.

• The tree T0 = Υ(S) is spanning. Let v0, v1, . . . , v|V |−1 be a labeling of the vertices such that

the sequence S v0

99K
S1 v1

99K
· · · v|V |−1

99K
S |V | is valid. In the configuration Si, the number of sand

grains on the vertex vi is S i(vi) = S(vi) +
∑

j<i deg(vj , vi) and is more than the degree of vi.

Suppose now that the tree T0 is not spanning and consider the least index i such that vi is

not connected to v0 by T . Each vertex vj for j < i is incident to T , hence (by the preceding

point) every edge joining vj and vi is in F0. Moreover vi is adjacent to at least one of the

vertices vj , j < i since S(vi) is less than its degree and S i(vi) is not. Consider the last edge

e (in order of visit) joining vi to a vertex vj, j < i. When the edge e is visited, we have

degF (vi) ≥ ∑

j<i deg(vi, vj). Therefore, the condition S(vi) + degF (vi) ≥ deg(vi) holds and

the edge e should have been added to the tree T . We reach a contradiction.
�

We proceed to prove that Λ and Υ are inverse mappings.

Lemma 8.7 Consider a given core step of the procedure Υ. Let e be the edge containing the

current half-edge h and let v be the endpoint of α(h). If the edge e is added to T , then the

inequality S(v) + degF (v) ≥ deg(v) (tested in the procedure Υ) is an equality.

Proof: Observe first that the vertex v is distinct from v0, otherwise adding e to the tree T
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would create a cycle by Lemma 8.6. While v is not connected to v0 by T , it is not the endpoint

of the current half-edge h (Lemma 8.6). Thus, each time the quantity degF (v) increases, that

is, each time an edge incident to v is added to F , the condition S(v) + degF (v) ≥ deg(v) is

tested and the edge is added to T if the condition holds.
�

Lemma 8.8 Let G = (H,σ, α, h0) be an embedded graph and let T be a spanning tree. We

consider the (G, T )-order on half-edges. Let v be a vertex distinct from v0 and let hv be the

half-edge incident to v in the edge of T linking v to its father. Any half-edge h incident to v

and such that α(h) > hv is external. Moreover, there are deg(v) −ST (v) − 1 such half-edges.

Proof: We consider the orientation OT . Recall from Lemma 5.6 that α(hv) < hv and that

the half-edges h incident to a descendant of v are characterized by α(hv) < h ≤ hv . In

particular, the inequalities α(hv) < h ≤ hv hold for the half-edges incident to v. We now

prove successively the following properties.

• Any half-edge h incident to v and such that α(h) > hv is external. Suppose that the half-

edge h is internal and consider the edge e containing h. If e links v to its father, then h = hv

and α(h) = α(hv) < hv . If e links v to one of its sons, then α(h) is incident to a descendant

of v and α(h) ≤ hv . In either cases, the hypothesis α(h) > hv does not hold.

• An external half-edge h incident to v is a non-active head if and only if α(h) > hv. The

three following properties are sufficient to prove the equivalence:

- If h is a tail then α(h) < hv. Indeed, we have α(h) < h since h is a tail and h ≤ hv since h

is incident to v.

- If h is a head and α(h) < hv then h is (G, T )-active. Since h is a head, we have h < α(h)

hence, α(hv) < h < α(h) < hv. Thus, α(h) is incident to a descendant of v and the edge

e = {h, α(h)} is (G, T )-active by Lemma 5.8.

- If h is a head and α(h) > hv then h is not (G, T )-active. Since h is a head we have

h < α(h). Since α(h) > hv , the half-edge α(h) is not incident to a descendant of v and the

edge e = {h, α(h)} is not (G, T )-active by Lemma 5.8.

• There are deg(v) − ST (v) − 1 half-edges h incident to v and such that α(h) > hv. By

definition, ST (v) is the number of tails plus the number of external (G, T )-active heads incident

to v. Hence, deg(v)−ST (v) is the number of heads incident to v which are not external (G, T )-

active. By Lemma 5.6, internal edges are oriented from father to son. Hence, the vertex v

is incident to exactly one internal head. Thus deg(v) − ST (v) − 1 is the number of external

non-active heads. By the preceding point, these half-edges are characterized by the condition

α(h) > hv.
�

We now define the clockwise-tour of a tree. Let G = (H,σ, α, h0) be an embedded graph.
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Given a spanning tree T , we define the clockwise-motion function τ on half-edges by

τ(h) = σ−1α(h) if h is internal and τ(h) = σ−1(h) otherwise.

