N° d’ordre : 3212

THESE

PRESENTEE A

L’UNIVERSITE BORDEAUX I

ECOLE DOCTORALE DE MATHEMATIQUES ET

D’INFORMATIQUE
Par Olivier Bernardi

POUR OBTENIR LE GRADE DE

DOCTEUR

SPECIALITE : INFORMATIQUE

Combinatoire des cartes et polynome de Tutte

Soutenue le : Jeudi 7 septembre 2006

Apres avis des rapporteurs :

Philippe Flajolet ....... Directeur de recherche INRIA
Christian Krattenthaler =~ Professeur

Gilles Schaeffer ......... Chargé de recherche CNRS, HDR

Devant la commission d’examen composée de :

Philippe Flajolet ....... Directeur de recherche INRIA ...
Christian Krattenthaler =~ Professeur .......................
Gilles Schaeffer ......... Chargé de recherche CNRS, HDR
Robert Cori ............ Professeur ............ .. ... ...
Michel Las Vergnas ..... Directeur de recherche CNRS ....
Eric Sopena ............ Professeur ............... ... .....

Mireille Bousquet-Mélou  Directrice de recherche CNRS ...
- 2006 -

Rapporteur
Rapporteur
Rapporteur
Examinateur
Examinateur
Examinateur

Directrice



a mes parents



Remerciements

Je remercie ma directrice Mireille pour son encadrement sans faille, sa gentillesse et sa
bonne humeur. Je lui dois beaucoup et en premier lieu mon gott pour la combinatoire. J’ai
bénéficié de toute la réalité de son sens pédagogique légendaire depuis la clarté hypnotisante
des cours dispensés dans les sous-sols de Jussieu jusqu’aux plus innocentes questions nées
de son scepticisme amusé. Je garderai longtemps pour modele sa curiosité, sa sérénité

scientifique et son aptitude & adoucir les pires calculs par de la fraise sauvage.

Philippe Flajolet, Christian Krattenthaler et Gilles Schaeffer m’ont fait un grand honneur
en acceptant de sacrifier une partie de leur été a la lecture de mon manuscrit. Cette

bienveillance a été précédée d’autres attentions dont je leur suis profondément reconnaissant.

Les travaux présentés dans cette these ont bénéficié de 'ambiance stimulante de mon
laboratoire, le LaBRI, et de I’enthousiasme des membres de ’équipe combinatoire. J’ai aussi
eu la chance de parcourir le monde pour partager connaissances et méconnaissances avec de
nombreux collégues, parmi lesquels Nicolas Bonichon, Srecko Brlek, Philippe Duchon, Eric
Fusy, Emeric Gioan, Ian Goulden, Michel Las Vergnas, Yvan Le Borgne, Pierre Leroux, Jean
Frangois Marckert, Igor Pak, Gilles Schaeffer et Nick Wormald. Chacun d’eux m’a aidé,
encouragé et accueilli avec une remarquable bienveillance. Je remercie en particulier Nicolas
pour l'indulgence avec laquelle il a accepté les délais que la rédaction de ma these a imposés

a nos collaborations.

Je remercie enfin ma bonne étoile et tous ceux qui m’ont aidé a tenir le cap. La route
entre mes premieres fautes d’orthographes et celles contenues dans ce manuscrit a été longue.
Je remercie ma mere, mon pere, mes deux soeurs et mon frere pour la confiance qu’ils m’ont
apportée. Sans eux je n’aurais probablement pas franchi toutes les étapes. Merci a Marta
pour son soutien quotidien pendant mes années de doctorat et en particulier pour m’avoir
supporté alors que je me métamorphosais en lapin d’Alice regardant convulsivement sa montre
et répétant “en retard, en retard”. Je n’oublie pas mes amis du LaBRI et d’ailleurs. Qu’ils

sachent combien leur présence m’a été précieuse.



Résumé

Cette these est constituée d’'un chapitre préliminaire suivi de trois parties. Dans le chapitre
préliminaire nous introduisons les notions et outils fondamentaux, et en premier lieu les
cartes et le polynome de Tutte. Une carte est un plongement sans intersection d’arétes d’un
graphe dans une surface. Les cartes constituent une discrétisation naturelle des surfaces et,
a ce titre, apparaissent aussi bien en informatique (pour le codage d’informations visuelles)
qu’en physique (comme surfaces aléatoires de la gravitation quantique et de la physique
statistique). Les premiers travaux sur les cartes datent du début des années soixante lorsque
W.T. Tutte et ses disciples développerent la méthode récursive pour l’énumération des
cartes. A la méme époque, Tutte découvrit le polynéme qui porte aujourd’hui son nom. Le
polynome de Tutte est un invariant fondamental de la théorie des graphes qui généralise a
la fois le polynéme chromatique et le polynome des flots. Les résultats présentés dans cette
theése mettent en lumiere des propriétés énumératives et structurelles importantes des cartes

et établissent un lien profond entre les cartes et le polynéme de Tutte.

Dans la premiere partie de cette these, nous énumérons trois familles de triangulations
(cartes planaires dont les faces sont homéomorphes a des triangles) par une approche
récursive. Plus précisément, nous démontrons I’algébricité des séries génératrices des familles
de triangulations dont le degré des sommets est au moins égal a une certaine valeur d choisie
parmi {3, 4, 5}. Nous déterminons aussi le développement asymptotique du nombre de
triangulations dans chaque famille. L’originalité de nos résultats tient au fait que nos familles
de cartes sont définies par des restrictions de degrés portant simultanément sur les faces et

sur les sommets.

Dans la seconde partie, nous établissons deux bijections entre des familles de cartes et des
objets dont la combinatoire est plus simple. La premiere bijection établit un lien entre les
triangulations et les chemins de Kreweras, soit les chemins dans le quart de plan constitués
de pas Sud, Ouest et Nord-Est. Nous obtenons, par ce biais, la premier comptage bijectif des
chemins de Kreweras. La deuxieme bijection établit un lien entre les cartes dont un arbre
couvrant est distingué et les couples formés d’un arbre et d’une partition non-croisée. Nous

établissons également un lien entre notre bijection et une construction récursive antérieure



due & Cori, Dulucq et Viennot et définie sur les mélanges de mots de parentheses. Ces
bijections révelent des propriétés structurelles importantes des cartes et permettent leur

comptage, leur codage et leur génération aléatoire.

Dans la troisieme partie, nous établissons une caractérisation du polynoéme de Tutte des
graphes basée sur la structure de carte. Plus précisément, nous définissons les activités de
plongement des arbres couvrants des cartes et nous montrons que le polynome de Tutte est
égal a la série génératrice des arbres couvrants comptés selon leurs activités de plongement. La
caractérisation du polynome de Tutte par les activités de plongement est mise & contribution
pour définir une bijection entre les sous-graphes et les orientations. En spécialisant cette bijec-
tion nous obtenons des interprétations combinatoires pour plusieurs évaluations du polynéme
de Tutte en termes d’orientations et de suites de degrés. Par exemple, nous obtenons une
bijection entre les arbres couvrants (comptés par I’évaluation T (1,1) du polynéme de Tutte)
et les suites de degrés racine-accessibles. Nous établissons également une nouvelle bijection

entre les arbres couvrants et les configurations récurrentes du modele du tas de sable.
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Introduction

0.1 Les cartes

0.1.1 Les cartes planaires

La notion de carte est a la base de tous les travaux présentés dans cette these. En préalable
aux définitions concernant les cartes il faudrait rappeler les définitions classiques de la théorie
des graphes. Nous renvoyons le lecteur aux nombreux ouvrages de référence concernant les
graphes (par exemple [Boll 98] ou [Tutt 84]). Nous nous contenterons de définir les notions

dont le vocabulaire polymorphe est sujet a confusion.

Un graphe est formé d’un ensemble fini de sommets, d’un ensemble fini d’arétes et d’une
relation d’incidence entre sommets et arétes. Chaque aréte est incidente a un ou a deux
sommets qui sont ses extrémités. On peut dessiner un graphe en représentant chaque sommet
par un point et chaque aréte par une ligne reliant ses extrémités. Deux dessins d’un méme
graphe sont représentés en figure 1. Dans le dessin de droite, les arétes ne se rencontrent

qu’au niveau des sommets. Ce type de dessin est appelé plongement.

Figure 1: Deux dessins d’un méme graphe dont les sommets sont u, v, w, x et les arétes sont
a/7b7c?d7e7f'

Seuls certains graphes admettent un plongement dans le plan. On les appellent planaires.
Alternativement au plan, il peut étre agréable de plonger ces graphes dans la spheére. On peut

aisément passer d’un plongement dans la sphere a un plongement dans le plan et inversement
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par projection stéréographique (voir figure 2).

Figure 2: De la sphere au plan : la projection stéréographique.

Une carte planaire est un plongement d’un graphe planaire connexe sur la sphere. Un
exemple de carte est donné en figure 3. Pour étre précis, une carte planaire définit la topologie
du plongement et non sa métrique. Ainsi nos cartes planaires sont définies & déformation
continue pres. Malgré cela, un méme graphe peut donner lieu a plusieurs cartes. Ainsi sur
la figure 4, la carte de gauche et celle du milieu sont identiques mais différentes de celle de

droite qui correspond pourtant au méme graphe.

Figure 3: Ceci est une carte planaire.

Figure 4: La carte de gauche et celle du milieu sont identiques (on peut passer de l'une a

lautre par déformation de la sphére) mais la carte de droite est différente.
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0.1.2 Cartes en genre supérieur

Considérons a présent d’autres surfaces. Nous nous limiterons aux surfaces bidimensionnelles,
compactes, orientables et sans bords que nous appellerons simplement surfaces (voir par
exemple [Moha 01] pour les définitions concernant les surfaces). Ces surfaces sont entierement
caractérisées (& homéomorphisme pres) par la donnée de leur genre (un entier positif). La
surface de genre 0 est la sphere et la surface de genre k est le tore a k trous. Les surfaces de

genre 0, 1 et 2 sont représentées en figure 5.

O @ =

Figure 5: Surfaces de genre 0, 1 et 2.

Considérons le découpage d’une surface induit par le plongement d’un graphe. Les com-
posantes connexes de la surface apres découpage, c’est-a-dire les composantes connexes du
complémentaire du graphe, sont appelées faces. Si les faces sont simplement connexes (i.e.
homéomorphes au disque unité ouvert de R?), le plongement est dit cellulaire. Par exemple,
le plongement de gauche dans la figure 6 est cellulaire mais celui de droite ne l’est pas (une
des faces est un tube). Une carte de genre g est un plongement cellulaire d’un graphe connexe
dans la surface de genre g. La carte est considérée & homéomorphisme (de la surface orien-
tée) pres. Observons que tout plongement d’un graphe connexe (non vide) dans la sphere est
cellulaire. D’autre part, dans la sphere, une transformation est homéomorphe si et seulement
si elle s’obtient par déformation continue de la sphere. La notion de carte planaire coincide

donc avec la notion de carte de genre 0.

.
x A

Figure 6: Un plongement cellulaire et un plongement non cellulaire du graphe complet K.

La notion de face amene a compléter nos relations d’incidences. Notons que les relations
d’incidence entre arétes et sommets peuvent se définir topologiquement : une aréte a est

incidente a un sommet s si la frontiere de a contient s. De méme, une face f est incidente a
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une aréte a (resp. un sommet s) si la frontiere de f contient a (resp. s). Une aréte qui n’est
incidente qu’a un seul sommet (resp. une seule face) est doublement incidente & ce sommet
(resp. cette face). Le degré d’un sommet ou d’une face est le nombre d’arétes qui lui sont

incidentes, comptées avec multiplicité.

On peut également définir la notion de demi-aréte. En supprimant un point intérieur
d’une aréte, on obtient deux demi-arétes, c’est-a-dire deux cellules de dimension 1, chacune
étant incidente a une des extrémités de I'aréte. On définit un coin comme un couple de

demi-arétes consécutives autour d’un sommet.

Notons que le nombre de faces, de sommets et d’arétes sont conservés par homéomorphisme
de cartes, de méme que les relations d’incidence. On définit la caractéristique d’Euler d’une
carte C' par

x(C) = s(C) + f(C) = a(C),

ou s(C), f(C) et a(S) sont respectivement le nombre de sommets, de faces et d’arétes de
la carte C. La caractéristique d’Euler d’une carte ne dépend en réalité que du genre de la
surface dans laquelle elle est plongée. En effet, pour toute carte de genre g la relation d’Euler

s’écrit :
x(C) =2—2g. (1)

Par exemple, la carte représentée en figure 6 (gauche) est de genre g = 1 et a s = 4 sommets,

f = 2 faces et a = 6 arétes. On vérifie donc bien la relation d’Euler y = s+ f—a =0 = 2—2g.

0.1.3 Représentation combinatoire

Jusqu’ici nous avons présenté les cartes de maniere topologique : les plongements cellulaires
définis a homéomorphisme preés. Nous allons maintenant définir les cartes de maniere

combinatoire (discrete) et expliquer I’équivalence des deux définitions.

Considérons une carte C' de genre quelconque. La carte C' est considérée a homéomor-
phisme prés. Un homéomorphisme agit localement comme une déformation continue. Par
conséquent, l'ordre cyclique positif (ou anti-horaire) des arétes autour de chaque sommet est
préservé par homéomorphisme (de la surface orientée). Ainsi toute carte définit un systéme
de rotation c’est-a-dire l'ordre cyclique des arétes autour de chaque sommet. Pour la carte

de gauche en figure 4, le systeme de rotation autour du sommet x est (g, b, a,d).

Sur la figure 4, les plongements de gauche et du milieu correspondent & une méme carte,

leur systeme de rotation sont identiques. Par contre le systeme de rotation de la carte de
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droite est différent ce qui prouve qu’il ne s’agit pas de la méme carte. Nous voyons poindre
une propriété fondamentale des cartes : elles sont entierement déterminées par leur systeme

de rotation. Cette propriété est a la base de la définition combinatoire des cartes.

Théoréme 0.1 [Moha 01, Thm. 3.2.4] 1l y a correspondance bijective entre les cartes et les

graphes connexes munis d’un systéme de rotation.

Le systeme de rotation est parfois appelée plongement combinatoire du graphe. Plutot
que de travailler avec un graphe et un systeme de rotation, il est plus élégant de considérer un
ensemble de demi-arétes, une permutation qui correspond a l’action de tourner autour d’un
sommet et une involution qui correspond a 'action de traverser une aréte (de passer d’une
demi-aréte & la demi-aréte opposée). Ceci nous amene a la définition de carte combinatoire
telle qu’elle a été introduite par Cori et Machi [Cori 92]. Une carte combinatoire C = (H, o, o)
est formée d’'un ensemble de demi-arétes H, d’'une permutation o et d’une involution sans

point fixe a sur H telles que le groupe engendré par o et « agit transitivement sur H.

Etant donnée une carte combinatoire, on définit le graphe sous-jacent dont les sommets
sont les cycles de o, les arétes sont les cycles de « et la relation d’incidence est d’avoir une
demi-aréte commune. La figure 7 représente le graphe sous-jacent a la carte combinatoire
C = (H,o,a) ou l'ensemble des demi-arétes est H = {a,da’,b,0/,c,d,d,d e, e, f,f'}, la
permutation o est (a, f',b,d)(d")(d,e, f,c)(e/,b/, ') en notation cyclique et l'involution «
est (a,a’)(b,b')(c,d)(d,d)(e,e)(f,f). Le graphe sous-jacent & une carte combinatoire est
toujours connexe puisque le groupe engendré par les permutations o et « agit transitivement
sur I'ensemble H des demi-arétes. Graphiquement, on représente les cycles de o par
l'ordre anti-horaire autour des sommets (et on représente les cycles de o par les arétes). Par

conséquent, la carte combinatoire est entierement déterminée par sa représentation graphique.

Une carte combinatoire C' = (H,o0,«) définit un graphe (a réétiquetage des sommets
et des arétes prés) et un systeme de rotation (les cycles de o). Réciproquement, une carte
combinatoire est entierement définie (a réétiquetage des demi-arétes pres) par la donnée
d’un graphe connexe et d’un systeme de rotation. D’apres le théoreme 0.1, il y a équivalence
entre la notion de carte topologique (un plongement cellulaire d’un graphe considéré a
homéomorphisme pres) et la notion de carte combinatoire (une permutation et une involution
sans point fixe agissant transitivement sur un méme ensemble). Lorsque cela est utile nous

parlerons de carte topologique ou de carte combinatoire pour préciser le point de vue adopté.

Considérons une carte combinatoire C' = (H,o0,«). Les cycles de la permutation o«
décrivent le tour (dans le sens négatif) des faces de la carte topologique correspondant a C.
Ainsi, les faces de la carte combinatoire sont en bijection avec les cycles de la permutation

oa. De plus, la relation d’incidence entre faces et arétes (resp. sommets) est d’avoir une
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Figure 7: Deux cartes combinatoires distinctes correspondant au méme graphe.

demi-aréte commune. La caractéristique d’Euler d’une carte combinatoire C' = (H, o, «) est
x(C) = c(o) + c(oa) — c(a)

ou c¢(rm) est le nombre de cycles de la permutation 7. La relation d’Euler (1) permet de
connaitre le genre de la surface sur laquelle est plongée la carte topologique correspondant a

C'. Par exemple, une carte combinatoire C' est planaire si et seulement si x(C) = 2.

0.1.4 Cartes non-étiquetées et enracinements

Jusqu’a présent, nous avons considéré des cartes étiquetées. En effet, nos cartes portent des
étiquettes (sur les sommets et les arétes pour les cartes topologiques, sur les demi-arétes pour
les cartes combinatoires). Nous allons voir comment nous affranchir de 1'étiquetage. Avant

cela, nous définissons 'enracinement des cartes.

On enracine une carte en distinguant une demi-aréte comme étant la racine. De maniere
équivalente, on peut définir 'enracinement d’une carte en distinguant un coin ou encore en
distinguant une aréte racine et en 'orientant. C’est cette derniére convention qui est le plus
couramment utilisée pour représenter ’enracinement. Quatre enracinements d’une méme

carte sont représentés en figure 8.

Mo oho e e

Figure 8: Quatre cartes enracinées.

Nous passons maintenant aux cartes non-étiquetées. Rappelons tout d’abord la notion
d’isomorphisme entre graphes. Un isomorphisme entre deux graphes G et Gy est formé
d’une bijection entre les sommets de G et ceux de G et d’une bijection entre les arétes

de G1 et celles de Gy qui préservent les relations d’incidence (un sommet et une aréte
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sont incidents si et seulement si leurs images le sont). Autrement dit, un isomorphisme
de graphes est un réétiquetage (ou renommage) des sommets et des arétes. De méme, un
isomorphisme de cartes est un réétiquetage de cette carte. Autrement dit, un isomorphisme
entre deux cartes combinatoires C7 = (Hi,01,0q) et Co = (Ha,09,a09) est une bijection
¢ entre Hy et Hy telle que 09 = ¢pooio¢d ' et ap = ¢poag o ¢~ . Un isomorphisme
de cartes combinatoires est représenté en figure 9. Un graphe non-étiqueté est un graphe
considéré a isomorphisme prés. De méme, une carte non-étiquetée est une carte considérée
a isomorphisme prés. Dans la sous-section précédente nous avons vu que les notions de

cartes topologiques non-étiquetées et de cartes combinatoires non-étiquetées sont équivalentes.

Figure 9: Un isomorphisme ¢ entre les cartes C'; et C'5. L’isomorphisme ¢ associe respective-
ment aux demi-arétes a, b, c,d, e, f, g, h de la carte C', les demi-arétes d, c,b,a,e, g, f,h de la

carte Cs.

On s’intéresse maintenant aux relations entre le nombre de cartes étiquetées, non-
étiquetées, enracinées et non-enracinées. Ces relations dépendent des symétries des cartes,
ou encore de leur groupe d’automorphismes. Un automorphisme d’une carte étiquetée est
un isomorphisme de la carte sur elle-méme, c’est-a-dire un réétiquetage qui laisse la carte
inchangée. Un automorphisme est représenté en figure 10. L’ensemble des automorphismes

d’une carte est un groupe (pour la composition) qui contient 'identité.

Figure 10: L’automorphisme ¢ qui aux demi-arétes 1,2,3,4,5,6,7,8,9,10,11,12 associe les
demi-arétes 5,6,7,8,9,10,11,12,1, 2, 3,4 respectivement.

Soit C' = (H,o0,a) une carte combinatoire étiquetée a n arétes. On s’intéresse a ’action
du groupe & des permutations de H interprétées comme des isomorphismes sur la carte C.

On rappelle un résultat classique de la théorie des groupes.
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Lemme 0.2 Soit S un ensemble et I un groupe. Le cardinal de l'orbite d’un élément x de S
par action du groupe I est égal au cardinal du groupe I divisé par le cardinal du sous-groupe

A C I des éléments laissant x invariant (i.e. le stabilisateur de x).

Le groupe &y des permutations de H a cardinal (2n)!. On note ¢ le cardinal du groupe
d’automorphismes de la carte étiquetée C. Par exemple, le groupe d’automorphismes de la
carte représenté en figure 10 a cardinal 3 puisqu’il contient 'identité, 'automorphisme ¢ et
I'automorphisme ¢2. D’apres le lemme 0.2, le nombre de cartes différentes obtenues & partir

(2n)!

de la carte C' par action du groupe &y est ———. Puisque le parametre £ est invariant par

C
isomorphisme de la carte C, il n’y a pas de conflit a définir ce parametre pour une carte

non étiquetée (comme étant le cardinal du groupe des automorphismes pour 'une de ses
(2n)!

N

représentantes étiquetées). Ainsi, une carte non-étiquetée C' a n arétes donne lieu a

C
cartes étiquetées sur 'ensemble H = {1,2,...,2n}. Par exemple, la carte de la figure 10
2n)! 12)!
admet (f—) = % étiquetages différents sur H = {1,2,...,12}.
C
Il y a 2n facons d’enraciner une carte étiquetée a n arétes. Par conséquent, une carte
(2n)!

C non-étiquetée a n arétes donne lieu a 2n - cartes enracinées étiquetées sur H =

C
{1,2,...,2n}. Nous allons montrer (lemme 0.4) que les cartes enracinées n’ont pas d’autres
automorphismes que l'identité. Par conséquent, chaque carte enracinée non-étiquetée a n
arétes donne lieu & (2n)! cartes enracinées étiquetées sur H = {1,2,...,2n}. On en déduit le

résultat suivant.

. . _ 2n
Proposition 0.3 Une carte C non-étiquetée non-enracinée an arétes donne lieu a f_ cartes
C
non-étiquetées enracinées.

2n 12
Par exemple, la carte de la figure 10 donne lieu a — = 3 = 4 cartes non-étiquetées

enracinées différentes. Ces cartes sont représentées en figure 8. Il ne nous reste qu’a prouver

que les cartes enracinées n’ont pas d’autres automorphismes que l'identité.

Lemme 0.4 Le groupe d’automorphismes d’une carte combinatoire étiquetée enracinée est

réduit a l’identité.

Preuve : Soit C = (H,o0,«) une carte combinatoire étiquetée dont hg est la demi-aréte
racine. Soit ¢ un automorphisme de C. Par définition, les permutations ¢ et o commutent
avec ¢ : pour toute demi-aréte h, on a ¢ oo(h) = oo ¢(h) et poa(h) = ao ¢(h). Donc si
une demi-aréte h est telle que ¢(h) = h, alors ¢(a(h)) = o(h) et ¢p(a(h)) = a(h). Puisque
l’automorphisme ¢ préserve la demi-aréte racine hg (¢(ho) = hg) et que les permutations o et
« agissent transitivement sur ’ensemble H des demi-arétes, on obtient ¢(h) = h pour toute

demi-aréte h.
O
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Dans cette these, nous énumérons plusieurs familles de cartes. Nous ne considérerons que
des familles de cartes enracinées et non-étiquetées. Nous venons de voir que le nombre de
cartes étiquetées (enracinées ou non-enracinées) a n arétes (dont ’ensemble des demi-arétes
est H = {1,2,...,2n}) est proportionnel au nombre de cartes non-étiquetées enracinées a
n arétes. Comme le suggere la proposition 0.3, le passage d’un résultat d’énumération du
cas enraciné au cas non-enraciné est délicat. Cependant, pour la plupart des familles de
cartes, la probabilité qu’une carte de taille n ait un groupe d’automorphismes qui ne soit pas
réduit a l'identité décroit exponentiellement vite avec n [Rich 95]. Ainsi, pour la plupart des

familles de cartes, le rapport du nombre ¢,, de cartes non-enracinées de taille n au nombre
1+ o(e")

oul<e<l.
2n

., . , . Cn
c,, de cartes enracinées de taille n vérifie —-
n

0.1.5 Cartes enrichies

Dans cette these nous étudions plusieurs familles de cartes. Les familles de cartes sont
souvent définies par des criteres portant sur le degré des faces ou celui des sommets. Par
exemple, les triangulations (resp. cartes cubiques) sont les cartes dont les faces (resp.
sommets) ont degré 3. Les quadrangulations (resp. cartes tétravalentes) sont les cartes dont
les faces (resp. sommets) ont degré 4. Enfin, les cartes biparties (resp. eulériennes) sont

les cartes dont les faces (resp. sommets) ont degré pair. Des exemples sont donnés en figure 11.

Figure 11: La carte de gauche est une triangulation (qui est aussi tétravalente), la carte du

milieu est une quadrangulation (qui est aussi cubique) et la carte de droite est bipartie.

Il existe de nombreuses relations entre les différentes familles de cartes. Une relation
fondamentale est la dualité. Etant donnée une carte C, on construit la carte duale C* en
placant un sommet de C* dans chaque face de C' et une aréte de C'* a travers chaque aréte de
C. Sur la figure 12, la carte duale est indiquée en traits discontinus. La dualité peut aussi se
définir de maniere combinatoire : la carte duale de la carte C' = (H, 0, ) est C* = (H, a0, ).
Les sommets d’une carte correspondent aux faces de sa carte duale et vice-versa. Ainsi, la
dualité envoie la famille des triangulations (resp. quadrangulations, cartes biparties) sur la
famille des cartes cubiques (resp. tétravalentes, eulériennes).

Les cartes peuvent servir de support & d’autres structures combinatoires, une coloration
ou un arbre couvrant par exemple. D’une certaine maniere, ’ajout d’un arbre couvrant

simplifie souvent la combinatoire des cartes. C’est ce que démontrent les approches bijectives
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Figure 12: Une triangulation (traits continus) et la carte cubique duale (traits pointillés).

initiées par Gilles Schaeffer et basées sur les conjugaison d’arbres [Scha 98]. Au chapitre 2,
nous verrons que ’ajout d’un arbre d’exploration en profondeur sur les cartes cubiques permet
de les mettre en bijection avec une classe de chemins planaires appelés chemins de Kreweras.
Au chapitre 3, nous verrons que I'ensemble des cartes boisées (cartes dont un arbre couvrant

est distingué) est en bijection avec les couples formés d’un arbre et d’une partition non-croisée.

Les cartes peuvent aussi servir de support & des modeles de physique statistique. D’un
point de vue physique, les cartes sont des espaces bidimensionnels discrets. Sur ces surfaces,
on peut placer des particules occupant les sommets et interagissant a travers les arétes. Un
modele simple consiste & considérer que chaque particule (sommet) peut étre dans 'un des
états 1,2,...,q mais que deux particules adjacentes ne peuvent pas étre dans le méme état.
On obtient ainsi les coloriages de la carte en ¢ couleurs. Au chapitre 9, nous amorcerons le
comptage des cartes munies d'un coloriage. Le modéle de Potts [Baxt 82] correspond a la
situation plus générale ou toutes les configurations (attributions d’un état parmi {1,2,...,q}
a chaque particule) sont possibles et ou leur probabilité d’apparition dépend du nombre
d’arétes unicolores, c’est-a-dire dont les deux extrémités ont méme état. Plus précisément,

dans le modele de Potts la probabilité d’une configuration 8 est proportionnelle &
W(0) = exp(K - u(6)) 2)

ou K est un parametre et u(f) est le nombre d’arétes unicolores. Le modele de Potts est un
modele important en physique statistique [Baxt 01, Baxt 82, Bonn 99, Daul 95]. Le modéle
d’Ising (sans champ extérieur) qui correspond au modele de Potts & ¢ = 2 états est lui-méme
largement étudié [Boul 87, Bous 03b]. Nous verrons en section 0.3.2 que la fonction de
partition du modele de Potts sur une carte C' est équivalent au polynéme de Tutte de cette
carte [Fort 72].

Etant donné un modéle de physique statistique, le modele de Potts par exemple, on cherche
a en déterminer le comportement moyen. Le modele fournit une mesure de probabilité W non
normalisée (dont la somme des poids n’est pas égale a 1) sur I'ensemble des configurations.

On appelle fonction de partition le facteur de renormalisation, c’est-a-dire la somme des poids
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des configurations :

Z= > W) (3)
6 configuration

Cette fonction de partition dépend en général d’un ou plusieurs parametres Ki,..., K;
controlant le comportement moyen du modele. Afin d’étudier ce comportement il faut aussi
enrichir la fonction de partition afin de prendre en compte de nouveaux parametres comme,
par exemple, le nombre de particules dans chaque état. On obtient une fonction de partition
a plusieurs variables Z(Kj,...,K;,21,...,2;) dont on peut (théoriquement) déduire les
propriétés moyennes du systeme. Les principales questions concernent l’existence et la nature
des transitions de phase. Une transition de phase est un changement non-analytique des

propriétés moyennes du systéme (considérées comme fonctions des parametres Ky, ..., K;).

Pour l'instant nous avons considéré des modeles de physique statistique a carte fizée.
Cependant, I’étude d’un modele sur une carte fixée est rarement instructive (en particulier,
il ne peut y avoir de transitions de phase). En réalité, les phénomenes que 'on cherche a
appréhender ne se produisent que lorsque ’on approche la limite thermodynamique, c’est-a-
dire quand la taille du systéme (le nombre de particules) tends vers l'infini. Pour étudier
ce comportement limite, on considére généralement une carte réguliere (le réseau carré par

exemple) que l'on fait grossir. La fonction de partition du modele limite est donné par
Ztim = lim Z}/™,
n—oo

ou Z, est la fonction de partition du modele sur la carte réguliere de taille n. Alternativement,
on peut considérer une famille de cartes et faire la moyenne sur les cartes de taille n. On

cherche alors a évaluer la fonction de partition
Z,=> Zo
C

ou la somme porte sur les cartes de taille n et Z¢o est la fonction de partition du modele
sur la carte C. On fait ensuite tendre la taille n des cartes vers l'infini afin d’étudier le
comportement limite du modele. Cet objectif n’est pas dépourvu de sens physique puisque
les réseaux physiques sont rarement (sinon jamais) totalement réguliers. Méme les structures
cristallines contiennent des défauts et il convient de faire la moyenne sur ces défauts. Faire
la moyenne d’un modele sur une famille de cartes constitue I’extréme opposé a 1’étude de ce
modele sur un réseau régulier. On parle alors de modele sur une surface aléatoire. Il semble
qu’il existe une sorte de dualité entre le comportement d’un modele sur un réseau régulier
et le comportement du méme modele sur une surface aléatoire (en particulier, une relation
liant les exposants critiques d’un modele par rapport a 'autre). Cette dualité est connue en
physique sous le nom de relation KPZ d’apres les initiales des physiciens Knizhnik, Polyakov

et Zamolodchikov qui 'ont découverte.
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0.2 Comptons!

La combinatoire énumérative est I'art de compter des objets. En toute généralité, on
considere un ensemble d’objets (des graphes, des arbres, des mots, ...) muni d’une fonction
taille. L’ensemble est dit gradué s’il existe un nombre fini d’objets de taille n. Un ensemble
gradué est aussi appelé classe combinatoire. L’énumération d’une classe combinatoire

consiste a déterminer le nombre d’objets de chaque taille.

Considérons, par exemple, I’ensemble des mots de Dyck. Les mots de Dyck (ou mots de
parenthéses) sont les mots sur I'alphabet {x, T} ayant autant de lettres z que de lettres T et
tels que tout préfixe a au moins autant de lettres x que de lettres T. Par exemple, zxTxZT est
un mot de Dyck. Alternativement, on peut considérer les mots de Dyck comme des chemins
unidimensionnels fait de pas +1 et -1 qui partent de 0, restent positifs et retournent en 0 (on
parle aussi de chemins de Dyck). Les premiers mots de Dyck sont représentés en figure 13.
L’ensemble (infini) des mots de Dyck est muni de la fonction taille définie comme étant la
demi longueur du mot. Il est clair que le nombre C,, de mots de Dyck de taille n est fini. La
suite (Cp)nen est appelée suite de Catalan. Une exploration rapide (voir figure 13) permet
de montrer que Cyp = C; = 1, Cy = 2 et (3 = 5. Le travail de I’énumérateur consiste a
déterminer la valeur de la suite (C},)nen ou, & défaut, son comportement asymptotique. Il
existe des techniques générales pour réaliser ce travail et dont nous tragons les grandes lignes

ci-dessous. Nous verrons, en particulier, comment montrer que le nombre de mots de Dyck

Cn:n—lkl<2:>' )

Auparavant, nous allons tenter de répondre & la légitime question pourquoi compter?

de taille n est

n=0_.
n=1 "\

n:2/\/\//\

Figure 13: Les chemins de Dyck de taille 0, 1, 2 et 3.

0.2.1 Pourquoi compter ?

L’énumération est avant tout un moyen de calculer des probabilités dans des systemes

discrets. Les techniques d’énumération sont donc essentielles aussi bien en mathématique
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qu’en informatique (pour I’étude de la complexité moyenne d’un algorithme) ou en physique

statistique.

Avant cela, le comptage est une premiere étape naturelle dans I’appréhension une classe
combinatoire. En effet, les similitudes numériques constituent souvent des pistes précieuses
pour comprendre la structure des objets étudiés. Considérons, par exemple, I’ensemble des
arbres binaires a n noeuds ou encore ’ensemble des triangulations d’un polygone a n + 2
sommets. L’analyse des premiers cas (figure 14) montre que le nombre d’objets de taille n
coincide avec la suite de Catalan: 1,1,2,5,14,.... Cette coincidence n’en est pas une puisqu’il
existe des bijections bien connues entre les mots de Dyck, les triangulations d’un polygone
et les arbres binaires. Par exemple, on passe des triangulations d’un polygone aux arbres
binaires par dualité (voir figure 15). L’énumération permet donc de découvrir des relations
entre plusieurs classes combinatoires sans rapport évident. Ces découvertes sont facilitées par
I'existence d’encyclopédies de nombres répertoriant les suites connues et leurs interprétations

combinatoires [Sloa].

n=0 <

A\

g
v % ;
= T Yt R

Figure 14: Les arbres binaires et les triangulations du polygone de taille 0, 1, 2 et 3.

Figure 15: Bijection entre arbres binaires et les triangulations de polygone par dualité.

Comme le suggere 'exemple précédent, le comptage exact d’une classe combinatoire est
un bon moyen d’acquérir des informations sur sa structure. De fait, les similitudes numériques

ont constitué le point de départ de deux bijections présentées dans cette these.
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Enumération exacte dans cette thése. Au chapitre 2, nous définissons

une bijection entre les cartes cubiques de taille n (il y en a m(?))

munies d’un arbre d’exploration (il y en a 2™) et les mots de Kreweras de taille

. n 3n
n (il y en a 7@“)4(2”“) (n

entre les cartes boisées de taille n (il y en a C,,Cj,11) et les couples formés d'un

)) Au chapitre 3, nous définissons une bijection

arbre binaire de taille n (il y en a C},) et d’une partition non-croisée de taille
n+1 (il y en a Cy11). Une bijection entre deux classes combinatoires facilite
bien souvent 1’étude de ces classes puisque certains parametres seront plus
facilement accessibles avec 'une ou l'autre des représentations. D’autre part,
nos bijections donnent lieu a des algorithmes de génération aléatoire efficaces.
Un algorithme de génération aléatoire pour une classe combinatoire prend
en parametre une taille et retourne un objet de taille n avec une distribution
uniforme sur l’ensemble des objets de cette taille. Ces algorithmes sont
utiles pour l'étude expérimentale des propriétés statistiques de la classe

combinatoire.

Revenons maintenant aux motivations probabilistes du comptage. Voici quelques ques-

tions auxquelles on peut étre confronté :

1. Quelle est la probabilité pour un mot de longueur n sur 'alphabet {A, C, G, T} d’éviter
le motif TAC?

2. Quelle est la distance moyenne de la racine a une feuille dans un arbre binaire de taille n?
3. Quelle est le nombre de bits nécessaire au codage d’une carte planaire de taille n?

4. Quelle est la distance moyenne entre deux sommets dans une triangulation? Quelle loi

de probabilité suit le degré d’un sommet?

5. Comment varie le nombre d’arétes unicolores dans le modele de Potts sur réseau aléatoire

en fonction du parametre K7

Ces questions se ramenent toutes a des problemes d’énumération d’une classe combinatoire
(dont les objets sont éventuellement pondérés). Elles ont des applications évidentes en
biologie, en informatique ou en physique statistique. Ainsi, savoir que le nombre d’arbres
binaires de taille n est donné par la formule (4), implique que le nombre de bits nécessaire a
leur codage est log(Cy,) = 2n — 3log(n) + o(1). Ainsi le codage direct par un mot de Dyck

est asymptotiquement optimal (2 bits par noeud).

Les questions probabilistes que nous venons d’évoquer ne nécessitent pas toujours un
comptage exact. En pratique, le comptage asymptotique (le développement asymptotique du

nombre d’objets de taille n lorsque n tend vers l'infini) est souvent suffisant. Nous allons
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maintenant présenter quelques outils et méthodes pour le comptage exact ou asymptotique

d’une classe combinatoire.

0.2.2 Comment compter ?

L’approche la plus systématique pour l’énumération d’une classe combinatoire est basée
sur l'utilisation des séries génératrices. Cette approche, dite analytique (ou symbolique)
sera effective des lors que la classe combinatoire admet une description récursive (en terme

d’opérations élémentaires comme l'union, le produit cartésien etc.) [Flaj].

Considérons une classe combinatoire S comptée par la suite (s,)nen (s, est le nombre

d’objets de taille n). A la classe S on associe la série génératrice (ordinaire?)

S(z) = Z sp2".

neN
En notant |.| la fonction taille de la classe S, la série génératrice se définit de maniere
équivalente par S(z) = > g 215, Pour linstant, la série génératrice S(z) est une série

formelle en la variable z et on ne se soucie pas des questions de convergence de cette série
lorsqu’un nombre complexe est substitué a z. On notera [2"]S(z) le coefficient de 2™ dans la
série S(z). L’approche analytique pour I’énumération de la classe S consiste a traduire une

description récursive de la classe S en une équation vérifiée par la série génératrice S(z).