As observed above, the clockwise-motion function τ is the usual motion function for the

embedded graph G−1 = (H,σ−1, α, σ−1(h0)). This defines the (G−1, T )-order on the half-

edge set H for which h′0 = σ−1(h0) is the least element. The (G, T )-order denoted by < and

the (G−1, T )-order denoted by <−1 are closely related.

Lemma 8.9 Let G be an embedded graph and let T be a spanning tree. The (G, T )-order and

(G−1, T )-order are related by h < h′ if and only if β(h′) <−1 β(h), where β is the involution

defined by β(h) = h if h is external and β(h) = α(h) otherwise.

Proof: Let t be the usual motion function and let τ be the clockwise-motion func-

tion. Observe that tβ = σ and τβ = σ−1. Thus, τ = βt−1β. Let us write t =

(h0, h1, . . . , h|H|−1) in cyclic notation. Then t−1 = (h|H|−1, . . . , h1, h0) and τ = βt−1β =

(β(h|H|−1), . . . , β(h1), β(h0)). Moreover, σβ(h|H|−1) = t(h|H|−1) = h0, hence β(h|H|−1) =

h′0 = σ−1(h0). Therefore, hi < hj if and only if i < j if and only if β(hj) <
−1 β(hi).

�

Lemma 8.10 Let S be a recurrent configuration and let T0 = Υ(S) be the spanning tree

returned by the procedure Υ. The half-edges of G are visited in (G−1, T0)-order during the

procedure Υ.

Proof: During the procedure Υ, no edge can be added to the tree T after its first visit.

Therefore, when a step C2 is applied, the edge e containing the current half-edge is in T

if and only if it is in T0. Hence, a step C2 corresponds to an application of the clockwise-

motion function τ of the spanning tree T0. Since the first visited half-edge is h′0 = σ−1(h0),

the half-edges are visited in (G−1, T0)-order.
�

Lemma 8.11 Let G be an embedded graph and let T be a spanning tree. Let v be a vertex

distinct from v0 and let ev be the edge of T linking v to its father. There are deg(v)−ST (v)−1

edges incident to v and less than ev for the (G−1, T )-order.

Proof: Let hv be the half-edge of ev incident to v. Let h 6= hv be a half-edge incident to v

and let e be the edge containing h. We prove successively the following properties.

• The edge e is less than ev if and only if α(h) <−1 α(hv). Moreover, in this case e is not a

loop. By Lemma 5.6 applied to the embedded graph G−1, the half-edges h incident to v are

such that α(hv) <
−1 h ≤−1 hv . Hence, the edge containing h is less than ev for the (G−1, T )-

order if and only if α(h) <−1 α(hv). In this case, α(h) is not incident to v by Lemma 5.6,

that is, e is not a loop.
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• The conditions α(h) <−1 α(hv) and α(h) > hv are equivalent. Moreover, there are deg(v)−
ST (v) − 1 half-edges satisfying this condition. Suppose α(h) <−1 α(hv). In this case, h

external. Indeed, h is not in ev and is not incident to a son of v by Lemma 5.6 applied to the

embedded graph G−1. Hence, by Lemma 8.9, we get α(h) > hv. Conversely, if α(h) > hv, the

edge e is external by Lemma 8.8, hence α(h) <−1 α(hv) by Lemma 8.9. Moreover, there are

deg(v) − ST (v) − 1 half-edges satisfying this condition by Lemma 8.8.
�

Proposition 8.12 The mapping Λ ◦ Υ is the identity on recurrent configurations.

Proof: Let S be a recurrent configuration and let T = Υ(S). We want to prove that the

recurrent configuration ST = Λ(T ) is equal to S. We already know that ST (v0) = deg(v0) =

S(v0) since ST and S are recurrent configurations. Let v be a vertex distinct from v0 and

let ev be the edge of T linking v to its father. Let F be the set of visited edges when ev is

added to T during the execution Υ[S]. We know that S(v) = deg(v) − degF (v) by Lemma

8.7. It remains to prove that ST (v) = deg(v) − degF (v). By Lemma 8.10, the half-edges

are visited in (G−1, T )-order during the execution Υ[S]. Therefore, the value degF (v) is the

number of edges incident to v which are less or equal to ev for the (G−1, T )-order. There

are deg(v) − ST (v) such edges by Lemma 8.11. We obtain degF (v) = deg(v) − ST (v), or

equivalently, ST (v) = deg(v) − degF (v). Thus, ST (v) = S(v).
�

Proposition 8.13 The mapping Υ ◦ Λ is the identity on spanning trees.

Proof: Let T0 be a spanning tree. We denote by T1 = Υ(ST0
) the image of T0 by Υ ◦ Λ and

want to prove that T1 = T0. Recall that every edge of G is visited during the execution Υ[ST0
].