Prenons 'exemple de la classe D des mots de Dyck comptée par la suite de Catalan
(Cn)nen. On cherche d’abord une description récursive de la classe D. Les mots de Dyck
partent de 0, restent positifs et retournent en 0. En considérant le premier retour en 0, on
peut décomposer le mot de Dyck D sous la forme D = xD1ZD5 ou Dy et Do sont deux mots
de Dyck. Cette décomposition est illustrée par la figure 16. On obtient une bijection entre les
mots de Dyck de taille n+1 et les couples de mots de Dyck de taille k et n— k respectivement,
ou k est un entier compris entre 0 et n. Par conséquent la classe D des mots de Dyck admet

la description récursive
D ={e}u{z} xD x {7} x D, (5)

ou € est le mot vide.

La description récursive (5) implique la relation de récurrence

Co=1 et Chp= Z CrCnr, (6)
k=0

1 existe d’autres séries génératrices : exponentielles, de Dirichlet etc. mais nous nous limiterons aux séries

génératrices ordinaires qui sont adaptées a I’énumération des cartes non-étiquetées



16 INTRODUCTION

D,

Figure 16: Décomposition récursive des mots de Dyck.

qui définit la suite de Catalan. On peut écrire (et résoudre) cette relation de récurrence a
I'aide des séries génératrices. Rappelons que la série génératrice C(x) = > -y Cn2" est une
série formelle, c’est-a-dire que la série génératrice n’est guere plus qu'une autre fagon d’écrire
la suite (Cp)nen. L’avantage de cette écriture est que l'on dispose des opérations somme,
produit et substitution définies de fagon usuelle sur les séries. Par exemple, le produit de
deux séries formelles F'(z) = >, o fu2" et G(2) = > cnygn2" est la série formelle H(z) =

FG(2) =Y en (O h—o fkgn—k) 2" Ainsi, la relation de récurrence (6) se traduit par ’équation
C(z) =1+ 2C(2)% (7)

Puisque I’équation (7) est équivalente a la relation de récurrence (6), elle définit la suite de
Catalan de maniére unique. Autrement dit, cette équation admet une unique solution dans
I’espace des séries formelles. Nous verrons plus tard comment résoudre cette équation, c’est-a-
n+r1 (2:) Notons pour l'instant que ’équation (7) capture

de fagon élégante la description récursive (5) de la classe D des mots de Dyck. Cette propriété

dire en déduire la forme close C,, =

est 'un des atouts majeurs de 'approche analytique: toute description récursive d’une classe
combinatoire s’appuyant sur les opérations usuelles (union, produit cartésien, etc.) se traduit
de maniere automatique en une équation satisfaite par la série génératrice correspondante
[Flaj] (sous réserve que les fonctions tailles soient définies de maniere a respecter la de-

scription récursive). La traduction utilise un dictionnaire dont un extrait est donné ci-dessous.

Construction combinatoire Opération sur la série génératrice

Union disjointe : A=BUC A(z) = B(z) + C(2)

Produit cartésien : A =B x C A(z) = B(z) - C(z)

. 1
Suite : A=o0(B) A(z) = =B
d
Pointage : A=DB"* Az) = ZEB(Z)
Substitution :A=Bo(C A(z) = B(C(2))

En traduisant une description récursive d’une classe combinatoire, on obtient une
équation qui définit entierement la série génératrice de cette classe. On appelle rationnelles
les séries formelles de la forme F(z) = P(z)/Q(z) ou P et @ sont des polynémes. On

appelle algébriques les séries formelles solutions d’une équation de la forme P(F(z),z) = 0,
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ou P(z,y) est un polynéme non nul. On appelle différentiellement finies les séries formelles

k
solutions d’une équation de la forme Zpi(z)F @) (2), ol pi(2) est un polynéme en z et F@)
i=0
est la dérivée i®™ de la série formelle F'. Clairement, les séries rationnelles sont algébriques et

on peut montrer que les séries algébriques sont différentiellement finies?. Informellement, on
s’attend a ce que la nature d’une série génératrice (rationnelle, algébrique, différentiellement
finie) reflete la complezité de la classe combinatoire qu’elle énumere [Bous 06].  Ainsi,
les langages rationnels (resp. algébriques) donnent lieu & des séries rationnelles (resp.

algébriques).

L’équation définissant une série génératrice fournit une méthode effective pour le calcul
des coefficients de la série. Par exemple, 1'équation de la suite de Catalan (7) fournit un
algorithme quadratique pour le calcul des n premiers coefficients de la série. En fait, dés que
la série est différentiellement finie (c’est le cas de la suite de Catalan qui est algébrique),
on dispose d’un algorithme calculant les n premiers coefficients en un nombre linéaire

d’opérations arithmétiques [Stan 80b].

On s’intéresse maintenant a la résolution des équations, c’est-a-dire au passage de
I’équation définissant une série génératrice F'(z) a la détermination (exacte ou asympto-
tique) de ses coefficients. Essayons de résoudre I’équation (7) définissant la suite de Catalan.
Puisque cette équation est quadratique, ses deux solutions (dans I'espace des séries de Lau-
rent) s’expriment par radicaux. L'une des deux solutions n’est pas une série formelle car elle
fait intervenir le terme z~!. Cette solution est donc rejetée et on en déduit I'expression de la

série génératrice C(z):

1—+v1—-14z

Clz) = 2z

(8)

Ensuite, le théoréeme du binéme de Newton montre que le développement de la série C'(z)

o E )

neN

s’écrit

Voila donc prouvée l'expression (4) des nombres de Catalan.

La résolution explicite par radicaux n’étant pas vouée a un tres grand avenir nous allons

maintenant introduire d’autres méthodes.

Théoréme 0.5 (Inversion de Lagrange 1770) Soit ®(xz) = ) _y®nz" une série

formelle dont le coefficient constant ¢o est non nul. Il existe une unique série formelle F(z)

2En effet, les dérivées de F s’expriment toutes comme des fractions rationnelles en F' et puisque les puis-
sances de F' ne sont pas linéairement indépendantes (sur le corps des fractions rationnelles en z) les fractions

rationnelles en F' engendrent un espace linéaire de dimension fini.
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solution de l’équation F(z) = z®(F(z)). Cette solution est donnée par

1

F(2)=) faz" o fu= E[:p"—l](@(x))".
n>1
De plus,
271752 = (@)™

On peut facilement mettre I'équation (7) sous la forme prescrite par le théoréme d’inversion
de Lagrange :
C(z)—1=®(C(2) —1) ou &(z)=(z+1)2

et obtenir ainsi une seconde preuve de l’expression des nombres de Catalan :

_ 1o om _ L 20\ 1 2n
Cn_n[m I +2) _n<n—1>_n+1<n>'

Il n’est malheureusement pas toujours possible de se ramener au théoreme d’inversion de

Lagrange ni d’obtenir des résultats d’énumération exacte. Nous verrons bientot (sous-section
0.2.4) comment réaliser ’énumération asymptotique a partir des équations définissant la série
génératrice. Avant cela, nous allons voir comment obtenir des équations définissant la série

génératrice d’une classe combinatoire dont nous n’avons qu’une compréhension partielle.

0.2.3 Les variables catalytiques

Nous avons vu comment traduire une description récursive d’une classe combinatoire en une
équation définissant sa série génératrice. Malheureusement, il est souvent difficile de trouver
une description récursive d’une classe combinatoire. Du moins, les descriptions récursives
naives nécessitent souvent de prendre en compte de nouveaux parametres sur nos objets en

plus de la taille.

Considérons, par exemple, les chemins unidimensionnels fait de pas +1 et -1 qui partent
de 0 et restent positifs. Une description naive consiste a dire qu'un chemin non-vide se
décompose en un chemin plus un pas. On doit juste faire attention a ne pas ajouter un pas
-1 lorsque le chemin est a hauteur 0. Cette approche nous oblige donc a prendre en compte
la hauteur finale des chemins en plus de leur taille. On consideére alors la série génératrice
bivariée F(x,2) =Y fuxx*2", ou fp 1 est le nombre de chemins de taille (longueur) n et de

hauteur k. Les chemins & hauteur 0 sont comptés par F(0, z). Par conséquent, la description
{chemins} = {chemin vide}U{chemins}x {+1}U{chemins & hauteur strictement positive}x{—1},
se traduit par I’équation

F(z,z) =1+ 22F(z,2) + %(F(:U, 2) — F(0,2)). 9)
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Cette équation définit bien la série F'(x,z) comme série formelle en la variable z dont les
coefficients sont polynomiaux en xz. En particulier, la série F(0,z) qui compte les mots de

Dyck (selon leur longueur) est entierement déterminée par I’équation (9).

La variable x qui compte la hauteur du chemin était nécessaire pour écrire 1’équation
(9). La preuve en est que si nous assignons une valeur & x (0 ou 1 par exemple) I"équation
devient insuffisante pour définir F'(x, z). Par analogie a la chimie, Zeilberger [Zeil 00] qualifie
la variable z de catalytique : elle permet d’écrire I’équation mais on aimerait s’en débarrasser

a posteriori.

On cherche & résoudre 1'équation fonctionnelle (9), ¢’est-a-dire & en déduire une équation
pour la série F'(0, z) ne faisant pas intervenir la variable catalytique z. L’équation fonctionnelle
(9) est linéaire en la série bivariée F'(z,z). On peut, dans ce cas particulier, appliquer la
méthode du noyau [Band 02, Bous 00b, Prod 04]. On commence par mettre la série bivariée

en facteur :
(x — 2(1 +2?))F(2,y) = — 2F(0, 2). (10)

On cherche ensuite & annuler le noyau, c’est-a-dire le coefficient N(x,z) = x — 2(1 4+ 22) de
la série bivariée F'(x,z). Plus précisément, on cherche une série X (z) substituable & x dans
I’équation (10) et telle que N(X(z),2) = 0. Dans notre cas, I'’équation X (2)—z(1+X(2)?) =0
admet deux solutions

1— V1 —4z22 14+ V1 — 422

Xi(s) = —H5—— et Xa(z)= o

La série X1(z) = z+o0(z) est substituable a = dans I’équation (10). On obtient alors le systéme

X1(2) —2(1+ X1(2)?) = 0,
Xi1(z) — 2F(0,2) = 0,

et finalement,
F(0,2) =1+ 22F(0, 2)2. (11)

Cette équation définit la série F'(0, z) qui compte les mots de Dyck selon leur longueur. Elle
est équivalente a I'équation (7) régissant la série C(z) qui compte les mots de Dyck selon
leur demi-longueur. Le détour par les variables catalytiques nous a donc permis d’obtenir
I'équation (7) de la suite de Catalan en nous basant sur une approche trés naive de la

combinatoire des mots de Dyck.

La description récursive naive des cartes planaires enracinées consiste a décomposer

une carte en une racine et une ou plusieurs cartes plus petites. Cette approche initiée
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par Tutte dans les années 60 permet I’énumération de nombreuses familles de cartes
[Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63]. Nous verrons en section 0.4 que cette approche
s’adapte aussi au cas des cartes coloriées et plus généralement aux cartes pondérées par leur

polynome de Tutte.

Enumération récursive de cartes dans cette thése. Au chapitre 1,
nous utiliserons la méthode récursive pour l’énumération des familles de
triangulations dont le degré des sommets est au moins égal a une valeur d
choisie parmi {3,4,5}. Nous obtenons des équations fonctionnelles pour les
séries génératrices de ces familles au prix de l'introduction d’une variable
catalytique. La résolution des équations fonctionnelles utilise les méthodes
présentées ci-dessous et mene a une caractérisation algébrique pour la série

génératrice de chacune des familles.

Tutte a montré [Tutt 63] que la série génératrice G(x,z) des cartes planaires enracinées

vérifie I’équation fonctionnelle

G(z,2) =14+ 2%2G(x, 2)* + 22 (azG(x,z) - G(l,z)> .

g (12)
Nous verrons comment obtenir I’équation (12) en section 0.4. Dans cette équation, la variable
principale z se rapporte & la taille (le nombre d’arétes) de la carte et la variable catalytique
x se rapporte au degré de la face externe (a droite de I'aréte racine). L’équation (12) n’étant
pas linéaire en la variable z nous ne pouvons appliquer la méthode du noyau. Nous pourrions
utiliser la méthode quadratique [Brow 65, Goul 83] mais nous préférons présenter une méthode
plus générale qui sera utile au chapitre 1. Cette méthode due a Bousquet-Mélou et Jehanne

[Bous 05b] s’applique & toute équation de la forme
P(G($)’G17"'7Gk7$7z) =0, (13)
ou P est un polynéme en k + 3 variables, G(z) = G(z, 2z) est la série génératrice bivariée et
les séries G; = G;(z) sont des séries univariées. Dans notre cas, k =1, G1 = G(1, 2) et
P(G(x),G1,x,2) = 2%(x — 1)2G(2)* + (2°2z —z + 1)G(z) — 22G1 +z — 1. (14)
On suppose que 'équation (13) définit G(x) = G(z,z) de maniere unique comme série
formelle en z dont les coefficients sont polynomiaux en z. Par exemple, en remplacant x

par 1 dans (14) on obtient G; = G(1). Une fois cette information acquise, on peut calculer

récursivement les coefficients de G(z) = G(z, z). La série G(x) est donc bien définie.

Sous ces hypotheses, on dispose d’une méthode générale pour la résolution de ’équation

(13). La premiere étape consiste & chercher les séries X = X (z) qui satisfont

P{(G(X(Z)),Gl,...,Gk,X(Z),Z) :0, (15)
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olt P| est la dérivée de P par rapport & sa premiére variable. Il est démontré (sous des
hypotheses assez générales) dans [Bous 05b] qu'il existe k séries (de Puiseux) Xi,..., X
substituables & x dans I'équation (13) et satisfaisant I’équation (15). Dans notre cas, I’équation
(15) s’écrit

X =1+2X2+22X%(X - 1)G(X)

et admet bien une solution X; = 1+ o(1) substituable.

En dérivant I’équation (13) par rapport a =, on obtient

d
%G(x) - P{(G(z),Gn,...,Gg,2,2) + Py (G(x),Gh, ... ,Gy,z,2) =0,

out Py, est la dérivée de P par rapport a sa (k + 2)®™me variable. Les séries X;,4 = 1...k

satisfont donc aussi I’équation
P »(G(X),G1,...,G, X, z) = 0. (16)
On obtient donc un systeme de 3k équations polynomiales

P(G(X;),Gy,...,G, Xi, 2) = 0,
Pl/(G(Xi)7G17‘”7Gk7Xi72) = 0, 1=1...k
Pl::+2(G(XZ')7G17"'7Gk>XZ'7Z) = 07

pour les 3k séries inconnues G;, X;(z), G(X;),i = 1...k. Il est démontré que ce systeme
définit bien 'ensemble des séries inconnues (13). La résolution peut se faire en utilisant
des techniques d’éliminations par résultants ou par bases de Grobner. On obtient alors une
équation polynomiale (ne faisant pas intervenir la variable catalytique z) pour chacune des
séries inconnues G;,i = 1... k. Pour ’équation des cartes, la résolution du systéme aboutit a

I’équation :
2722G2 + (1 — 182)Gy + 162 — 1. (17)

0.2.4 Enumération asymptotique

Il n’est pas toujours possible (ni utile) de réaliser ’énumération exacte d’une classe combi-
natoire. Bien souvent, on s’estime heureux avec une énumération asymptotique, c’est-a-dire
un développement asymptotique du nombre d’objets de taille n. La combinatoire analytique
(basée sur les séries génératrices) fournit une collection de méthodes permettant de réaliser
I’énumération asymptotique d’une classe combinatoire lorsque 1'on dispose d’une équation

définissant la série génératrice correspondante.

L’énumération asymptotique demande un changement de perspective sur notre fagon de

considérer les séries génératrices. Jusqu’a présent, nous avons considéré les séries génératrices
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comme des séries formelles. Cependant, si le rayon de convergence de la série génératrice
est non nul, il y a beaucoup & gagner a la considérer comme une fonction holomorphe
sur une partie du plan complexe. En effet, cette perspective permet d’espérer obtenir
des informations sur 'asymptotique des coefficients en étudiant les singularités de la série
génératrice (cet espoir est fondé sur le théoreme des résidus de Cauchy). Cette approche
extrémement féconde est a la base de toutes les techniques d’énumération asymptotique
reposant & la base sur des résultats exacts [Flaj 90, Flaj]. Nous renvoyons le lecteur a
louvrage de Flajolet et Sedgewick [Flaj] (en préparation) pour une exposition tres complete
du domaine. Nous nous contenterons pour notre part de tracer les lignes directrices des

résultats et méthodes qui s’appliquent aux séries génératrices algébriques.

Enumération asymptotique dans cette thése. Au chapitre 1, nous
établissons des équations algébriques caractérisant les séries génératrices de
plusieurs familles de triangulations. Nous obtenons ensuite le développement
asymptotiques du nombre de triangulations dans chaque famille a l’aide des

techniques présentées ci-dessous.

Principes généraux de 1’énumération asymptotique : Avant d’étudier le cas des
séries génératrices algébriques nous rappelons quelques principes généraux pour 'extraction

asymptotique des coefficients d’une fonction holomorphe.

1. Si une fonction holomorphe F(z) = > .y fn2" a une unique singularité dominante p

~™ ou la croissance

(non nulle) les coefficients f, ont une croissance du type f, = 6(n)p
de la fonction 0 est sous-exponentielle. Le facteur sous-exponentiel # est déterminé par le

développement asymptotique de la fonction F(z) au voisinage de p.

On peut se ramener au cas p = 1 en remarquant f,, = [z"]F(z) = p‘"F(%).

2. Il y a une correspondance (préservant les ordres de grandeur) entre développement
asymptotique d’une fonction holomorphe au voisinage de sa singularité dominante et
lasymptotique des coefficients de cette fonction. En effet, sous une condition (A) concernant
le domaine de définition de la fonction holomorphe F', on a l'identité fondamentale (non
triviale) [z"]O(F(z)) = O([z"|F(z)).

3. On dispose d’une échelle de fonctions, les fonctions du type (1 — z)®log(1 — 2)?, dont
on connait 'asymptotique. Par conséquent, sous '’hypothese (A), on déduit 'asymptotique
des coefficients de toute fonction F dont le comportement asymptotique autour de la
singularité dominante 1 est comparable a cette échelle. En répétant I'opération on obtient le

développement asymptotique des coefficients de F'.
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4. Si une fonction holomorphe a un nombre fini de singularités dominantes, leurs contribu-

tions a ’asymptotique des coefficients s’additionnent.

Le cas des séries génératrice algébriques : Nous passons maintenant a des pro-
priétés spécifiques aux séries algébriques. Les coefficients f, d’une série génératrice
F(z) = >, cn fn?" sont des entiers positifs et on supposera (sans grande perte) qu’il existe
une infinité de coefficients non nuls. Dans ce cas, le rayon de convergence p de la fonction
holomorphe F' est fini (et inférieur a 1). De plus, par le théoreme de Pringsheim, le réel
positif p est une singularité (dominante) de la fonction F. Supposons que la série génératrice
F' est algébrique, c’est-a-dire solution d’une équation de la forme P(F(z),z) = 0, ou P(y, z)
est un polynome non nul. Dans ce cas, la fonction F' est une des branches de la courbe
algébrique compleze P(y,z) = 0 (ensemble des couples de complexes (y,z) vérifiant cette
équation). Nous allons voir que I'algébricité de F' fournit des renseignements sur la position

des singularités ainsi que sur la nature de celles-ci.

e Position des singularités :

On considere le discriminant D(z) du polynéme P(z,y) par rapport a la variable y et le
coefficient dominant d(z) de ce polynome. Toute singularité de la fonction F' est une racine
du polynoéme d(z)D(z). En particulier, F' a un nombre fini de singularités dominantes. De
plus, les singularités dominantes de F' peuvent étre déterminées algorithmiquement. Le
principe général consiste a déterminer pour chaque racine zg de d(z)D(z) un développement
de chacune des branches de la courbe P(z,y) = 0 qui soit valide dans un voisinage de z¢. 1l
faut ensuite étre capable de faire correspondre la branche F(z) a 'un de ces développements
pour savoir si zg est une singularité de F'. Un algorithme complet décrivant comment résoudre
ces problemes de branchement est présenté dans [Flaj]. Si F' est une série génératrice, la
positivité des coefficients simplifie grandement les problémes de branchement auxquels on
est confronté. En effet on sait qu’il existe une singularité dominante p qui est un réel positif.
Pour trouver p on peut utiliser un algorithme par balayage permettant de suivre la branche
correspondant a F sur axe des réels jusqu’a sa singularité dominante p. Cet algorithme
ne prend en compte que le classement par ordre croissant des courbes admettant un
développement réel sur ’axe des réels. En effet, les croisements entre branches, I’apparition,
la disparition de branche a développement réel ou le passage de branche par l'infini ne

peuvent se produire que pour des valeurs de z racine du polynoéme d(z)D(z).

e Nature des singularités :
Soit zp une singularité de F'(z). La fonction F(z) admet un développement asymptotique

dans un voisinage de zp coupé d’une demi-droite émanant de zy (en particulier, la condition
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(A) sus-mentionnée est vérifiée). Ce développement prend la forme (de Puiseux) :

F(z) = Z crl(z — 20)k/",
k>ko
ol kg est un entier relatif et x est un entier positif. Ce développement peut étre déterminé
algorithmiquement par la méthode du polygone de Newton implémentée dans la librairie gfun
de Maple [Salv 94] (il faut tout de méme déterminer a quel développement correspond la
branche F'). Toutes les conditions sont réunies pour appliquer les principes généraux de
Iextraction asymptotique des coefficients mentionnés plus haut. Si zg € RT est I'unique
singularité dominante on obtient :

a—1

fn~ Ckyg ng,

ou a = —kg/k et T' est la fonction Gamma. On peut, en fait, déterminer un développement

asymptotique des coefficients f, aussi poussé que nécessaire.

0.3 Polynéme de Tutte et modele de Potts

Le polynéme de Tutte est un invariant fondamental des graphes. Il généralise a la fois le
polynome chromatique (comptant les coloriages) et le polynome des flots (comptant les flots
partout non-nuls). Afin d’introduire le polynéme de Tutte en douceur, nous commengons par

quelques rappels concernant le polynéme chromatique.

0.3.1 Polynéme chromatique

On s’intéresse au nombre de fagons de colorier un graphe avec g couleurs. Par coloriage
nous entendons une attribution d’une couleur parmi {1,...,q} & chaque sommet telle que
deux sommets adjacents soient toujours de couleur différente (il n’est pas exigé que toutes

les couleurs soient utilisées).

Le graphe de gauche en figure 17 admet g(¢—1)(g—2)? coloriages avec ¢ couleurs. En effet,
il y a g couleurs possibles pour le sommet s, apres quoi il reste ¢ — 1 couleurs possibles pour
le sommet ¢, puis ¢ — 2 couleurs pour les sommets u et v. Remarquons, sur cet exemple, que
le nombre de coloriages en ¢ couleurs s’exprime comme un polyndéme en la variable g. Cette
propriété est en fait générale et se prouve facilement par récurrence sur le nombre d’arétes.
Pour cela on introduit deux opérations fondamentales sur les graphes : la suppression et la
contraction d’une aréte. Etant donné un graphe G et une aréte e, on note G\e et G/e les
graphes obtenus respectivement en supprimant l'aréte e et en contractant laréte e (i.e, en

supprimant l'aréte e et en identifiant ses deux extrémités). (La suppression et la contraction
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coincident lorsque l'aréte e est une boucle.) Ces deux opérations sont illustrées en figure 17.

suppression

—/—V

Pere(@) = qlg —1)%(¢ — 2)

contraction
U

Pa(q) = qlqg —1)(q — 2)*
Pare(q) = qlqg—1)(q — 2)

Figure 17: Relation de récurrence pour le polynome chromatique.

Remarquons que les coloriages de G'\e qui ne sont pas des coloriages de G sont ceux pour
lesquels les deux extrémités de 'aréte e sont de méme couleur, c’est-a-dire les coloriages de

G/e. Cette propriété est la clef pour démontrer le résultat classique suivant.

Proposition 0.6 Pour tout graphe G il existe un unique polynéme Pg(q), appelé polynéme
chromatique, tel que pour tout entier q, l’évaluation Pg(q) soit le nombre de coloriages de G
avec q couleurs. De plus, pour toute aréte e du graphe G qui n’est pas une boucle, le polynome

Pg(q) satisfait la relation

Pa(q) = Pane(9) — Paye(q)- (18)

La proposition 0.6 est illustrée par la figure 17. On peut aussi exprimer le polynoéme
chromatique d’un graphe G par sommation sur les sous-graphes couvrants. Un graphe H est
un sous-graphe couvrant de G si les sommets de H sont les sommets de G et les arétes de H
sont un sous-ensemble des arétes de G. Nous ne considérerons que des sous-graphes couvrants

et nous les appellerons simplement sous-graphes.

Proposition 0.7 Le polynéme chromatique du graphe G est égal a

Palg) = Y (—=1)!HlgeH), (19)
HCG
ot la somme porte sur les sous-graphes de G, et les exposants |H| et ¢(H) sont respectivement

le nombre d’arétes et de composantes connexes du sous-graphe H.

La proposition 0.7 peut étre prouvée par une méthode de crible (sieving methods)
[Stan 86, Chap. 2]). On considére les pseudo-coloriages du graphe G, soit 1'attribution d’une
couleur & chaque sommet (sans contrainte sur les sommets adjacents). Pour un sous-graphe

H, on note f(H) le nombre pseudo-coloriages en ¢ couleurs tels que les sommets adjacents
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dans H soient de couleur identique mais que les sommets adjacents dans G et non dans
H soient de couleurs différentes. Pour le sous-graphe sans-aréte Hy le parametre f(Hp)
n’est autre que Pg(q). Pour tout sous-graphe H, il est clair que g(H) = Y ycpca f(K)
compte les pseudo-coloriages en g couleurs tels que les sommets adjacents dat_ls }{ soient

(H) " Le principe du crible (qui consiste

de couleurs identiques. On obtient donc g(H) = ¢°¢
a inverser la matrice donnant les valeurs de g en fonction de celles de h) montre que
fH) = Y perca(—DIEI-HIg(K). En particulier, pour le sous-graphe sans aréte Hy on

retrouve l'expression (19).

L’expression (19) du polynoéme chromatique invite & étudier le polynéme bivarié

Z ol ‘qC(H). Nous verrons en sous-section 0.3.4 qu’il y a équivalence (a changement de
HCG
variables pres) entre cette généralisation du polynéme chromatique et la fonction de partition

du modele de Potts. Ce polynome est aussi équivalent (& changement de variables preés) a un
invariant fondamental de la théorie de graphe que Tutte baptisa polynome dichromatique et

qui est couramment appelé polynome de Tutte.

0.3.2 Polynome de Tutte : définition et spécialisations

Le polynéme de Tutte est un polynoéme bivarié qui généralise a la fois le polynéme chromatique
et le polyndéme des flots et admet de nombreuses autres spécialisations intéressantes. Depuis sa
découverte par William T. Tutte dans les années 1950, plusieurs caractérisations du polynéme
de Tutte ont été proposées. Dans la définition originale de Tutte, son polynome est défini
comme la série génératrice des arbres couvrants comptés selon leurs activités [Tutt 54]. Au
chapitre 5 de cette these nous établissons une nouvelle caractérisation, toujours comme série
génératrice des arbres couvrants. Notre caractérisation s’appuie sur une nouvelle notion
d’activité basée sur la structure de carte combinatoire. Cependant, la caractérisation la plus
rassurante du polynéme de Tutte est comme série génératrice des sous-graphes comptés selon

le nombre d’arétes et de composantes connexes [Bryl 91].

Definition 0.8 Soit G un graphe ayant ¢ composantes connexes et s sommets. Le polynéme
de Tutte du graphe G est

Ta(z,y) = Y (z— 1)o@y — 1)[HIFet)=s, (20)
HCG

ot la somme porte sur les sous-graphes de G, et les exposants |H| et ¢(H) sont respectivement

le nombre d’arétes et de composantes connexes du sous-graphe H.

Par exemple, le graphe complet K3 (le triangle) a 8 sous-graphes. Le sous-graphe sans aréte
a contribution (z — 1)2, chaque sous-graphe & une aréte a contribution (z — 1), chaque sous-

graphe a deux arétes a contribution 1, et le sous-graphe a trois arétes a contribution (y—1). En
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additionnant ces contributions, on obtient T, (z,y) = (z—1)24+3(z—1)+3+(y—1) = 22+z+y.

Il est facile de voir que le polynome de Tutte est multiplicatif sur les com-
posantes connexes : lorsque G est I'union disjointe de deux graphes G et (G, alors
Ta(x,y) = Ta,(x,y) x Ta,(z,y). Cette remarque nous autorise a restreindre notre attention

aux graphes connexes. A partir de maintenant tous nos graphes sont connezes.

Le développement par sous-graphes (20) du polynéme de Tutte prend en compte deux
parametres : le nombre (renormalisé) de composantes connexes ¢(H) — 1 et le nombre cyclo-
matique |H| 4+ ¢(H) — s. Le nombre cyclomatique est le nombre maximal d’arétes pouvant
étre supprimées de H sans augmenter le nombre de composantes connexes. En particulier, le
nombre cyclomatique est nul si et seulement si H est une forét (i.e. sans cycle). Plusieurs
spécialisations du polynéme de Tutte sont immédiates a partir de 'expression (20). Par ex-
emple, T5(2,2) = 2/¢! compte tous les sous-graphes de G (i.e. les sous ensembles d’arétes),
T (1,2) compte les sous-graphes connexes, Tg(2,1) compte les foréts et T(1,1) compte les
arbres couvrants. Le polynome chromatique est lui aussi une spécialisation du polynome de

Tutte puisque 1’équation (19) donne

Pa(q) = Y (=g = ¢°(=1)* Tiz(1 — q,0).
HCG

Le polynoéme de Tutte admet encore bien d’autres spécialisations intéressantes. La voie
la plus rapide (mais aussi la moins satisfaisante) pour démontrer une telle spécialisation est

souvent d’utiliser les relations de récurrence du polynome de Tutte.

Proposition 0.9 Soit G un graphe et e une aréte de G. Le polynome de Tutte satisfait les

relations

To(z,y) =| = - Tge(r,y) si e est un isthme (i.e. sa suppression déconnecte
Y- Tene(T,9) si e est une boucle,

Tare(w,y) + To\e(z,y) sie n'est ni un isthme ni une boucle.

Ces relations permettent, par exemple, de montrer par récurrence que le polynéme chro-
matique est une spécialisation du polynéme de Tutte en utilisant (18). Par une induction
similaire on montre aussi que le polynome des flots est une spécialisation du polynéme de
Tutte.

0.3.3 Polynoéme de Tutte et activités des arbres couvrants

Comme nous ’avons mentionné le polynome de Tutte n’est pas né sous la forme (20) d’une
série génératrice des sous-graphes, mais comme une série génératrice des arbres couvrants.

Historiquement, Tutte définit le polynéome qui porte son nom apres s’étre amusé a réduire

G)?

(21)
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3. Le jeu est

des graphes & néant par une suite de suppressions et de contractions d’arétes
le suivant : on ordonne linéairement ’ensemble des arétes d’un graphe puis on considere les
arétes dans 'ordre décroissant. Si une aréte est un isthme on la contracte, si ¢’est une boucle
on la supprime et dans les autres cas on choisit soit de la contracter soit de la supprimer.

L’ensemble des exécutions possibles est représenté sur un exemple en figure 18.

. o\
aL b OL 810
\b

\b

oo e o . O
/a \a

Figure 18: Jeu des suppressions et contractions pour 'ordre a < b < ¢ < d des arétes.

Observons que pour toute exécution, l’ensemble des arétes contractées est un arbre
couvrant du graphe G. Par exemple ’exécution la plus a gauche en figure 18 correspond a
I'arbre couvrant {a,b}. Pour chaque exécution F, on considere le nombre i(E) de contractions
forcées (laréte était un isthme) et le nombre e(E) de suppressions forcées (l'aréte était
une boucle). Par exemple, pour 'exécution la plus a gauche en figure 18 on a i(EF) = 2 et
e(F) = 0. Si on associe a chaque exécution E le monome 2 E)ye(E) ot que 'on en fait la
somme, on obtient un polynoéme qui n’est autre que le polynéme de Tutte du graphe. Sur
notre exemple, T (7,y) = 22 + z + y + zy + y>. Il mérite d’étre souligné que le polynéme

obtenu ne dépend pas de [’ordre choisi sur les arétes.

Plutot que de caractériser le polynéme de Tutte en terme d’exécutions du jeu de suppres-
sion/contraction, il est sans doute plus agréable de considérer les arbres couvrants associés.
C’est ce que fit Tutte dans l'article fondateur [Tutt 54]. Etant donné un graphe et un arbre

couvrant, on appelle internes les arétes qui sont dans ’arbre et externes les arétes qui n’y

3Cette petite histoire de la pensée est relatée par Ruth Bari en appendice de [Bari 79].
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sont pas. Le cycle fondamental d’'une aréte externe est le cycle qu’elle forme avec les arétes
de larbre. Le cocycle fondamental d’une aréte interne est le cocycle qu’elle forme avec les
arétes qui ne sont pas dans 'arbre. Autrement dit, le cocycle fondamental d’une aréte interne
e est 'ensemble des arétes qui relient les deux sous-arbres obtenus en supprimant ’aréte e
de l'arbre couvrant. Un exemple est représenté en figure 19. On suppose maintenant que les
arétes du graphe sont linéairement ordonnées. Une aréte externe (resp. interne) est active si
elle est minimale dans son cycle (resp. cocycle) fondamental. Pour le graphe de la figure 19,
les arétes actives sont 1, 4, 6 et 9. Avec ces notations, le polynéme de Tutte s’obtient comme

série génératrice des arbres couvrants comptés selon leurs activités.

Théoréme 0.10 [Tutt 54] Soit G un graphe dont les arétes sont linéairement ordonnées. Le

polynéme de Tutte du graphe G est

To(w,y)= >, a'Wy, (22)
A arbre couvrant

ot la somme porte sur les arbres couvrants A de G et i(A) (resp. e(A)) est le nombre d’arétes

internes (resp. externes) actives.

Le développement par arbres (22) du polynoéme de Tutte est d’autant plus étonnant qu’il
implique 'invariance de la somme (22) par rapport a ’ordre choisi sur les arétes. Si on identifie
Parbre couvrant & une exécution du jeu de suppression/contraction, alors les arétes internes
(resp. externes) actives correspondent aux arétes dont la contraction (resp. la suppression)

est forcée durant I'exécution du jeu.

Figure 19: Le cycle fondamental de I'aréte externe 3 est {2,3,11,12}. Le cocycle fondamental
de l'aréte interne 12 est {3,5,6,12}.

Il existe une autre caractérisation du polynéome de Tutte comme série génératrice des
orientations comptées selon leurs activités cycliques [Las 84b]. Cette caractérisation due a
Las Vergnas demande, tout comme celle due a Tutte, d’ordonner linéairement les arétes du
graphe. Un lien entre le développement par orientations de Las Vergnas et le développement
par arbres de Tutte est établi dans [Gioa 05]. Mentionnons enfin, qu’il existe une autre

définition de 'activité externe des arbres couvrants due & Gessel et Wang [Gess 79]. Une
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comparaison entre les différentes caractérisations du polynome de Tutte est effectuée au

chapitre 5, section 5.3.

Le polynéme de Tutte dans cette thése. Au chapitre 5, nous établirons
un autre développement par arbres du polynome de Tutte qui utilise non pas
un ordre linéaire sur les arétes mais une carte combinatoire enracinée. Dans la
perspective du jeu de suppression/contraction, cette nouvelle caractérisation
revient a considérer l'aréte racine a chaque étape de l'exécution (et a choisir
entre la suppression et la contraction). On doit ré-enraciner la carte a chaque
étape de l'exécution. Si la carte C' = (H, o0, «) est enracinée sur la demi-aréte
h et que l'on choisi de contracter (resp. supprimer) l'aréte racine, la racine
de la nouvelle carte sera oa(h) (resp. o(h)). Nous appellerons activité de
plongement la notion d’activité qui résulte de cette nouvelle regle du jeu.
Les activités de plongement nous servent ensuite a définir une bijection entre
les sous-graphes et les orientations (chapitre 6). Cette bijection se spécialise
agréablement a différentes classes de sous-graphes (sous-graphes connexes,
foréts, arbres couvrants etc.). L’étude de ces spécialisations est effectué au
chapitre 7 et permet d’obtenir bijectivement l’interprétation de plusieurs

évaluations du polynéome de Tutte en termes d’orientations.

0.3.4 Polynome de Tutte et modele de Potts

Nous présentons maintenant I’équivalence (découverte par Fortuin et Kasteleyn [Fort 72])

entre le polynoéme de Tutte et la fonction de partition du modele de Potts.

Soit G un graphe dont S est I'ensemble des sommets. On consideére le modele de Potts
(défini en sous-section 0.1.5) sur le graphe G. On rappelle que la fonction de partition du

modele de Potts & g états s’écrit

Za(g, K)= > exp(K -u(6)),
0 :S—{1,...,q}
ou la somme porte sur 'ensemble des configurations 6 (attribution d’un état parmi {1,...,q}

a chaque sommet) et u(#) est le nombre d’arétes unicolores (dont les deux extrémités ont méme
état). Le parametre u(f) peut se définir par une sommation sur 'ensemble A des arétes :
u(8) = d(a),
acA
ou dg(a) vaut 1 si Paréte est unicolore et 0 sinon. En reportant cette expression dans la
fonction de partition et en développant la fonction exponentielle on obtient

Za(q.K) = > JlepEdoh) = > J]@+vd(a)),

0 :S—{1,....q} a€A 0 :S—{1,....q} a€A
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ouv = exp(K)—1. On considere le développement du produit. Chaque terme de ce développe-
ment correspond a un sous-graphe H de GG dont les arétes sont celles pour lesquelles le terme
vdg(a) est pris. On fait ensuite la somme sur toutes les configurations. Le terme correspon-
dant au sous-graphe H est non nul si et seulement si la configuration ¢ est constante sur

c(H)

chaque composante connexe de H. Il y a ¢ telles configurations (¢(H) est le nombre de

composantes connexes de H). On obtient donc

Za(q, K) =) ol¥lgeth), (23)
HCG
On reconnait maintenant le développement par sous-graphes du polynome de Tutte (20), et

on trouve

Ze(q. K
G(qs ):TG($7y)7
qu

pourg=(z—1)(y—1)etv=exp(K)—1=y—1.