Hence, it is sufficient to prove that at the beginning of any core step of the execution Υ[ST0
],

the tree T constructed by the procedure Υ is T0 ∩ F , where F denotes the set of visited edges.

We proceed by induction on the number of core steps. The property holds at the beginning

of the first core step. Suppose that it holds at the beginning of the k th core step. If the edge

e containing the current half-edge is already in the set F of visited edges, then the set F and

the tree T are unchanged during this core step and the property holds at the beginning of

the k + 1th core step. Suppose now that the edge e is not in F at the beginning of the k th

core step. By the induction hypothesis, the tree T constructed by the procedure Υ is T0 ∩F .

Moreover, no edge is added to the tree T after its first visit, hence T = T1 ∩ F . In other

words, the spanning trees T0 and T1 coincide on F . By Lemma 8.10, the half-edges are visited

in (G−1, T1)-order during the execution Υ[ST0
], hence the edges visited before e during the

execution Υ[ST0
] have been visited in (G−1, T0)-order. Thus, the edges visited before e during

the execution Υ[ST0
] are the edges which are less than e for the (G−1, T0)-order. Suppose now

that the edge e is in the tree T0. In this case the endpoints u and v of e are not connected

by T ⊆ T0 − e. Moreover, the value degF+e(v) which corresponds to the number of edges
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incident to v and visited before e during the execution Υ[ST0
], that is, the edge which are less

or equal to e for the (G−1, T0)-order, is deg(v) − ST0
(v) by Lemma 8.11. Thus, the condition

ST0
(v) + degF+e(v) ≥ deg(v) (tested by the procedure Υ) holds and the edge e is added to

the tree T . Suppose now that e is not in T0. In this case, the edge ev linking v to its father

in T0 is greater than e for the (G−1, T0)-order. Hence, the value degF+e(v) is less or equal

to the number of edges incident to v which are less than ev for the (G−1, T0)-order. Thus,

degF+e(v) < deg(v)−ST0
(v)−1 by Lemma 8.11. The condition ST0

(v)+degF+e(v) ≥ deg(v)

(tested by the procedure Υ) does not hold, hence the edge e is not added to the tree T . In

any case, the property holds at the beginning of the k + 1th core step.
�

This concludes our proof of Theorem 8.1.
�
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Chapter 9

Perspectives

La combinatoire des cartes est un sujet riche et en plein renouvellement. Nous avons établi

des résultats énumératifs pour plusieurs familles de triangulations et jeté un pont entre le

polynôme de Tutte et les cartes. Nous avons aussi exhibé des bijections qui résolvent de

vénérables énigmes combinatoires concernant les chemins de Kreweras, les cartes boisées et

l’interprétation en termes d’orientations de nombreuses évaluations du polynôme de Tutte.

Certains résultats établis durant cette thèse appellent manifestement des développe-

ments ultérieurs. En premier lieu, le comptage récursif des triangulations effectué au

chapitre 1 a permis de montrer l’algébricité des séries génératrices de plusieurs familles

de triangulations. Les familles en considération sont doublements contraintes, c’est-à-dire

sont définies par des contraintes de degrés portant à la fois sur les sommets et sur les

faces. Les familles de cartes doublement contraintes sont souvent difficiles à énumérer et

l’on dispose d’assez peu d’information sur ces familles. Il serait pourtant intéressant de

préciser la frontière de l’algébricité des cartes, c’est-à-dire de déterminer quelles contraintes

portant sur le degré des sommets et des faces donnent lieu à des séries génératrices algébriques.

Les bijections présentées au chapitre 2 permettent le comptage des triangulations et celui

des chemins de Kreweras arrivant en (0, 0). Une évidente perspective consiste à chercher une

généralisation qui permette le comptage des triangulations d’un polygone à i + 2 côtés ou

des chemins de Kreweras arrivant en (i, 0).

Au chapitre 3, nous avons défini une bijection entre les cartes boisées (cartes dont un arbre

couvrant est distingué) et les couples formés d’un arbre et d’une partition non-croisée. Cette

bijection pourrait apporter un cadre unifié pour le comptage bijectif des cartes planaires.