La relation (23) entre la fonction de partition du modele de Potts et le polynome de
Tutte explique l'intérét suscité par ce polynéme chez certains physiciens [Baxt 01, Soka 05].
Résoudre le modele de Potts sur réseau aléatoire revient, dans une perspective combinatoire,

a compter les cartes pondérées par leur polynome de Tutte.

0.4 Comptage des cartes

Nous présentons maintenant les principales méthodes utilisées pour le comptage des cartes
planaires. Nous avons déja évoqué le comptage par décomposition récursive a la Tutte
[Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63]. Nous présentons également trois autres méthodes
par substitution [Mull 68, Tutt 62d, Tutt 63], par intégrales de matrices [Bréz 78, Di F 04,
Bout 02, Zvon 97] et par conjugaisons d’arbres [Scha 98, Scha 97, Poul 03a, Bous 03b].

0.4.1 Approche récursive

L’approche récursive pour I'énumération des cartes a été initiée par Tutte au début des
années 60 dans sa célebre série d’articles census [Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63].
Tutte espérait que ’étude des cartes, qui au contraire des graphes planaires contiennent une
description explicite de leur planarité, le meénerait a une preuve du théoreme des quatre
couleurs. Si cet espoir a été décu, la méthode mise au point par Tutte et ses disciples permit
I’énumération de nombreuses familles de cartes. C’est cette méthode que nous utiliserons
au chapitre 1 pour énumérer trois familles de triangulations dont les sommets sont de degré
supérieur a 3, 4 et 5 respectivement. La méthode récursive pour I’énumération d’une famille
de cartes enracinées consiste, tout simplement, a exprimer ce que 1’on obtient en supprimant

l'aréte racine d’une carte.
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Considérons, par exemple, la classe C des cartes planaires enracinées. La fonction taille,
notée |.|, est le nombre d’arétes. La description récursive de la classe C est représentée en
figure 20. On distingue deux cas suivant que ’aréte racine est un isthme ou non. Si l'aréte
racine est un isthme, la carte se décompose en un couple de cartes enracinées (figure 21).
Sinon, la carte obtenue en supprimant I’aréte est une carte dont un coin de la face externe (a

droite de la racine) est distingué (figure 22).

Figure 20: Description récursive des cartes planaires enracinées par suppression de la racine.

OO — O O

Figure 21: Cas 2: 'aréte racine est un isthme.

Figure 22: Cas 2: l'aréte racine n’est pas un isthme.

Pour traduire la description des cartes par suppression de la racine il est nécessaire de
prendre en compte le degré de la face externe (i.e. le nombre de coins). On considere donc la
série génératrice bivariée

G(z,2) = Z 27 (C)IC,
CceC
ou f(C) est le degré de la face externe de la carte C. La description récursive des cartes
planaires par suppression de la racine se traduit par I’équation fonctionnelle

2Gz,z) - G(l,z)> |

r—1

G(x,2) =14 2%2G(x,2)* + a2 <

Nous avons vu comment résoudre cette équation en sous-section 0.2.3 afin d’obtenir I’équation

algébrique (17) pour la série G1 = G(1, 2).

Au lieu de supprimer la racine, on peut essayer de la contracter. On obtient alors une

autre description récursive des cartes qui est représentée en figure 23. On distingue deux cas
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suivant que l'aréte racine est une boucle ou non. Si I'aréte racine est une boucle, la carte se
décompose en un couple de cartes enracinées. Sinon, la carte obtenue en contractant la racine
est une carte dont un coin du sommet racine (I'origine de I’aréte racine) est distingué. Pour
traduire la description par contraction de la racine il est nécessaire de prendre en compte le

degré du sommet racine. En considérant la série génératrice bivariée
s(C) ,|C
z) = Z y* (O IC1
ceC
ou s(C) est le degré du sommet racine de la carte C, on obtient

GEELR))

H(y,2) =1+ y*2H(y,2)* +y2 —

Cette équation est identique a la précédente (au renommage pres des variables et des séries).
Ceci s’explique par le fait que la famille C des cartes est stable par dualité et que la suppression

de aréte racine d’une carte revient a la contraction de ’aréte racine de sa duale.

Figure 23: Description récursive des cartes planaires enracinées par contraction de la racine.

Rappelons que le polynéme chromatique et le polynéome de Tutte admettent une définition
récursive par suppression et contraction d’arétes (voir (18) et (21)). Par conséquent, savoir
décrire une famille de cartes a la fois par suppression et par contraction de la racine permet
d’envisager I'obtention d’équations pour les cartes pondérées par leur polynéome chromatique
ou par leur polynome de Tutte. Pour la classe C des cartes planaires enracinées, I’approche

récursive permet de montrer [Tutt 71] que les séries génératrices

Qw,y) = Qw,9,2,0) = > 2Oy 'CPCA(A),

ceC

et

F(z,y) = F(z,y,z,mv) =y o/ Oy DT (u,0),
CceC

vérifient respectivement les équations fonctionnelles

xQ(x, y) — Q(L y))

r—1

Qay) = 1+yz(®(A—1) + 2)Q(z, 1)@ 1) + yzA (

e Q(, 9)Q(Ly) — ayz (yQ(x’Z)_‘lQ(“’“’ ”) , (24)



34 INTRODUCTION

et
F(z,y) = l+azyz(ap—1)F(z,y)F(z,1) + xyz (mF(x?Zg/c)—}F(l’y))

La description récursive des cartes pondérées par leur polynome chromatique ou par
leur polynome de Tutte nous a contraints a utiliser non pas une mais deuxr variables
catalytiques. Au contraire des équations a une variable catalytique que l'on sait ré-
soudre de maniere systématique [Bous 05b], les équations & deux variables catalytiques
s'averent trés coriaces. A ce jour, il existe quelques équations linéaires (en la série
trivariée) qui ont été résolues par Bousquet-Mélou [Bous 02, Bous 03a] et une unique
équation non-linéaire qui a été résolue par Tutte. La résolution due a Tutte concerne
le comptage des triangulations pondérées par leur polyndéme chromatique. Ce tour
de force lui a tout de méme demandé pres de dix articles étalés sur autant d’années
[Tutt 73a, Tutt 73b, Tutt 73c, Tutt 73d, Tutt 74, Tutt 78, Tutt 82a, Tutt 82b, Tutt 95].
Au chapitre des perspectives de cette thése, nous donnerons un apercu de la méthode de
résolution de Tutte. Il est tentant d’essayer d’appliquer cette méthode pour compter les
cartes planaires pondérées par leur polynome chromatique, voire leur polynome de Tutte.
Du point de vue de la physique statistique, cette tache revient a la résolution du modele de

Potts sur réseau aléatoire.

0.4.2 Approche par substitution

Le comptage de cartes peut aussi étre réalisé par des techniques de substitution
[Mull 68, Tutt 62d, Tutt 63]. Plus précisément, l'approche par substitution permet,
dans certains cas, de transférer des résultats énumératifs d’une famille de cartes a une autre.
Supposons, par exemple, que 'on cherche a énumérer les cartes planaires enracinées dont
les sommets sont de degré supérieur ou égal a 2. On peut alors utiliser une approche par

substitution pour se ramener au cas des cartes générales.

Par commodité, nous allons relaxer quelque peu notre contrainte sur le degré des sommets
et étudier la classe B des cartes dont les sommets non-incidents a l’aréte racine sont de degré
supérieur ou égal a 2. En prenant une carte quelconque et en supprimant récursivement tous
les sommets de degré 1 (qui ne sont pas incidents & I’aréte racine) on obtient une carte dans
la classe B. Cette opération est représentée en figure 24. En toute généralité, une carte
planaire C' se décompose en une carte B de la classe B appelé noyau et en une suite d’arbres
enracinés (éventuellement vides) qui viennent se greffer sur les coins de la carte B. La classe

C des cartes est donc en bijection avec les couples formés d’une carte B € B (leur noyau) et
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d’une suite de 2|B| arbres enracinés (la carte B a 2|B| coins). Cette bijection se traduit par

I’équation
G1(2) =1+ B(zA(2)?). (26)

liant la série génératrice A(z) de la classe A des arbres enracinés et les séries génératrices
B(z) et G1(z) des classes B et C :

® ®

-

\.o

Figure 24: Elagage des sommets de degré 1.

Nous connaissons déja une équation pour la série génératrice G1(z) des cartes générales
(17) . En y substituant ’équation (26) on obtient

2722 B(t)? 4 (1 — 182z — 542%) B(t) — 2+ 34z + 272* = 0 (27)

ot t = t(z) = zA(2)2. On sait aussi que la classe A des arbres enracinés est comptée par la
suite de Catalan. Elle vérifie donc 'équation A(z) = 1+ 2A(z)2. Par élimination (résultant),

on montre que la variable z et la série t = t(z) = zA(z)? sont liés par I’équation
z2—t+ 22t 4 2t? = 0. (28)

Par élimination (résultant) on montre aussi que B(t) et ¢ sont liés par I’équation
27B(t)*? + (t* — 14¢® — 84¢% — 14t + 1) B(t) — 2t* + 261> + 83t + 26t —2=0.  (29)

Il ne reste qu’a réaliser que la série t = t(z) peut étre considérée comme une variable
muette dans I’équation (29). En effet, 'équation (28) montre qu'’il existe une série z = z(u)
telle que t(z(u)) = u. L’équation (29) est donc une équation algébrique dont on peut vérifier
qu’elle définit bien la série B(t) de maniére unique comme série formelle en ¢. On pourra aussi
effectuer ’énumération asymptotique de la classe B par les méthodes décrites en sous-section
0.2.4.

0.4.3 Approche par intégrales de matrices

Dans les années 70, un groupe de physiciens développérent une méthode radicalement

nouvelle pour 'énumération des cartes planaires [Bréz 78]. Cette méthode, extrémement
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efficace (mais pas toujours rigoureuse), est basée sur des calculs d’intégrales de matrices
qui s’inspirent de la gravité quantique. L’article [Zvon 97] constitue une tres agréable

introduction au lien entre les cartes et les intégrales de matrices.

Par intégrale de matrices nous entendons une intégrale sur l'espace des matrices her-
mitiennes. Une matrice hermitienne M = (mpy;)1<k,i<n de taille n est spécifiée par les n?
coefficients réels z; j; = Re(m; j),1 <i < j<nety;; =Im(m;;),1 <i<j<n. Lespace des

matrices hermitiennes est identifié a I'espace vectoriel R™" et est muni de la mesure gaussienne

dv(M) = (20) /2 exp(tr(M?) /2)dM ott daM =[] dwiy ] dyige

1<i<j<n 1<i<j<n
On sait que l'intégrale des polynéomes dans un espace & mesure gaussienne peut se décom-
poser en une somme sur les couplages de Wick. Avec la mesure v(M), les couplages de
Wick ont une contribution égale a 0 ou 1. De plus, 'interprétation des couplages de Wick
par les diagrammes de Feynman montre que les couplages ayant une contribution 1 peuvent
s’identifier au pseudo-cartes (des cartes combinatoires qui ne sont pas forcément connexes).
A un polynome correspond donc un ensemble de pseudo-cartes. Le comptage d’une famille
de cartes se ramene au calcul de l'intégrale d’un polynome, ou plutét d’une série, judicieuse-
ment choisie. Par exemple, pour énumérer les cartes planaires tétravalentes l'intégrale a
calculer est [ exp(tr(zM*))dv(M). Plus exactement, cette intégrale compte les pseudo-cartes
tétravalentes étiquetées de genre quelconque. La série génératrice T'(z) des cartes planaires
tétravalentes est en fait donnée par

T(z) = 2I'(2) ou I(z) = lim %log/exp(tr(zM4/n))du(M).

n—oo N

(Le logarithme permet de passer des pseudo-cartes aux cartes et la limite permet de se débar-
rasser des cartes de genre supérieur). Il ne reste qu’a calculer 'intégrale. Ici commencent
les pires désagréments pour le mathématicien consciencieux car les intégrales en question
divergent... Mais les physiciens d’expérience savent comment s’en départir et arrivent a
énumeérer de nombreuses familles de cartes. Nous renvoyons le lecteur & [Di F 04, Eyna 01]

pour les calculs d’intégrales de matrices.

0.4.4 Approche bijective par conjugaison d’arbres

La derniére (mais non la moindre) des approches que nous présentons est une approche
bijective récente basée sur les conjugaisons d’arbres. Les premieres approches bijec-
tives pour le comptage des cartes sont dues a Cori et Vauquelin [Cori 81] et & Arques
[Arqu 86]. Mais ce n’est que récemment, notamment avec les travaux de Schaeffer, que
I’approche bijective s’est généralisée au point de pouvoir prétendre au titre de méthode

[Scha 98, Scha 97, Poul 03a, Bous 03b]. La premiere étape pour ’énumération d’une famille
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F de cartes par conjugaison d’arbres consiste a définir un arbre couvrant canonique pour
chaque carte de cette famille. On considére ensuite la classe des arbres bourgeonnants
non-enracinés obtenus en prenant une carte munie de son arbre couvrant canonique et en
coupant chaque aréte externe en deux demi-arétes ou bourgeons. Si la magie s’opere, la
famille F est en bijection avec la classe des arbres bourgeonnants non-enracinés ainsi obtenus

(ou, plus généralement, dans une relation k a p).

A titre d’exemple, nous allons utiliser ’approche par conjugaison d’arbres afin de montrer

que le nombre de cartes tétravalentes enracinées a n sommets est

=2 3 <2:> (30)

n+2n+1

Cet exemple (et les dessins qui ’accompagnent) est tiré de [Scha 98]. On consideére la classe des
arbres binaires. Les feuilles sont considérées comme des demi-arétes et on enracine ’arbre sur

une des feuilles. Nous avons mentionné en sous-section 0.2.1 que les arbres binaires enracinés

nombre de Catalan C,, = n+r1(2: ) Un arbre binaire

enraciné a 8 noeuds est représenté en figure 25 (gauche). On enrichit les arbres binaires en

a n noeuds sont comptés par le n°™°

greffant une demi-aréte bourgeon a chaque noeud. Il y a trois coins possibles pour chaque
3’)1/
ntl
Un tel arbre est représenté en figure 25 (milieu).

bourgeon et donc a,, = 3"C,, = (2”) arbres binaires bourgeonnants enracinés a n noeuds.

n

Figure 25: Gauche: un arbre binaire enraciné. Milieu: un arbre binaire bourgeonnant enrac-

iné. Droite: 'appariement des bourgeons et des feuilles.

On clét un arbre bourgeonnant en appariant chaque bourgeon a une feuille. Plus précisé-
ment, on considere 'ordre cyclique des bourgeons et des feuilles obtenu en faisant le tour de
l’arbre dans le sens anti-horaire (la racine ne joue pas de role particulier). Il y a n bourgeons
pour n + 2 feuilles. Si un bourgeon est suivi par une feuille on apparie ce bourgeon et cette
feuille puis on recommence jusqu’a épuisement des feuilles. Apres cloture il reste 2 feuilles.
L’arbre bourgeonnant est dit équilibré si la racine est 1'une de ces deux feuilles. L’arbre
représenté en figure 25 n’est pas équilibré puisque la racine a été appariée a une feuille par
lopération de cloture. Le principe de conjugaison (consistant a considérer les arbres non-

2 3" (2n

Prars R n) arbres équilibrés a n sommets. Lorsque

s 5e . 2 _
enracinés) montre qu'il existe T2 ln =



38 INTRODUCTION

I’arbre est équilibré, on joint la feuille racine et 'autre feuille non-appariée pour créer I'aréte
racine. On peut montrer [Scha 98] que l'opération de cléture établit une bijection entre les

arbres équilibrés et les cartes tétravalentes ce qui prouve la formule (30).

Le comptage bijectif de cartes dans cette these. L’approche
bijective par conjugaison d’arbres permet d’énumérer la famille des triangu-
lations. Nous établirons au chapitre 2 une bijection alternative qui permet
I’énumération des triangulations. Notre bijection s’écarte du schéma classique
par conjugaison d’arbres. Une des différences notables tient au fait que
nous associons non pas un arbre couvrant canonique & chaque triangulation
mais toute une famille d’arbres. Plus précisément, nous associons 2" arbres
couvrants a chaque triangulation de taille n. D’autre part, le schéma de
cloture des arbres que nous utilisons est assez différent de celui présenté
ci-dessus.

Au chapitre 3, nous présentons une bijection permettant le comptage des
cartes boisées, c’est-a-dire des cartes dont un arbre couvrant est distingué. Ce
résultat a des liens assez étroits avec les bijections par conjugaison d’arbres.
Notre bijection fait correspondre a chaque carte boisée un couple formé
d’'un arbre et d’une partition non-croisée. Intuitivement, la partition non
croisée constitue un mode d’emploi pour replier 'arbre en une carte. L’une
des étapes de notre bijection consiste a associer une orientation de la carte
a chaque arbre couvrant. Cette idée, qui apparaissait déja dans [Fusy 03],
semble prometteuse. De fait, les orientations apparaissent de plus en plus
régulierement comme outils fondamentaux pour la caractérisation et le

comptage bijectif de familles de cartes [Fray 01, Fusy 05a, Fusy 05b, Scha 97].
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Chapter 1

Triangulations with high vertex

degree

Abstract: We solve three enumerative problems concerning families of planar maps.
More precisely, we establish algebraic equations for the generating function of loopless
triangulations in which all vertices have degree at least d, for a certain value d chosen in
{3, 4, 5}.

The originality of the problem lies in the fact that degree restrictions are placed both on
vertices and faces. Our proofs first follow Tutte’s classical approach: we decompose maps
by deleting the root-edge and translate the decomposition into an equation satisfied by the
generating function of the maps under consideration. Then we proceed to solve the equation

obtained using a recent technique that extends the so-called quadratic method.

Résumé: Nous énumérons trois familles de cartes planaires. Plus précisément, nous
démontrons des résultats d’algébricité pour les familles de triangulations sans boucle dont le
degré des sommets est au moins égal & une certaine valeur d choisie parmi {3, 4, 5}.

L’originalité de nos résultats tient au fait que les restrictions de degrés portent simultanément
sur les faces et les sommets. Nous adoptons, dans un premier temps, la démarche classique
de Tutte : nous décomposons nos cartes par suppression de la racine et traduisons cette
décomposition en une équation portant sur la série génératrice correspondante. Nous
résolvons ensuite ’équation obtenue en utilisant des techniques récentes qui généralisent la

méthode quadratique.
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1.1 Introduction

The enumeration of planar maps (or maps for short) has received a lot of attention in the
combinatorists community for nearly fifty years. This field of research, launched by Tutte, was
originally motivated by the four-color conjecture. Tutte and his students considered a large
number of map families corresponding to various constraints on face- or vertex-degrees. These
seminal works, based on elementary decomposition techniques allied to a generating function
approach, gave rise to many explicit results [Tutt 62b, Tutt 62a, Tutt 62c, Tutt 63, Mull 65].
Fifteen years later, some physicists became interested in the subject and developed their own
tools [Bess 80, Bréz 78, Hoof 74] based on matrix integrals (see [Zvon 97| for an introduc-
tion). Their techniques proved very powerful for map enumeration [Bout 02, Di F 04]. More
recently, a bijective approach based on conjugacy classes of trees has emerged providing new
insights on the subject [Scha 98, Bous 00a, Bous 03b, Poul 03a].

However, when one considers a map family defined by both face- and vertex-constraints,
each of the above mentioned methods seems relatively ineffective and very few enumerative
results are known. There are two major exceptions. First, and most importantly for this
chapter, the enumeration of loopless triangulations (faces have degree 3) in which all vertices
have degree at least 3 and of 3-connected triangulations in which all vertices have degree
at least 4 were performed by Gao and Wormald using a compositional approach [Gao 02].
More recently, the enumeration of all bipartite maps (faces have an even degree) according
to the degree distribution of the vertices was accomplished using conjugacy classes of trees
[Scha 97, Bous 03b]. This result includes as a special case the enumeration of bipartite
cubic maps (vertices have degree 3) performed by Tutte via a generating function approach
[Tutt 62¢, Tutt 73c].

In this chapter, we consider loopless triangulations in which all vertices have degree at
least d, for a certain value d chosen in {3, 4, 5}. We establish algebraic equations for the
generating function of each of these families. We also give the asymptotic behavior of the
number of maps in each family. It is well-known that there is no triangulation in which
all vertices have degree at least 6 (we shall prove this fact in Section 1.2). Hence, we have

settled the problem of counting triangulations with "high’ vertex degree entirely.

As mentioned above, the loopless triangulations in which all vertices have degree at least
3 have already been enumerated by Gao and Wormald [Gao 02]. Our proof differs from
theirs. Let us also mention that several families of triangulations defined by connectivity
constraints have been enumerated, for instance: the general triangulations [Gao 91b],
the loopless triangulations (i.e. non-separable triangulations) [Mull 65, Poul 03a], the

3-connected triangulations (i.e. triangulations without multiple edges) [Tutt 62b, Poul 03b],
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the 4-connected [Brow 64] and the 5-connected triangulations [Gao 01]. Observe that the
vertices of k-connected triangulations have degree at least k (except for the degenerated case
of the triangle K3). However, there is no equivalence between connectivity constraints and
vertex-degree constraints. In the present chapter, we shall focus on loopless triangulations
but our approach can also be adapted to some other families of triangulations, in particular

to general triangulations as well as 3-connected ones.

Our proofs first follow Tutte’s classical approach, which consists in translating the
decomposition obtained by deletion of the root-edge into a functional equation satisfied by
the generating function. It is not clear at first sight why this approach should work here.
As a matter of fact, finding a functional equation for triangulations with vertex degree at
least 5 turns out to be rather complicated. But it eventually works if some of the constraints
are relaxed at this stage of the solution. Our decomposition scheme requires to consider the
set of near-triangulations and to take into account, beside the size of the map, the degree
of its root-face. Consequently, in order to write a functional equation, we need to consider
a bivariate generating function. We end up with an equation for the (bivariate) generating
function in which the variable counting the degree of the root-face cannot be trivially
eliminated. We then use a recent generalization of the quadratic method to get rid of the
extra variable and compute an algebraic equation characterizing the univariate generating
function (see [Brow 65] and [Goul 83, Section 2.9] for the quadratic method and [Bous 05b]

for its generalization).

This chapter is organized as follows. In Section 1.2, we recall some definitions on planar
maps and introduce the main notations. In Section 1.3, we recall the classic decomposition
scheme due to W.T. Tutte (by deletion of the root-edge). We illustrate this scheme on the
set of unconstrained non-separable near-triangulations. In Section 1.4, we apply the same
decomposition scheme to the sets of near-triangulations in which any internal vertex has
degree at least 3, 4, 5. We obtain functional equation in which the variable x counting the
degree of the root-face cannot be trivially eliminated. In Section 1.5, we use techniques
generalizing the quadratic method in order to get rid of the variable z. We obtain algebraic
equations for triangulations in which any vertex not incident to the root-edge has degree at
least 3, 4, 5. In Section 1.6, we give algebraic equations for triangulations in which any
vertex has degree at least 3, 4. Lastly, in Section 1.7 we study the asymptotic behavior of

the number of maps in each family.
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1.2 Preliminaries and notations on maps

We begin with some vocabulary on maps. A map is a proper embedding of a connected
graph into the two-dimensional sphere, considered up to continuous deformations. A map
is rooted if one of its edges is distinguished as the root-edge and attributed an orientation.
Unless otherwise specified, all maps under consideration in this chapter are rooted. The
face at the right of the root-edge is called the root-face and the other faces are said to be
internal. Similarly, the vertices incident to the root-face are said to be external and the others
are said to be internal. Graphically, the root-face is usually represented as the infinite face
when the map is projected on the plane (see Figure 26). The endpoints of the root-edge are
distinguished as its origin and end according to the orientation of the root-edge. A map is
a triangulation (resp. mnear-triangulation) if all its faces (resp. all its internal faces) have
degree 3. For instance, the map of Figure 26 is a near-triangulation with root-face of degree
4. Lastly, a map is non-separable if it is loopless and 2-connected (the deletion of a vertex
does not disconnect the map). For instance, the map in Figure 26 is non-separable. Observe
that for a triangulation it is equivalent to be loopless or non-separable but this is not true for

near-triangulations.

Figure 26: A non-separable near-triangulation.

In what follows, we enumerate 3 families of rooted non-separable triangulations. We

recall some basic facts about these maps.

e By definition, a non-separable triangulation has no loop. Therefore, the faces of non-
separable triangulations are always homeomorphic to a triangle: they have three distinct

vertices and three distinct edges.

e Consider a triangulation with f faces, e edges and v vertices. Given the incidence relation
between edges and faces, we have 2e = 3f. Hence, the number of edges of a triangulation is a
multiple of 3. Moreover, given the Euler relation (v — e + f = 2), we see that a triangulation

with 3n edges has 2n faces and n + 2 vertices.

e Observe that a non-separable map (not reduced to an edge) cannot have a vertex of degree
one. Let us now prove, as promised, that any triangulation has a vertex of degree less than 6.

Moreover, we prove that this vertexr can be chosen not to be incident to the root-edge. Indeed,
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if all vertices not incident to the root-edge have degree at least 6 the incidence relation be-
tween vertices and edges gives 2e > 6(v —2) +4. This contradicts the fact that triangulations
with e = 3n edges have v = n + 2 vertices. This property shows that, if one considers the sets
of non-separable triangulations with vertex degree at least d, the only interesting values of d

are d = 2 (which corresponds to unconstrained non-separable triangulations) and d = 3, 4, 5.

Let S be the set of non-separable rooted near-triangulations. By convention, we exclude
the map reduced to a vertex from S. Thus, the smallest map in S is the map reduced to a
straight edge (see Figure 27). This map is called the link-map and is denoted L. The vertices
of other maps in S have degree at least 2. We consider three sub-families T, U, V of S. The
set T (resp. U, V) is the subset of non-separable near-triangulations in which any internal
vertex has degree at least 3 (resp. 4, 5). For each of the families W = S, T, U, V, we consider
the bivariate generating function W(z, z), where z counts the size (the number of edges) and
x the degree of the root-face minus 2. That is to say, W(z) = W(x, z) = Zmd an,qx?z" where
ap,q is the number of maps in W with size n and root-face of degree d + 2. For instance,
the link-map L, which is the smallest map in all our families, has contribution z to the
generating function. Therefore, W(z) = z+o0(z). Since the degree of the root-face is bounded
by two times the number of edges, the generating function W(x, z) is a power series in the
main variable z with polynomial coefficients in the secondary variable x. For each family
W =S8, T, U, V, we will characterize the generating function W(z) as the unique power

series solution of a functional equation (see Equation (32) and Propositions 1.1, 1.2, 1.3).

Figure 27: The link-map L.

We also consider the set F of non-separable rooted triangulations and three of its subsets
G ,H K. The set G (resp. H, K) is the subset of non-separable triangulations in which
any vertex not incident to the root-edge has degree at least 3 (resp. 4, 5). As observed above,
the number of edges of a triangulation is always a multiple of 3. To each of the families
L=F, G, H, K, we associate the univariate generating function L(t) = )", ant™ where a,,
is the number of maps in L with 3n edges (2n faces and n + 2 vertices). For each family we

will give an algebraic equation satisfied by L(¢) (see Equation (34) and Theorems 1.4, 1.5, 1.6).

There is a simple connection between the generating functions F(¢) (resp. G(t), H(t),
K(t)) and S(x) (resp. T(x), U(z), V(x)). Consider a non-separable near-triangulation distinct
from L rooted on a digon (i.e. the root-face has degree 2). Deleting the external edge that
is not the root-edge produces a non-separable triangulation (see Figure 28). This classical

mapping (see e.g. [Gao 9la, Tutt 95]) establishes a one-to-one correspondence between the
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set of triangulations F (resp. G ,H ,K) and the set of near-triangulations in S — {L} (resp.
T —{L}, U—-{L}, V—{L}) rooted on a digon.

Figure 28: Near-triangulations rooted on a digon and triangulations.

For W € {S, T, U, V}, the power series W(0) = W(0, z) is the generating function of
near-triangulations in W rooted on a digon. Given that the link-map has contribution z, we

have

S(0) = z + 2F(2%), T(0) =z + 2G(23), U(0) = z + zH(23), V(0) =z + 2K(2?). (31)

1.3 The decomposition scheme

In the following, we adopt Tutte’s classical approach for enumerating maps. That is, we
decompose maps by deleting their root-edge and translate this combinatorial decomposition
into an equation satisfied by the corresponding generating function. In this section we
illustrate this approach on unconstrained non-separable triangulations (this was first done
in [Mull 65]). We give all the details on this simple case in order to prepare the reader to
the more complicated cases of constrained non-separable triangulations treated in the next

section.

We recall that S denotes the set of non-separable near-triangulations and S(x) = S(z, 2)
the corresponding generation function. As observed before, the link-map L has contribution z
to the generating function S(x). We decompose the other maps by deleting the root-edge. Let
M be a non-separable triangulation distinct from L. Since M is non-separable, the root-edge
of M is not an isthmus. Therefore, the face at the left of the root-edge is internal, hence has
degree 3. Since M has no loop, the three vertices incident to this face are distinct. We denote
by v the vertex not incident to the root-edge. When analyzing what can happen to M when
deleting its root-edge, one is led to distinguish two cases (see Figure 29).

Either the vertex v is incident to the root-face, in which case the map obtained by deletion of

the root-edge is separable (see Figure 30). Or v is not incident to the root-face and the map

obtained by deletion of the root-edge is a non-separable near-triangulation (see Figure 31).
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VAR

Figure 29: Decomposition of non-separable near-triangulations.

In the first case, the map obtained is in correspondence with an ordered pair of non-separable
near-triangulations. This correspondence is bijective, that is, any ordered pair is the image of
exactly one near-triangulation. In the second case the degree of the root-face is increased by
one. Hence the root-face of the near-triangulation obtained has degree at least 3. Here again,
any near-triangulation in which the root-face has degree at least 3 is the image of exactly one

near-triangulation.

Figure 30: Case 1. The vertex v is incident to the root-face.

Figure 31: Case 2. The vertex v is not incident to the root-face.

We want to translate this analysis into a functional equation. Observe that the degree of
the root-face appears in this analysis. This is why we are forced to introduce the variable
x counting this parameter in our generating function S(z,z). For this reason, following
Zeilberger’s terminology [Zeil 00], the secondary variable z is said to be catalytic: we need it

to write the functional equation, but we shall try to get rid of it later.

In our case, the decomposition easily translates into the following equation (details will
be given in Section 1.4):
S(z,2) = 2 + 228z, 2)2 + = (S(z, 2) — S(0, 2)) . (32)
x
The first summand of the right-hand side accounts for the link map, the second summand

corresponds to the case in which the vertex v is incident to the root-face, and the third
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summand corresponds to the case in which v is not incident to the root-face.

It is an easy exercise to check that this equation defines the series S(z, z) uniquely as a
power series in z with polynomial coefficients in . By techniques presented in Section 1.5,
we can derive from Equation (32) a polynomial equation satisfied by the series S(0, z) where

the extra variable x does not appear anymore. This equation reads
S(0,2) = z— 272 +3623S(0, 2) — 82%S(0, 2)? — 1621S(0, 2)3. (33)
Given that S(0,z) = z + 2F(z3), we deduce the algebraic equation
F(t) = t(1 — 16t) — t(48t — 20)F(t) — 8t(6t + 1)F(t)* — 16t°F(t)3, (34)

characterizing F(¢) (the generating function of non-separable triangulations) uniquely as
a power series in t. From this equation one can derive the asymptotic behavior of the
coefficients of F(t), that is, the number of non-separable triangulations of a given size (see
Section 1.7).

1.4 Functional equations

In this section, we apply the decomposition scheme presented in Section 1.3 to the families
T, U, V of non-separable near-triangulations in which all internal vertices have degree at least
3, 4, 5. We obtain functional equations satisfied by the corresponding generating functions
T(x), U(x), V(z).

Note that, when one deletes the root-edge of a map, the degree of its endpoints is lowered
by one. Given the decomposition scheme, this remark explains why we are led to consider
the near-triangulations where only internal vertices have a degree constraint. However, we
need to control the degree of the origin of the root-edge since it may come from an internal
vertex (see Figure 31). This leads to the following notations. Let W be one of the sets
S, T, U, V. We define W, as the set of maps in W such that the root-face has degree
at least 3 and the origin of the root-edge has degree k. We also define W, as the set of
(separable) maps obtained by gluing the root-edge’s end of a map in W with the root-edge’s
origin of a map in W. The root-edge of the map obtained is chosen to be the root-edge of
the second map. Generic elements of the sets W and W, are shown in Figure 32. We also

write W, £ WU U W ;. The notation W, which at first sight might seem awkward,
Jjzk
allows to unify the two possible cases of our decomposition scheme (Figure 30 and 31). It

shall simplify our arguments and equations (see for instance Equations (35-38)) which will

prove a valuable property.
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S

Figure 32: Generic elements of the sets W and W .

The symbols Wy (z, 2), W (2, z) and Wy (x, z) denote the bivariate generating functions
of the sets Wy, W, and Wx, respectively. In these series, as in W(z, z), the contribution
of a map with n edges and root-face degree d + 2 is x%2".

We are now ready to apply the decomposition scheme to the triangulations in T, U, V.
Consider a near-triangulation M distinct from L in W = S, T, U, V. As observed before,
the face at the left of the root-edge is an internal face incident to three distinct vertices.
We denote by v the vertex not incident to the root-edge. If v is external, the deletion of
the root-edge produces a map in W, (see Figure 33). If v is internal and M is in S (resp.
T, U, V) then v has degree at least 2 (resp. 3, 4, 5) and the map obtained by deleting the
root-edge is in (Jy~o Sk (resp. Upss Thy Ur>a Uks Upss Vie). Therefore, the deletion of the
root-edge induces ;mapping from S — {L} (;esp. T — EL}, U—{L}, V—{L}) to S>2 (resp.

T>3, Usyg, Vo).
—_—
v

Figure 33: Mapping induced by deletion of the root-edge: the vertex v can be a separating

point in which case the map is in W .

This mapping is clearly bijective. Moreover, the map obtained after deleting the root-edge
has size lowered by one and root-face degree increased by one. This analysis translates into

the following equations:

S(z) = z+2822(az), (35)
T(@) = z+=Txa), (36)
U(z) = z+§UZ4(a:), (37)

)

V(z) = 2+ %vzs(x) . (38

In view of Equation (35), we will obtain a non-trivial equation for S(z) if we can express
S>2(x) in terms of S(x). Similarly, we will obtain a non-trivial equation for T(z) if we can

express T>o(z) and To(z) in terms of T(z). Similar statements hold for U(z) and V(z).
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Thus, our first task will be to evaluate Wxo(x) for W in {S, T, U, V}.

By definition, W is in bijection with W2, which translates into the functional equation
Woo(z) = x?W(z)? .

Observe that |J;~, Wy, is the set of maps in W for which the root-face has degree at least
3, that is, all maps except those rooted on a digon. Since W(0) is the generating function of

maps in W rooted on a digon, we have

D Wi(z) = W(z) — W(0).

Given that W9 = Woo U5y Wi, we obtain, for Win {S, T, U, V},
Wso(z) = 2*W(2)? + (W(z) — W(0)) for Win {S, T, U, V} . (39)

Equations (35) and (39) already prove Equation (32) announced in Section 1.3:

S(x) = z 4 z2S(x)* + 2 (M) .

x

In order to go further, we need to express To(x), Us(x), Us(z), Va(z), Vi(x) and V4(z)
(see Equations (36-38)). We begin with an expression of Wy(z) for W in {S, T, U, V}.
Observe that for W = {S, T, U, V}, the set Wy is in bijection with W by the mapping

illustrated in Figure 34. Consequently we can write

Ws(z) = z2°W(x) for Win {S, T, U, V}. (40)

FA — A

Figure 34: A bijection between W9 and W.

This suffices to obtain an equation for the set T':
T(@) = z+=Tx() by (36)
z
= z+ —(Tx2(z) - Ta(z))

= z+ g (332’]1“(@2 + (T(x) — T(0)) — xzzT(x)) by (39) and (40).
Proposition 1.1 The generating function T(x) of non-separable near-triangulations in which
all internal vertices have degree at least 3 satisfies:
T(z) — T(0)

T(x) = z + z2T(z)* + z< .

> — BT(a) . (41)
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In order to find an equation concerning the sets U and V, we now need to express Us(z)
and V3(z) in terms of U(z) and V(x) respectively. Let W be U or V and M be a map in
W3. By definition, the root-face of M has degree at least 3 and its root-edge’s origin u has
degree 3. We denote by a and b the vertices preceding and following u on the root-face (see
Figure 35). Since the map M is non-separable, the vertices a,b and u are distinct. Let v be
the third vertex adjacent to u. Since M cannot have loops, the vertex v is distinct from a, b
and u.

Suppose that M is in Ug (resp. V3) and consider the operation of deleting u and the three
adjacent edges. If the vertex v is internal it has degree d > 4 (resp. d > 5) and the map
obtained is in Ug_1 (resp. Vg4_1). If it is external, the map obtained is in Uy, (resp. Vo).

Thus, the map obtained is in Usg (resp. V>4). This correspondence is clearly bijective. It

gives
Us(z) = 2°Uss(z) = 2°(Usa(z) — Us(2)) , (42)
Vs(z) = 2°Vay(z) = 2°(Vsa(z) — Va(z) — Vs(2)) . (43)
—_
a U b

Figure 35: A bijection between Uz and Usj3 (resp. V3 and V>4 ).

We are now ready to establish the functional equation concerning U:

Uz) = 2+ 2U24<x) by (37)
= 2+~ (Usa(a) ~ Uz(a) - Us(a))
z(1 - 23)
= At (Us2(z) — Uz ()) by (42)
= z+ Z(IT_Z?)) (a:zU(a;)2 + (U(z) — U(0)) — a;z2U(a;)) by (39) and (40).

Proposition 1.2 The generating function U(z) of non-separable near-triangulations in which

all internal vertices have degree at least 4 satisfies:

U(z) - U(0)

U(z) = 2z 4+ 22(1 — 22)U(x)* + 2(1 — 23) < .