Rappelons que, bien souvent, la première étape pour le comptage bijectif d’une famille de

cartes consiste à définir un arbre couvrant canonique pour chaque carte de cette famille. Nous

avons établi une bijection générale entre les arbres couvrants et les orientations minimales

219
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des cartes. Cette bijection a ensuite été étendue aux cartes de genre quelconque au chapitre

7. Il devient donc possible de définir des arbres couvrants en termes d’orientations minimales

ou, de manière équivalente, de suites de degrés sortants. Considérons, par exemple, la classe

des cartes planaires eulériennes (i.e. dont les sommets sont de degré pair). On peut définir

l’arbre eulérien d’une carte eulérienne comme l’arbre couvrant en bijection avec l’unique

orientation minimale telle que le degré sortant de chaque sommet soit égal à la moitié de son

degré total. Il est montré dans [Fusy 03] que l’arbre eulérien est précisément l’arbre couvrant

utilisé dans [Scha 97] pour réaliser le comptage bijectif des cartes eulériennes par conjugaison

d’arbres. D’autre part, nous avons établi une bijection entre les cartes planaires munies

d’une orientation minimale et les couples formés d’un arbre et d’une partition non-croisée.

On peut espérer appliquer cette bijection à des familles de cartes particulières en vue de

leur comptage bijectif. Par exemple, le comptage bijectif des cartes eulériennes pourrait être

réalisé en caractérisant puis en comptant les couples (formés d’un arbre et d’une partition

non-croisée) associés aux cartes eulériennes munies de l’arbre couvrant eulérien.

Dans la troisième partie de cette thèse (chapitres 5 à 8) nous avons plongé le polynôme

de Tutte au coeur de la combinatoire des cartes. Le projet naturel qui en découle est

l’énumération du polynôme de Tutte des cartes, c’est-à-dire l’évaluation de la somme

Sn(µ, ν) =
∑

C∈Cn

TC(µ, ν),

où Cn est l’ensemble des cartes de taille n et TC(µ, ν) est le polynôme de Tutte de la carte

C. Nous avons mentionné dans l’introduction de cette thèse (section 0.3) que le polynôme de

Tutte est équivalent (à changement de variables près) à la fonction de partition du modèle

de Potts. La somme Sn(µ, ν) est donc équivalente à la fonction de partition du modèle de

Potts sur le réseau aléatoire de taille n.

Au chapitre 5, nous avons montré que le polynôme de Tutte est égal à la série génératrice

des arbres couvrants comptés selon leurs activités de plongement. Ainsi la somme Sn peut

aussi s’écrire :

Sn(µ, ν) =
∑

CA carte boisée

xI(CA)yE(CA),

où la somme porte sur l’ensemble des cartes boisées de taille n et I(CA) (resp. E(CA))

est l’activité de plongement interne (resp. externe) de la carte boisée CA. Nous savons

que les cartes boisées sont en bijection avec les mélanges de deux mots de parenthèses

[Mull 67, Lehm 72]. Nous avons aussi prouvé au chapitre 3 que les cartes boisées sont en

bijection avec les couples formés d’un arbre et d’une partition non-croisée. Il est tentant

d’essayer d’évaluer la somme Sn(µ, ν) en se basant sur l’une ou l’autre de ces bijections.
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Nous venons de proposer une approche bijective pour l’énumération du polynôme de Tutte

des cartes. Alternativement, on peut aborder ce problème avec une approche récursive. On

considère alors la série génératrice des cartes pondérées par leur polynôme de Tutte

F (x, y) ≡ F (x, y, z, µ, ν) =
∑

C∈C

xf(C)ys(C)z|C|TC(µ, ν),

où |C|, f(C) et s(C) sont respectivement la taille, le degré de la face externe et le degré du

sommet racine de la carte C. Les propriétés de récurrence de polynôme de Tutte permettent

[Tutt 71] de caractériser la série génératrice F (x, y) par l’équation fonctionnelle

F (x, y) = 1 + xyz(xµ− 1)F (x, y)F (x, 1) + xyz

(

xF (x, y) − F (1, y)

x− 1

)

+xyz(yν − 1)F (x, y)F (1, y) + xyz

(

yF (x, y) − F (x, 1)

y − 1

)

.

Cette équation fait intervenir deux variables catalytiques x et y et est quadratique en les

séries inconnues F (x, y), F (x, 1) et F (1, y). À ce jour, il n’existe pas de méthode pour la

résolution des équations non-linéaires à deux variables catalytiques. La littérature ne fournit

qu’un seul exemple d’équation non-linéaire à deux variables catalytiques ayant été résolue.

Cet exploit technique revient à Tutte (encore lui !) qui y consacra une série de 8 articles entre

1973 et 1982 [Tutt 73a, Tutt 73b, Tutt 73c, Tutt 73d, Tutt 74, Tutt 78, Tutt 82a, Tutt 82b].

L’équation résolue par Tutte concerne la série génératrice

G(x, y) ≡ G(x, y, z, λ) =
∑

C∈Q

xf(C)ys(C)z|C|PC(λ)

λ
,

de la classe Q des quasi-triangulations coloriées (pondérées par leur polynôme chromatique).

La résolution de Tutte qui est retracée dans l’article de synthèse [Tutt 95] permet de passer

de l’équation fonctionnelle

G(x, y) = yz(λ− 1) + xyzG(x, y)G(x, 1) (95)

+yz

(

G(x, y) −G(0, y)

x

)

− xy2z2

(

G(x, y) −G(x, 1)

y − 1

)

,

à l’équation différentielle

H ′′(z)(λz + 10H(z)− 6H ′(z))− 2λ3z+ 2λ2z+ λ(4− λ)(20H(z) − 18zH ′(z) + 9z2H ′′(z)) = 0,

caractérisant la série génératrice univariée H(z) =
∑

C∈T z
|C|/3 PC(λ)

λ de la classe T des

triangulations coloriées.

L’obtention d’équations fonctionnelles du type de (95) pour une famille de cartes coloriées

ne constitue pas un obstacle majeur. Nous avons établi des équations fonctionnelles pour de

nombreuses familles de cartes coloriées. Ces équations sont présentées dans l’annexe 9.1. Par
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contre, la résolution des équations fonctionnelles est pour le moins problématique. La méth-

ode de Tutte pour résoudre l’équation (95) des triangulations coloriées est assez alambiquée.

Nous allons tenter de donner un aperçu de cette méthode sur d’autres objets qui nous sont

chers : les chemins de Kreweras. Nous ne prétendons pas, par cet exemple, démonter tous

les mécanismes de la méthode de Tutte mais simplement faire ressortir l’un des rouages clefs,

à savoir, l’élimination d’une des deux variables catalytiques par la méthode des invariants.

L’équation que nous nous proposons de résoudre s’écrit

K(x, y) = 1 + xyzK(x, y, z) + z

(

K(x, y) −K(0, y)

x

)

+ z

(

K(x, y) −K(x, 0)

y

)

, (96)

et caractérise la série génératrice de la classe K de chemins de Kreweras

K(x, y) ≡ K(x, y, z) =
∑

κ∈K

xi(κ)yj(κ)z|κ|,

où i(κ), j(κ), |κ| sont respectivement l’abcisse et l’ordonnée du point d’arrivée et la

longueur du chemin κ. L’équation (96) (qui s’obtient par une décomposition récursive

des chemins) est le point de départ du résultat énumératif de Kreweras [Krew 65] que

nous démontrons bijectivement au chapitre 2. Cette équation est linéaire (par rapport aux

séries K(x, y), K(0, y) et K(x, 0)) et peut être résolue par la méthode du noyau obstinée

[Bous 05a, Bous 02, Bous 03a]. Nous présentons ci-dessous la méthode des invariants inspirée

de [Tutt 95] qui constitue une méthode de résolution alternative.

La première étape de la méthode des invariants est similaire à celle de la méthode du

noyau (applicable pour les équations linéaires à une variable catalytique). On met en facteur

la série inconnue principale K(x, y) et on obtient

N(x, y) ·K(x, y) = E(x, y), (97)

où

N(x, y) = z(x+ y + x2y2) − xy et E(x, y) = xzG(x, 0) + yzG(0, y) − xy.

On cherche ensuite les séries S(x, z) dont la substitution à y annule le noyau N(x, y). Le

noyau étant quadratique, on trouve deux racines (exprimables par radicaux) qui sont des

séries de Laurent en la variable z :

S1(x, z) = z + o(z) et S2(x, z) =
1

xz
+ o(

1

z
).

La méthode des invariants nécessite l’obtention de deux racines du noyau qui soient substi-

tuables dans l’équation (96) (contrairement à la méthode du noyau pour laquelle une seule

racine subtituable suffisait). Malheureusement, la série S2(x, z) n’est pas substituable à y

dans la série K(x, y). Cette difficulté est contournée en imposant le changement de variable
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(brutal) consistant à remplacer x par la série S1(u, z).
1 Après cette substitution, le noyau

N(S1(u, z), y) est toujours quadratique en la variable y et admet deux racines

Y1(u, z) = u et Y2(u, z) = S2(u, z) =
1

uz
+ o(

1

z
),

substituables à y dans l’équation (97).