> — 231 = 2)U(x) . (44)

We proceed to find an equation concerning the set V. This will require significantly more

work than the previous cases. We write

V@) = 24 TVaa@) = 2+ (Vaale) — Vale) - Va(e) - Va(@)  (49)
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and we want to express Vso(z), Va(z), Vi(z) and V4(x) in terms of V(z). We already have
such expressions for Vsq(z) and Va(z) (by Equations (39) and (40)). Moreover, Equation
(43) can be rewritten as

3

Vs(z) = m(vﬂ(w)—‘/z(@)- (46)

It remains to express V4(z) in terms of V(z). Unfortunately, this requires some efforts
and some extra notations. We define V; as the set of maps in V such that the root-face has
degree at least 4, the root-edge’s origin has degree k and the root-edge’s end has degree [ (see
Figure 36). The set Vj, o is the set of maps obtained by gluing the root-edge’s end of a map
in V; with the root-edge’s origin of a map in V. The root-edge of the new map obtained
is the root-edge of the map in V. The set V1 is the set of maps obtained by gluing the
root-edge’s end of a map in 'V with the root-edge’s origin of map in V for which the root-face
has degree at least 3 and the root-edge’s end has degree k. The root-edge of the new map
obtained is the root-edge of the second map. The set V o, o is obtained by gluing 3 maps of
V as indicated in Figure 36.

Figure 36: The sets Vi1, Voo ks Voo and Vg .

We also write Vi, >, =S U Vi,iU Vi and
i>1

V2k72l = U Vz’,j U U Vz’,oo U U Voo,j U Voo,oo-
i>k,j>1 i>k Jj=l

As before, if W is any of these sets, the symbol W denotes the corresponding generating
function, where the contribution of a map of size n and root-face degree d + 2 is %2,

Moreover, we consider the subset D of V composed of maps for which the root-face is a
digon. The set of maps in D for which the root-vertex has degree k will be denoted by Dy.
We write D>y, = szk D;. Lastly, if E is one of the set D, Dy, or D>}, the symbol E denotes
the corresponding (univariate) generating function, where the contribution of a map of size
n is z". As observed before, D = V(0).

We can now embark on the decomposition of V4. We consider a map M in V4 with
root-vertex v. By definition, v has degree 4. Let e, es, e3, e4 be the edges incident to v

in counterclockwise order starting from the root-edge e;. We denote by v;, ¢ = 1...4 the
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endpoint of e; distinct from v. Since M is non-separable and its root-face has degree at least
3, the vertices v; and v4 are distinct. Moreover, since M has no loop we have vy # wo,
vg # v3 and vs # vg. Therefore, only three configurations are possible: either v; = v3, the
two other vertices being distinct, or symmetrically, vy = v4, the other vertices being distinct,

or v, V2, vs,v4 are all distinct. The three cases are illustrated in Figure 37.

AVA

V4 v V1 = Us Vg = Uy (% U1 V4 v U1

Figure 37: Three configurations for a map in Vy.

In the case v; = w3, the map can be decomposed into an ordered pair of maps in V x
D>, (see Figure 38). This decomposition is clearly bijective. The symmetric case vy = vy
admits a similar treatment. In the last case (v1,ve,vs,v4 all distinct) the map obtained from
M by deleting eq, ea, e3, esq is in V>4 >4 (see Figure 39). Note that this case contains
several subcases depending on whether vo and vs are separating points or not. But again the

correspondence is clearly bijective.

P —7 Y =

Figure 38: A bijection between maps of the first type in V4 and V x D>4.

A - P

Figure 39: A bijection between maps of the third type in V4 and V>4 >4.

This correspondence gives

4
z
Vy(z) = 2(EZ4V(J})D24 + ;V2424(SL’). (47)

It remains to express the generating functions D>4 and Vx4 >4(z) in terms of V(x). We
start with D>4.

We have D>y = D — Dy — Dy — D3 . We know that D = V(0). Moreover, the set D; only
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contains the link-map and D+ is empty. Hence Dy = z and Dy = 0. Lastly, the set D3 is in
correspondence with D>, by the bijection represented in Figure 40. This gives D3 = z3]]]>24.

Figure 40: A bijection between D3 and D>4.

Putting these results together and solving for D4, we get

V(0) -z
D = —r . 48
=4 1+ 23 (48)
We now want to express the generating function Vx4 >4(z). We first divide our problem

as follows (the equation uses the trivial bijections between the sets V, 3 and Vg,) :
V24,24($) = VZZZ?(@“) - VQ’Q(QZ') - 2V2723(3§‘) - Vg,g(ﬂj‘) - 2V3724(3§‘) . (49)

We now treat separately the different summands in the right-hand-side of this equation.

® V>3 >9 : It follows easily from the definitions that :
Vooza(m) = Y Vig(@) 42> Voo r() + Voo eo().
k>2,1>2 k>2

- The set Ug>g 59 Vi, is the set of maps in V for which the root-face has degree at least 4.
Thus,

> Vile) = V(z) = V(0) - zf2]V(a),

k>2,1>2
where [z]V(z) is the coefficient of x in V(x).
- By definition, the set |Ji~5 Voo is in bijection with V x |J.~, V. Moreover, the set
Uk22 V. is the set of maps in 'V for which the root-face has degreg at least 3. This gives

D Verlz) = 2°V(x) (V(z) - V(0)).

k>2

- By definition, the set V o is in bijection with V3, which gives

Summing these contributions we get
Voo so(2) = V(z) — V(0) — z[2]V(z) + 222V () (V(z) — V(0)) + z*V(z)3. (50)

e Vy, : The set Va5 is empty (the face at the left of the root-edge would be of degree at

least 4), hence

VZQ(.ZU) = 0. (51)
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e Vy >3 : The set Vo >3 is in bijection with Vo by the mapping illustrated in Figure 41.
This gives Vo >3(z) = 222Vsa(x). From this, using Equation (39), we obtain

Vo>3(z) = z22(V(x) — V(0) + 22V (z)?). (52)

2 >3 >

Figure 41: A bijection between Vg >3 and V>s.

e V33 : We consider a map M in V33. We denote by v; the root-edge’s origin, vy the
root-edge’s end, vy the vertex preceding v; on the root-face and vs the vertex following vo
(see Figure 42). Since M is non-separable and its root-face has degree at least 4, the vertices
v;, © = 1...4 are all distinct. The third vertex v adjacent with v is also the third vertex
adjacent with vy (or the face at the left of the root-edge would not be a triangle). Since M
has no loop, v is distinct from v;, ¢ = 1...4. From these considerations, it is easily seen that
the set V33 is in bijection with the set V>3 by the mapping illustrated in Figure 42. (Note
that this correspondence includes two subcases depending on v becoming a separating point
of not). We obtain
Viz(r) = 22°Vs3(z) = 22° (Vsa(z) — Va(x)).

From this, using Equations (39) and (40), we get

Vss(z) = 22°(V(z) — V(0) + 22V(2)? — 222V (z)). (53)

Vo U1 U2 U3

Figure 42: A bijection between V33 and V3.

e V3>, : Let M beamap in V3 >4. We denote by v; the root-edge’s origin, vy the root-edge’s
end, vy the vertex preceding v on the root-face and vz the vertex following ve (see Figure 43).
Since M is non-separable and its root-face has degree at least 4, the vertices v;, ¢ = 1...4

are all distinct. Let v be the third vertex adjacent to vi. Two cases can occur: either v = vg
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in which case the map decomposes into an ordered pair of maps in V x D>3, or v is distinct
from v;, i = 1...4 in which case the map is in correspondence with a map in V>4 >3 (this
includes two subcases depending on v becoming a separating point of not). In both cases the

correspondence is clearly bijective. This gives

V3724(IL’) = 33 z V( )ng + ZSVZ423(IL’).

Vo 3 >4 V=13 Yo 3 >4 U3

Figure 43: Two configurations for a map in V3 >4.

Given that D>3 = D—D; —Dy = V(0) — z, we obtain
Vs za(x) = 2?2°V(@)(V(0) = 2) + 2°(Vaaa(x) + V3 54(2)),

and solving for Vi >4(x) we get

23

1—23

Vs >a(z) = (2*V(2)(V(0) — 2) + V454(z)). (54)

We report Equations (50 - 54) in Equation (49) and solve for V>4 >4. We get

1—23

m( V(z) = V(0) — z[a]V(z) + 222V (z) (V(z) — V(0)

+21V (x)? — 22°(V(z) — V(0 )+x2V(x2)23— 222V (z)) (55)
~2222(V(@) = V(0) + 2%V(2)?) - 25— V(@)(V(0) - 2) ).

V>a>4(z) = )
(

Now, using Equations (39) (40) (46) (47) (48) and (55) we can replace V>g, Vy, V3 and
V4 by their expression in Equation (45). This establishes the following proposition.

Proposition 1.3 The generating function V(z) = V(x,z) of non-separable near-

triangulations in which all internal vertices have degree at least 5 satisfies:

1 2
V(z)= z+ 155 <ZL‘ZV(ZL‘) +z

_25(1 —23) (V(m) — Vo —aV;

s _ 2044 @ Vo oyiywy—s  (56)

2 x

+22V(2)3 — 2222 + 22)V(2)? 4 2V(z) (V(2) — Vo) + 27V(aj))

where Vo = V(0) and Vi = [z]V(x) is the coefficient of x in V(zx).
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1.5 Algebraic equations for triangulations with high degree

In the previous section, we have exhibited functional equations concerning the families of
near-triangulations T,U,V. By definition, the generating functions T(t),U(t), V(t) are
power series in the main variable z with polynomial coeflicients in the secondary variable
x. We now solve these equations and establish algebraic equations for the families of
triangulations F, G, H in which vertices not incident to the root-edge have degree at least
3,4,5 respectively. As observed in Section 1.2, the generating functions F(t), G(¢), H(t) are
closely related to the series T(0),U(0), V(0) (see Equation (31)).

Let us look at Equations (41), (44) and (56) satisfied by the series T(x), U(z) and V(z)
respectively. We begin with Equation (41). This equation is (after multiplication by ) a
polynomial equation in the main unknown series T(x), the secondary unknown T(0) and the
variables x, z. It is easily seen that this equation allows us to compute the coefficients of
T(z) (hence those of T(0)) iteratively. Moreover, we see by induction that the coefficients of
this power series are polynomials in the secondary variable x. The same property holds for
Equation (44) (resp. (56)): it defines the series U(0) (resp. V(0)) uniquely as a power series

in z with polynomial coefficients in z.

In some sense, Equations (41), (44) and (56) answer our enumeration problems. However,
we want to solve these equations, that is, to derive from them some equations for the series
T(0), U(0) and V(0). Certain techniques for performing such manipulations appear in the
combinatorics literature. In the cases of Equation (41) and (44) which are quadratic in the
main unknown series T(z) and U(z) we can routinely apply the so-called quadratic method
[Goul 83, Section 2.9]. This method allows one to solve polynomial equations which are
quadratic in the bivariate unknown series and have one unknown univariate series. This
method also applies to Equation (33) concerning S(x) and allows to prove Equation (34).
However, Equation (56) concerning V(z) is cubic in this series and involves two unknown
univariate series (V(0) and [2]V(x)). Very recently, Bousquet-Mélou and Jehanne proposed
a general method to solve polynomial equations of any degree in the bivariate unknown
series and involving any number of unknown univariate series [Bous 05b]. We present their

formalism.
Let us begin with Equation (41) concerning T(0). We define the polynomial
P(T, Ty, X,Z) = XZ + X*ZT* + ZT — ZTy — XZ3T — XT .
Equation (41) can be written as

P(T(x),T(0),z,2) =0 . (57)
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Let us consider the equation P{(T(x),T(0),z,z) = 0, where P denotes the derivative of P

with respect to its first variable. This equation can be written as
2022 T(x) + 2 —x2> —x = 0.

This equation is not satisfied for a generic x. However, considered as an equation in z, it is
straightforward to see that it admits a unique power series solution X (z).

Taking the derivative of Equation (57) with respect to x one obtains

IT(x)
ox

- P{(T(x),T(0),z,2) + P4(T(x), T(0),z,2) =0,

where P} denotes the derivative of P with respect to its third variable. Substituting the series
X(z) for z in that equation, we see that the series X (z) is also a solution of the equation

P;(T(z), T(0),x,2) = 0. Hence, we have a system of three equations

X(2)),T(0), X(2),2) = 0,
P(T(X(2)), T(0), X(2),2) = 0,
X

(2)), T(0), X(2),2) = 0,

for the three unknown series T(X (z)), T(0) and X (z). This polynomial system can be solved
by elimination techniques using either resultant calculations or Grobner bases. Performing

these eliminations one obtains an algebraic equation for T(0):
T(0) = 2z — 242* + 327 + 210 + (322% + 3020 — 422 — 212)T(0) — 82%(1 + 23)*T(0)* — 162*T(0)3.
Using the fact that T(0) = 2 + 2G(23) we get the following theorem.

Theorem 1.4 Let G be the set of non-separable triangulations in which any vertex not inci-
dent to the root-edge has degree at least 3, and let G(t) be its generating function. The series

G(t) is uniquely defined as a power series in t by the algebraic equation:

16t2G(t)3 + 8t(t2 + 8t + 1)G(t)?

58
+(#* + 2083 4 50t2 — 16t + 1)G(t) + t2(t> + 11t — 1) = 0. (58)

Similar manipulations lead to a cubic equation for the set H.

Theorem 1.5 Let H be the set of non-separable triangulations in which any vertex not inci-
dent to the root-edge has degree at least 4, and let H(t) be its generating function. The series

H(t) is uniquely defined as a power series in t by the algebraic equation:

16t2(t — D)AH()3 + (8 4 1267 — 145 — 84¢° + 207t* — 1923 + 86t> — 16t + 1)H(¢)

59
+8t(t — 1)2(t* + 4t3 — 132 + 8t + 1)H(t)? + t*(t — 1)(t3 + 52 — 8t +1) = 0. (59)
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For Equation (56) concerning V(0) the method is almost identical. We see that
there is a polynomial Q(V,Vy, Vi, x,z) such that Equation (56) can be written as
Q(V(x),V(0),[z]V(z),x,z) = 0. But we can show that there are exactly two series
X1(2), Xa(z) such that Q}(V(X(2)),V(0),[z]V(x), X (2),z) = 0. Thus, we obtain a system

of 6 equations

Q(V(Xi(2)), V(0), [z]V(z), Xi( =
Q1 (V(Xi(2)), V(0), [2]V(z), X ( =0 i=1,2
V(z),Xi(2),z) = 0

Q
<
—~
<
—
o
—
N
SN—
~
<
—
(=}
:—/
B
ISR
SN—
ISR
N—

for the 6 unknown series V(X1(2)), V(X2(2)), Xi(z), Xa(2), V(0) and [z]V(z). This system
can be solved via elimination techniques though the calculations involved are heavy. We

obtain the following theorem.

Theorem 1.6 Let K be the set of mon-separable triangulations in which any vertex not
incident to the root-edge has degree at least 5, and let K(t) be its generating function. The

series K(t) is uniquely defined as a power series in t by the algebraic equation:

Z P(O)K(¢)?, (60)

where the polynomials P;(t),i =0...6 are given in Appendiz 1.9.1.

1.6 Constraining the vertices incident to the root-edge

So far, we have established algebraic equations for the generating functions G(¢),H(t), K(¢)
of triangulations in which any vertex not incident to the root-edge has degree at least 3, 4, 5.
The following theorems provide equations concerning the generating functions G*(¢), H*(t) of

triangulations in which any vertex has degree at least 3, 4.

Theorem 1.7 Let G* be the set of non-separable triangulations in which any wvertex has
degree at least 3 and let G*(t) be its generating function. The series G* is related to the series
G of Theorem 1.4 by

G*(t) = (1 - 20)G(t) . (61)

Theorem 1.8 Let H* be the set of non-separable triangulations in which any wverter has
degree at least 4 and let H*(t) be its generating function. The series H* is related to the series
H of Theorem 1.5 by

_ 1—5t+5t2 — 3t

H*(¢) T

H(t) . (62)
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Let us make a few comments before proving these two theorems. First, observe that we
can deduce from Theorems 1.4 and 1.7 (resp. 1.5 and 1.8) an algebraic equation for the
generating function G* (resp. H*) of triangulations in which any vertex has degree at least
3 (resp. 4). The algebraic equation obtained for G* coincides with the result of Gao and
Wormald [Gao 02, Theorem 2]. From the algebraic equations we can routinely compute the
first coefficients of our series:

G*(t) = 12 4 3t3 + 19t + 128t° + 909t® + 6737t + 516835 + 407802t° + o(t?),
H*(t) = t* + 3t° + 125 + 59¢7 + 325¢% + 18757 + 1102910 + 65607t + o(¢!1).

Recall that the coefficient of ¢" in the series G*(¢), H*(¢) is the number of triangulations
with 3n edges (2n triangles, n + 2 vertices) satisfying the required degree constraint. In the
expansion of G*(t), the smallest non-zero coefficient ¢? corresponds to the tetrahedron. In
the expansion of H*(¢), the smallest non-zero coefficient t* corresponds to the octahedron

(see Figure 44).

We were unable to find an equation that would permit to count non-separable triangula-
tions in which any vertezr has degree at least 5. However, we can use the algebraic equation
(60) to compute the first coefficients of the series K(t):

K(t) = ' 4 8t + 45¢12 + 2091 4 890! + 3600t + 14115¢'6 + 54306t'7 + o(t'®).

th

The first non-zero coefficient corresponds to the icosahedron (see Figure 44).

A\

Figure 44: The platonic solids: tetrahedron, octahedron, icosahedron.

In order to prove Theorems 1.7 and 1.8 we need some new notations. The set G ;
(resp. H; ;1) is the set of triangulations such that the root-edge’s origin has degree i, the
root-edge’s end has degree j, the third vertex of the root-face has degree k and all internal
vertices have degree at least 3 (resp. 4). For L = G,H we define L>;;, = U;>,; Lijk
and with similar notation, L>; >;, etc. If L is any of these sets, LL(t) is the corresp_onding

generating function, where a map with 3n edges has contribution ™.

Proof of Theorem 1.7: By definition, G = G>2>2 >3 and G* = G>3 >3 >3. Hence,

G*(t) = G(t) — Ga2,>3(t) — 2G2 >3 >3(t). (63)
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e The set Gg 2 >3 is empty, hence Gg 2 >3(t) = 0.

e The set Gg >3 >3 is in bijection with G>1 >1 >3 = G by the mapping represented in Figure
45. This gives nggzg(t) = tG(t).

Plugging these results in (63) proves the theorem. 0

>3 > 1

2 >3 > 1

Figure 45: A bijection between Gg >3 >3 and G (resp. Hy >3 >3 and H).

Proof of Theorem 1.8: By definition, H* = H>4 >4 >4. Hence,
H*(t) = H>3,>3>4(t) — H33,>4(t) — 2H3 >4, >4(2). (64)

Recall that H = H>1 >1>4 = H>2 >2 >4.
e Clearly, H>3 >3 >4(t) = H>2 >2 >4(t) — Ha2 >4(t) — 2Hz >3 >3(1).
e The set Hy 2 >4(t) is empty, hence Hy 3 >4(t) = 0.
e The set Ha >3 >3 is in bijection with H>q >1 >4 = H by the mapping represented in Figure
45, hence Hy >3 >3(t) = tH(t).
This gives
H>3>3,>4(t) = (1 — 2¢)H(2). (65)

e The set H3 3 >4 is in bijection with H>1 >1 >4 = H by the mapping represented in Figure
46. This gives

Hs 3,54 (t) = t2H(t). (66)

>4

Figure 46: A bijection between Hj3 3 >4 and H.

e [or any integer k greater than 2, the set Hx>j, > 3 is in bijection with the set H>p_1 >1—1 >3
by the mapping represented in Figure 47. This gives

H2k72k73(t) = tHZk—172k—1723(t) for all k > 2. (67)
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>k >k >k—1 >k—1

Figure 47: A bijection between H>j >1 3 and H>p_1 >5—1 >3-

Using Equation (67) for k£ = 4 and then for k¥ = 3 (and trivial symmetry properties), we get
H3>4>4(t) = H>4>43() = tH>3>3>3() = tH>3>3>4(t) + tH>3>33(t)
= tH>3.>3>4(t) + t?Hx2 >0 >3(t).
- By Equation (65), we have H>3 >3 >4(t) = (1 — 2¢t)H(¢).
- Using Equation (67) for k = 2 gives

H>2>2>3(t) = Hx2>2 >4(t) + H>o >05(t) = H(t) + tH>1,>1,>3(t).