À ce stade, nous disposons de deux équations

N(S1, Y1) = 0 et N(S1, Y2) = 0, (98)

liant les séries S1 ≡ S1(u, z), Y1 ≡ Y1(u, z) et Y2 ≡ Y2(u, z). En reportant ces équations dans

(97) on obtient deux équations supplémentaires

E(S1, Y1) = 0 et E(S1, Y2) = 0. (99)

Notons que les équations (98) et (99) ne font pas intervenir la série trivariée principale

K(x, y, z) mais seulement ses spécialisations K(0, y, z) et K(x, 0, z). On peut également se

débarrasser de la série S1 en remarquant que le produit Y1Y2 des racines du polynôme quadra-

tique N(S1, y) est égal à
1

S1
. En utilisant cette égalité, l’expression du noyau et du second

membre deviennent

N(S1, y) =
zy2

Y 2
1 Y

2
2

+ y(z − 1

Y1Y2
) +

z

Y1Y2
,

et

E(S1, y) = zyK(0, y, z) +
z

Y1Y2
K(

1

Y1Y2
, 0, z) − y

Y1Y2
.

Nous arrivons maintenant au coeur de la méthode des invariants de Tutte. Nous allons

convertir les équations (98) et (99) en une unique équation caractérisant la série K(0, y, z) et

ne faisant intervenir qu’une seule variable catalytique y.

Considérons une série I(u, y, z) en la variable z dont les coefficients sont des fractions

rationnelles en u et y. La série I(u, y, z) est un invariant si elle vérifie la relation I(u, Y1, z) =

I(u, Y2, z). Un invariant I(u, y, z) est pur si il ne fait pas intervenir la variable u. Par exemple,

la série y
Y1Y2

+ 1
y est un invariant impur de même que les séries N(S1, y) et E(S2, y). Notons

que les séries ne faisant pas intervenir la variable y sont des invariants et que la somme et le

produit d’invariants sont des invariants. Ces propriétés de clôture permettent de construire

des invariants purs à partir d’invariants impurs. Ainsi, en ajoutant l’invariant

− zy2

Y 2
1 Y

2
2

− z

y2
+

y

Y1Y2
+

1

y
− z

Y1Y2
,

1Ce changement de variable nous est apparu en traçant le diagramme des racines qui sert de point de départ

à la méthode du noyau obstinée [Bous 05a].
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à N(S1, y) on obtient l’invariant pur

I(y, z) =
z

y2
− zy − 1

y
.

De même, en ajoutant l’invariant

− z

Y1Y2
K(

1

Y1Y2
, 0, z) +

y

Y1Y2
+

1

y

à E(S1, y) on obtient l’invariant pur

J(y, z) = zyK(0, y, z) +
1

y
.

Une technique pour la construction d’invariants purs à partir d’invariants impurs a été étudié

dans [Bern 03]. Précisons néanmoins que ce travail s’avère nettement plus complexe dans le

cas des équations fonctionnelles concernant les cartes coloriées.

La méthode des invariants s’appuie sur une propriété structurelle forte de l’espace des

invariants purs.

Lemme 9.1 (Invariants) Soit L(y, z) =
∑

n fn(y)zn un invariant pur et soit k un entier

tel que pour tout n ∈ N, fn(y) =y→0 O( 1
yk ). Alors, il existe des séries c0(z), . . . , ck(z) telles

que L(y, z) =
∑

i≤k ci(z)J(y, z)i.

Nous ne donnerons pas la démonstration du lemme des invariants qui n’éclairerait guère

notre propos. Ce lemme assure l’existence de trois séries formelles a(z), b(z), c(z) telles que

I(y, z) = a(z)J(y, z)2 + b(z)J(y, z) + c(z). (100)

En comparant le développement des deux membres de cette équation pour y tendant vers 0,

on obtient

a(z) = z, b(z) = −1 et c(z) = −2z2G(0, y, z).

En reportant ces identités dans (100), on montre que la série L(y) ≡ G(0, y, z) vérifie l’équation

L(y) = 1 + yz2L(y)2 + 2z
L(y) − L(0)

y
.

Cette équation à une variable catalytique peut être résolue par la méthode générale présentée

dans l’introduction de cette thèse (sous-section 0.2.3). On obtient alors l’équation algébrique

64z6K3 + 16z3K2 + (1 − 72z3)K + 54z3 − 1 = 0,

caractérisant la série K = K(0, 0, z) des chemins de Kreweras retournant en (0, 0).

Le lemme des invariants constitue la clef de voûte de la méthode de Tutte pour la

résolution des équations à deux variables catalytiques. La méthode consiste à produire deux



225

invariants purs indépendants puis à les relier grâce au lemme des invariants. On obtient alors

une équation fonctionnelle à une variable catalytique2 que l’on sait résoudre [Bous 05b].

Nous avons présenté la méthode des invariants sur l’exemple des chemins de Kreweras.

Notre projet est maintenant d’appliquer cette méthode aux équations fonctionnelles des cartes

coloriées présentées dans l’annexe 9.1. Au delà des cartes coloriés, nous aimerions énumérer

les cartes pondérées par leur polynome de Tutte. Ce projet a de multiples facettes et des

applications importantes. Lorsque Tutte entreprit le comptage des cartes coloriées, il avait

en tête de prouver le théorème de quatre couleurs par une approche quantitative. Depuis

lors, les motivations se sont déplacées du côté de la physique, autour du modèle de Potts sur

réseau aléatoire. Ce modèle suscite beaucoup d’intérêt en physique statistique. D’autre part,

le type d’équation auquel conduit l’approche récursive des cartes coloriées constitue le point

d’achoppement de nombreuses questions sur les cartes. Une meilleure compréhension des

techniques pouvant s’appliquer à ces équations, en particulier de la méthode des invariants de

Tutte, aurait des applications dans de nombreux domaines de la combinatoire énumérative.

2Contrairement au cas des chemins de Kreweras, l’équation fontionnelle obtenue par Tutte dans le cas des

triangulations coloriées n’est pas totalement explicite.
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9.1 Annexe : Équations fonctionnelles des cartes coloriées

Nous avons établi des équations fontionnelles pour douze familles de cartes coloriées. Les

familles en considération sont définies par différents critères : non-séparables, sans arête

double, sans digones (faces de degré 2) etc. Nous obtenons un panel de douze équations pour

les douze familles de cartes définies par la figure 142. Certaines de ces équations apparaissaient

déjà dans la littérature et nous avons indiqué la référence de l’article correspondant.

sans arête double

sans digone
cartes planaires

non-séparables

(101)

(103)

(112)

(105) (108)

(110)

(111)

(106) (109)

(102)

(104) (107)

les faces sont de degré 2 ou 3

Figure 142: Quelques familles de cartes planaires. Nous avons indiqué pour chaque famille le

numéro de l’équation fonctionnelle correspondante.

Cartes générales.

• Cartes générales [Tutt 71] :

G(x, y) = 1 + yz(x2(λ− 1) + x)G(x, y)G(x, 1) + xyz

(

xG(x, y) −G(1, y)

x− 1

)

(101)

−xyzG(x, y)G(1, y) − xyz

(

yG(x, y) −G(x, 1)

y − 1

)

.

• Cartes sans digone :

G(x, y) = 1 + x2yz(λ− 1)G(x, y)G(x, 1) (102)

+xyz

(

xG(x, y) −G(1, y)

x− 1

)

− xyzG(x, y)G(1, y) − yz(G(x, y) − 1))

−xyz
(

yG(x, y) −G(x, 1)

y − 1

)

+ xyzG(x, y)G(x, 1) − xy2z2

(

G(x, y) −G(x, 1)

y − 1

)

.
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• Cartes sans arête double :

G(x, y) = 1 + x2yz(λ− 1)G(x, y)G(x, 1) (103)

+xyz

(

xG(x, y) −G(1, y)

x− 1

)

− xyzG(x, y)G(1, y) − (G(x, y) − 1)(G(1, y) − 1)

λ− 1

−xyz

(

G(x,y)−G(x,1)
y−1

)

(1 + G(1,y)−1
l−1 )

1 − z
z(λ−1)

(

G(1,y)−yG(1,1)
y−1 + 1

) + xyzG(x, y)(G(x, 1) − 1).

Cartes non-séparables (sans boucle ni sommet séparateur).

• Cartes non-séparables [Liu 90] :

G(x, y) = x2yz(λ− 1) + xyz

(

G(x,y)−xG(1,y)
x−1

)

1 −
(

G(x,1)−xG(1,1)
x−1

) − xyz

(

G(x,y)−yG(x,1)
y−1

)

1 −
(

G(1,y)−yG(1,1)
y−1

) . (104)

• Cartes non-séparables sans digone :

G(x, y) = x2yz(λ− 1) + xyz

(

G(x,y)−xG(1,y)
x−1

)

1 −
(

G(x,1)−xG(1,1)
x−1

) − yzG(x, y) (105)

−xyz

(

G(x,y)−yG(x,1)
y−1 + yzG(x,y)−G(x,1)

y−1

)

1 −
(

G(1,y)−yG(1,1)
y−1 + yzG(1,y)−G(1,1)

y−1

) .

• Cartes non-séparables sans arête double :

G(x, y) = x2yz(λ− 1) + xyz

(

G(x,y)−xG(1,y)
x−1

)

1 −
(

G(x,1)−xG(1,1)
x−1

) − G(x, y)G(1, y)

(λ− 1)
− xyz

H(x, y)

1 −H(1, y)
, (106)

où

H(x, y) =

(

G(x,y)−G(x,1)
y−1

)(

1 + z
z(λ−1)G(1, y)

)

1 − G(1,y)−yG(1,1)
(λ−1)(y−1)

−G(x, 1).

Triangulations.

• Cartes dont toute face est de degré 2 ou 3 :

G(x, y) = 1 + x2z(λ− 1)G(x, y)G(x, 1) + yz(G(x, y) − 1)

+
z

x
(G(x, y) − 1 − x2G(x, y)[x2]G(x, y)) − xz

(

G(x, y) −G(x, 1)

y − 1

)

. (107)

• Triangulations (toute face est de degré 3) :

G(x, y) = 1 + x2yz(λ− 1)G(x, y)G(x, 1) +
yz

x
(G(x, y) − 1 − x2G(x, y)[x2]G(x, y))

−xy2z2

(

G(x, y) −G(x, 1)

y − 1

)

. (108)
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• Triangulations sans arête double :

G(x, y) = 1 + x2yz(λ− 1)G(x, y)G(x, 1) +
yz

x
(G(x, y) − 1 − x2yz(λ− 1)G(x, y))(109)

− z

z(λ− 1)
(G(x, y) − 1)[x3]G(x, y) − xy2z2

(

G(x,y)−G(x,1)
y−1

)

1 − [x3]
(

G(x,y)−yG(x,1)
(λ−1)(y−1)

) .

Triangulations non séparables.

• Cartes non-séparables dont toute face est de degré 2 ou 3 :

G(x, y) = yz(λ− 1) + +yzG(x, y) + xyzG(x, y)G(x, 1) (110)

+yz

(

G(x, y) −G(0, y)

x

)

− xy2z2

(

G(x, y) −G(x, 1)

y − 1

)

.

• Triangulations non-séparables [Tutt 73a] :

G(x, y) = yz(λ− 1) + xyzG(x, y)G(x, 1) (111)

+yz

(

G(x, y) −G(0, y)

x

)

− xy2z2

(

G(x, y) −G(x, 1)

y − 1

)

.

• Triangulations non-séparables sans arête double :

G(x, y) = yz(λ− 1) + xyzG(x, y)G(x, 1) + yz

(

G(x, y) − yz(λ− 1)

x

)

(112)

− z

z(λ− 1)
G(x, y)[x1]G(x, y) − xy2z2

(

G(x,y)−G(x,1)
y−1

)

1 − [x1]
(

G(x,y)−yG(x,1)
(λ−1)(y−1)

) .
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RÉSUMÉ :

Combinatoire des cartes et polynôme de Tutte

Les cartes sont les plongements, sans intersection d’arêtes, des graphes dans des sur-
faces. Les cartes constituent une discrétisation naturelle des surfaces et apparaissent aussi
bien en informatique (codage d’informations visuelles) qu’en physique (surfaces aléatoires
de la physique statistique et quantique). Nous établissons des résultats énumératifs pour
de nouvelles familles de cartes. En outre, nous définissons des bijections entre les cartes et
des classes combinatoires plus simples (chemins planaires, couples d’arbres). Ces bijections
révèlent des propriétés structurelles importantes des cartes et permettent leur comptage,
leur codage et leur génération aléatoire. Enfin, nous caractérisons un invariant fondamental
de la théorie des graphes, le polynôme de Tutte, en nous appuyant sur les cartes. Cette
caractérisation permet d’établir des bijections entre plusieurs structures (arbres cou-
vrants, suites de degrés, configurations du tas de sable) comptées par le polynôme de Tutte.

Mots-clés : cartes planaire, graphe, triangulation, énumération, bijection, polynome de
Tutte, arbres couvrant.

Combinatorics of maps and the Tutte polynomial

A map is a graph together with a particular (proper) embedding in a surface. Maps are
a natural way of representing discrete surfaces and as such they appear both in computer
science (encoding of visual data) and in physics (random lattices of statistical physics and
quantum gravity). We establish enumerative results for new classes of maps. Moreover,
we define several bijections between maps and simpler combinatorial classes (planar
walks, pairs of trees). These bijections highlight some important structural properties and
allows one to count, sample randomly and encode maps efficiently. Lastly, we give a new
characterization of an important graph invariant, the Tutte polynomial, by making use of
maps. This characterization allows us to establish bijections between several structures
(spanning trees, sandpile configurations, outdegree sequences) counted by the Tutte
polynomial.

Keywords : planar map, graph, triangulation, counting, bijection, Tutte polynomial,
spanning tree.

1