. 1
Given that H21721723 = Hzgzgzg, we get Hzgzgzg(t) = mH(i)
Thus, we obtain
t(1 — 2t + 2t2)

H,>4,>4(t) = T4

H(t). (68)

Plugging Equations (65), (66) and (68) in Equation (64) proves the theorem.

1.7 Asymptotics

In Section 1.5, we established algebraic equations for the generating functions L = F, G, H, K
of non-separable triangulations in which any vertex not incident to the root-edge has degree
at least d = 2,3,4,5 (Equations (34), (58), (59) and (60)). We will now derive the asymptotic
form of the number I, = fy,, gn, hn, ky of maps with 3n edges in each family by analyzing the
singularities of the generating function L. = F, G, H,K (I, is the coefficient of t™ in ). The
principle of this method is a general correspondence between the expansion of a generating

function at its dominant singularities and the asymptotic form of its coefficients [Flaj 90, Flaj].

Lemma 1.9 Fach of the generating functions L = F,G,H, K has a unique dominant singu-

larity pr, > 0 and a singular expansion with singular exponent % at pr,, in the sense that

L(t) = o, + Ao(1 — p%) (1 - piL>3/2 +0((1- piL>2>, (69)
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with v, # 0. The dominant singularities of the series ' and G are respectively pp = 2% and
oG = 3v3-5
= 5=b,

algebraic equations given in Appendixz 1.9.2.

The dominant singularities pg and px of the series H and K are defined by

Proof (sketch): The (systematic) method we follow is described in [Flaj, Chapter VII.4]).
Calculations were performed using the Maple package gfun [Salv 94].
Let us denote generically by pr, the radius of convergence of the series L and by Q(L,t) the
algebraic equation satisfied by L (Equations (34), (58), (59) and (60)). It is known that the
singular points of the series IL are among the roots of the polynomial R(t) = D(t)A(t) where
D(t) is the dominant coefficient of Q(y,t) and A(t) is the discriminant of Q(y,t) considered
as a polynomial in y. Moreover, since the series L. has non-negative coefficients, we know (by
Pringsheim’s Theorem) that the point ¢ = py, is singular. In our cases, the smallest positive
root of R(t) is found to be indeed a singular point of the series L. (This requires to solve
some connection problems that we do not detail.) Moreover, no other root of R(t) has the
same modulus. This proves that the series L has a unique dominant singularity.
The second step is to expand the series I near its singularity pr. This calculation can be
performed using Newton’s polygon method (see [Flaj, Chapter VII.4]) which is implemented
in the algegtoseries Maple command [Salv 94]. 0

From Lemma 1.9, we can deduce the asymptotic form of the number I,, = f,, gn, hn, kn of

non-separable triangulations of size n in each family.

Theorem 1.10 The number l, = fy, gn, hn, kn of non-separable triangulations of size n (3n

edges) in which any vertex not incident to the root-edge has degree at least d = 2,3,4,5 has

I, ~ Apn 22 <i> .
PL

The growth constants pr, pg, pH, pr ore given in Lemma 1.9. Numerically,

i = 13.5, i ~ 10.20, L ~~ 7.03, i ~ 4.06 .
PF PG PH PK

—5/2

asymptotic form

Remark: The subexponential factor n is typical of planar maps families (see for instance
[Band 01] where 15 classical families of maps are listed all displaying this subexponential

factor n=%/2).

Remark: Using Theorems 1.7 and 1.8, it is easily seen that the series L* = G*,H* has
dominant singularity pr, = pg, pg with singular exponent % at pr:
L(t) = ap + B(1 — —) +71(1 - —)*2 +0((1 = —)?).
PL PL PL
Therefore, we obtain the asymptotic form

1 n
Iy~ A7 n~5/2 <—>
L PL
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for the number I = g7, h;, of non-separable triangulations of size n with vertex degree at least

d = 3,4. Hence, the numbers [} and [,, are equivalent up to a (known) constant multiplicative
*

factor =L
L )\* *
26 = 06— 1 9pn=6-3V/3,
Ac ole;
Ao Y _ 1 —5py +5pu® — 3pu®
Ay YH 1—pn ’

We do not have such precise information about the asymptotic form of the number k& of
non-separable triangulations of size n (3n edges) with vertex degree at least 5. However,
we do know that kX = O(k,) = O(n "?px ™). Indeed, we clearly have k¥ < k, and, in
addition, k¥ > k,_g ~ pr k,. The latter inequality is proved by observing that the operation
of replacing the root-face of a triangulation by an icosahedron is an injection from the set of
triangulations of size n in which any vertex not incident to the root-edge has degree 5 to the

set of triangulations of size n 4+ 9 in which any vertex has degree at least 5.

1.8 Concluding remarks

We have established algebraic equations for the generating functions of loopless triangula-
tions (i.e. non-separable triangulations) in which any vertex not incident to the root-edge
has degree at least d = 3,4,5. We have also established algebraic equations for loopless
triangulations in which any verter has degree at least d = 3,4. However, have not found a
similar result for d = 5. The algebraic equations we have obtained can be converted into
differential equations (using for instance the algegtodiffeq Maple command available in the
gfun package [Salv 94]) from which one can compute the coefficients of the series in a linear
number of operations. Moreover, the asymptotic form of their coefficients can also be found

routinely from the algebraic equations.

The approach we have adopted is based on a classic decomposition scheme allied with
a generating function approach. Alternatively, it is possible to obtain some of our results
by a compositional approach. This is precisely the method followed by Gao and Wormald
to obtain the algebraic equation concerning loopless triangulations in which any vertex has
degree at least 3 [Gao 02]. This substitution approach can also be extended to obtain the
algebraic equation concerning loopless triangulations in which any vertex has degree at least
4. However, we do not see how to apply this method to loopless triangulations in which

vertices not incident to the root-edge have degree at least 5.

Recently, Poulalhon and Schaeffer gave a bijective proof based on the conjugacy classes

of tree for the number of loopless triangulations [Poul 03a]. However, it is dubious that this
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approach should apply for the families H, K of loopless triangulations in which vertices have
degree at least d = 4,5. Indeed, for a large number of families of maps L, the generating
function LL(¢) is Lagrangean, that is, there exists a series X(¢) and two rational functions ¥, ®
satisfying

L(t) = U (X(t)) and X(t) = t®(X(t))

(see for instance [Band 01] where 15 classical families are listed together with a Lagrangean
parametrization). Often, a parametrization can be found such that the series X(t) looks like
the generating function of a family of trees (i.e. ®(z) is a series with non-negative coeffi-
cients) suggesting that a bijective approach exists based on the enumeration of certain trees
[Bous 03b, Bout 02, Bout 05]. However, it is known that an algebraic series is Lagrangean if
and only if the genus of the algebraic equation is 0 [Abhy 90, Chapter 15]. In our case, the
algebraic equations defining the series F, G, H and K have respective genus 0, 0, 2 and 25.
(The genus can be computed using the Maple command genus.) Thus, whereas the series

F, G are Lagrangean (with a parametrization given in Appendix 1.9.3), the series H, K are not.

Lastly, we claim some generality to our approach. Here, we have focused on loopless
triangulations, but it is possible to practice the same kind of manipulations for general
triangulations and for 3-connected ones. The method should also apply to some other
families of maps, like quadrangulations. Thus, a whole new class of map families is expected

to have algebraic generating functions.
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1.9 Appendix

1.9.1 Coefficients of the algebraic equation (60)

The coefficients P;(t),7 = 0..6 in the algebraic equation (60) are:

Po(t) = t10(—1 + 82552t — 163081¢12 + 277796t13 — 308156¢'4 — 44385116 + ¢34 + 13t +
32131 + 454t° — 24345 — 5762t% + 4373t7 — 539610 + 23037t% + 354387t'° + 16396420 —
28454121 — 38408122 + 367133 — 11737124 + 33 + 232 — 27825 4 242428 — 167827 + 2714426 +
36129 — 64130 — 70t2 + 180t3 — 195t* — 273662t + 122688t18 + 262614t17),

Pi(t) = (1 — 594873t" + 1078572t12 — 1457943t1% + 1921912t + 1327736t16 + 1462t38 —
3168137 — 61139 + 25956¢3° — 56515t3* — 382630 — 21t — 46756731 — 4545t° + 39166 +
603048 — 13364¢7 + 27506810 — 142715t — 2t*2 4+ 9*3 4 ¢4 — 2338117t15 — 4673450t2° +
516705421 — 114573822 — 2425736t + 2298353t%* + 66635t + 90827t32 + 559893t —
874518128 + 29956717 — 3225500t20 — 5263352 + 763474130 4 6841 + 7540 + 193t% — 988¢t3 +
2913t* + 1719643t — 945302¢18 + 541155¢17),

Py(t) = t(8 + 2011979t — 1422607t'2 + 217421113 — 4910332t1* — 909560316 — 814¢38 +
688137 + 30639 — 16997t + 43703¢3* + 1292¢36 — 4¢ + 37023931 — 300065 + 204215 —
26857418 4 72382t7 — 130917210 + 527412t° 4 8¢42 4- 5383141t + 3115307720 — 16211612t%1 —
214306722 + 7886923123 — 2902691t — 50536133 — 26161132 — 4609909t%° + 156674t>% —
319910727 + 6488106¢26 + 970079t%9 — 902321¢3°0 + 12t41 + 4440 — 55612 + 38513 — 8840t* —
1849468819 — 9439987t + 17752182t17),

P3(t) = t2(16 + 1278321t — 2978655t12 + 169724713 4 5975715t + 546318246 + 16638 —
90t37 — 32¢39 4 3984¢3% — 13104¢3* — 868t36 — 192t — 10525131 + 17247t> — 36981t 4 521925¢% —
7498217 + 835782110 — 114239417 — 29427957t1° — 3993548612° + 7773505¢%! 4 6824437t?% —
5541795123 — 1619262t%* + 18648133 + 494132 + 5146785t%° + 349680t%8 + 880004t%7 —
3411645t — 600239t%° + 35868730 + 16t + 1046t> — 25543 — 397t* + 60017232t —
26467945t — 34977363t17),

Py(t) = 9t5(t — 1)2(8 + 722739t — 188827812 + 1483343¢13 4 679876t4 + 1099122¢16 — 841 —
20131 + 9250t° — 179080 4 144652t% — 22565t7 + 87721t — 234335t — 1820089t'° — 5409t2°0 —
64607t21 + 41918t%2 — 12628t23 — 1362t%* + 832 + 6200125 — 189t%® + 1127t%" — 3809t%6 —
103t29 4 84130 + 36812 — 58313 — 2069t* 4 110521t — 69119¢18 — 243772¢17),

Ps(t) = 818(t — 1)*(1 + 25926t — 14080¢'2 + 2973t13 — 369t11 + 348¢1¢ — 9t + 21185 —
293610 + 23913t% — 4134t7 — 6330t10 — 2594617 — 970t + 12¢20 — 22421 4 12¢22 — 3¢23 4 24 1
30t2 — 15t3 — 747t + 421 — 21918 4 405¢17),



1.9. APPENDIX 67

Ps(t) = 590491 (t + 1)(t — 1)°.

1.9.2 Algebraic equations for the dominant singularity of the series H(t)
and K(t)

The dominant singularity pg (resp. pg) of the generating function H(¢) (resp. K(t)) is the

smallest positive root of the polynomial 7 (t) (resp. rx(t)) where
ry(t) =2 — 17t + 22t2 — 103 + 2t4,

and

i () = 256 — 5504t + 51744t? — 265664t + 755040t — 10697515 + 1411392t° — 9094370t +

30208920t% —
263701752t

155809734419
1602052848t
32990135832
167766980034

14854607t — 106655904t + 169679596t + 1693392t'2 + 5853593213 —
— 751005332t'° 4+ 2215033200t'6 — 2276240390t + 2301677920t'8

— 2448410184t%0 + 6223947236t2' — 7440131352t%2 + 610064814823 +
— 96048167025 + 6144202392t%5 + 996698032t27 + 551560496t%8 —
— 72809792830 + 488164381431 — 3845803168t32 + 49446752333 +
— 1787552140t3% + 82533082436 4+ 152975937 — 340280968t38 + 301075034¢37 —

121555768t%0 — 1710967t +37850432t42 — 27659392t43 +9430688t%4 — 152352¢45 —1901664¢46 +
1245152t47 — 400416t*8 + 4774449 + 30720t°0 — 22528¢°1 + 7680t°2 — 1792t%3 + 256¢°4.

1.9.3 Lagrangean parametrization for the series F(t), G(t) and G*(¢)

The series F(t) has the following Lagrangean parametrization:

where

X(14X)

F(t) = —5—

X = X(t) = 2t(1 + X(2))3.

The series G(t) and G*(t) have the following Lagrangean parametrization:

where

G(t) = 2Y(1+Y)(1-Y—Y?),
G*(t) = 421+ Y)(1—-Y —Y?(1+3Y +6Y%+2Y?),

Y = Y(t) = 2t(1 + Y(2))(1 + 4Y(t) + 2Y(¢)?).
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Chapter 2

Kreweras walks and loopless

triangulations

Abstract: We consider lattice walks in the plane starting at the origin, remaining in the
first quadrant 4,5 > 0 and made of West, South and North-East steps. In 1965, Germain
Kreweras discovered a remarkably simple formula giving the number of these walks (with
prescribed length and endpoint). Kreweras’ proof was very involved and several alternative
derivations have been proposed since then. But the elegant simplicity of the counting formula
remained unexplained. We give the first purely combinatorial explanation of this formula.
Our approach is based on a bijection between Kreweras walks and triangulations with a
distinguished spanning tree. We obtain simultaneously a bijective way of counting loopless

triangulations.

Résumé : On considere les chemins planaires constitués de pas Sud, Ouest et Nord-Est
partant de l'origine et restant dans le quart de plan. En 1965, Germain Kreweras dé-
montra une formule remarquablement simple donnant le nombre de ces chemins (a taille
et point d’arrivée fixés). La preuve originale de Kreweras est particulierement complexe
et plusieurs démonstrations alternatives ont été proposées depuis lors. Mais 1’élégante
simplicité de la formule de comptage resta inexpliquée. Nous apportons la premiere preuve
entierement bijective de cette formule. Notre approche est basée sur une bijection entre
les chemins de Kreweras et les triangulations dont un arbre couvrant est distingué. Nous

obtenons simultanément une preuve bijective pour le comptage des triangulations sans boucle.

71
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2.1 Introduction

We consider lattice walks in the plane starting from the origin (0,0), remaining in the first
quadrant 7, 7 > 0 and made of three kind of steps: West, South and North-East. These walks
were first studied by Kreweras [Krew 65] and inherited his name. A Kreweras walk ending at

the origin is represented in Figure 48.

Figure 48: The Kreweras walk cbcccbbeaaaaabb.

These walks have remarkable enumerative properties. Kreweras proved in 1965 that the
number of walks of length 3n ending at the origin is:

= o 1)4(;1 ) <3:> (70)

The original proof of this result is complicated and somewhat unsatisfactory. It was
performed by guessing the number of walks of size n ending at a generic point (i, j).
The conjectured formulas were then checked using the recurrence relations between these
numbers. The checking part involved several hypergeometric identities which were later
simplified by Niederhausen [Nied 83]. In 1986, Gessel gave a different proof in which the
guessing part was reduced [Gess 86]. More recently, Bousquet-Mélou proposed a constructive
proof (that is, without guessing) of these results and some extensions [Bous 05a]. Still,
the simple looking formula (70) remained without a direct combinatorial explanation. The
problem of finding a combinatorial explanation was mentioned by Stanley in [Stan 05]. Our

main goal in this chapter is to provide such an explanation.

Formula (70) for the number of Kreweras walks is to be compared to another formula
proved the same year. In 1965, Mullin, following the seminal steps of Tutte, proved via a
generating function approach [Mull 65] that the number of loopless triangulations of size n

(see below for precise definitions) is

= W5 1)2(”271 ) (3:> (71)

A bijective proof of (71) was outlined by Schaeffer in his Ph.D thesis [Scha 98]. See also

[Poul 03a] for a more general construction concerning loopless triangulations of a k-gon. We

will give an alternative bijective proof for the number of loopless triangulations. Technically

speaking, we will work instead on bridgeless cubic maps which are the dual of loopless



2.2. HOwW THE PROOFS WORK 73

triangulations.

It is interesting to observe that both (70) and (71) admit a nice generalization. Indeed,
the number £k, ; of Kreweras walks of size n ending at point (¢,0) and the number ¢, ; of
loopless triangulations of size n of an (i + 2)-gon both admit a closed formula (see (77) and
(78)). Moreover, the numbers ky,; and ¢, ; are related by the equation k, ; = 2"¢, ;. This
relation is explained in Section 2.8. Alas, we have found no way of proving these formulas by

our approach.

2.2 How the proofs work

We begin with an account of this chapter’s content in order to underline the (slightly unusual)

logical structure of our proofs.

e In Section 2.3, we first recall some definitions on planar maps. We also define a special class
of spanning trees called depth-first search trees or dfs-trees for short. Dfs-trees are closely

related to the trees that can be obtained by a depth-first search algorithm.

Then, we consider a larger family of walks containing the Kreweras walks. These walks are
made of West, South and North-East steps, start from the origin and remain in the half-plane
1+ 7 > 0. We borrow a terminology from probability theory and call these walks meanders.
We call excursion a meander ending on the second diagonal (i.e. the line i +j = 0). An

excursion is represented in Figure 49.

C

{ \;——"—'—

Figure 49: An excursion.

Unlike Kreweras walks, excursions are easy to count. By applying the cycle lemma (see

[Stan 99, Section 5.3]), we prove that the number of excursions of size n (length 3n) is

4n 3n
e, = .
" oam41\n

e In Section 2.4, we define a mapping ® between excursions and cubic maps with a distin-

guished dfs-tree. In Section 2.5 we prove that the mapping ® is a (n+ 1)-to-1 correspondence
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® between excursions (of size n) and bridgeless cubic maps (of size n) with a distinguished
dfs-tree. As a consequence, the number of bridgeless cubic maps of size n with a distinguished

dfs-tree is found to be:

d en 4mn 3n
" on+l (n+1D)@n+1)\n /)’

e In Section 2.6, we prove that the correspondence @, restricted to Kreweras walks, induces a
bijection between Kreweras walks (of size n) ending at the origin and bridgeless cubic maps

(of size n) with a distinguished dfs-tree. As a consequence, we obtain:

Fn = dn = (n+1;4(2n+1)<3:>’

where k,, is the number of Kreweras walks of size n ending at the origin. This gives a

combinatorial proof of (70).

e In Section 2.7, we enumerate dfs-trees on cubic maps. We prove that the number of such

trees for a cubic map of size n is 2". As a consequence, the number of cubic maps of size n is

B d_n B 2m 3n
T T eyt \n )

This gives a combinatorial proof of (71).

e In Section 2.8, we extend the mapping ® to Kreweras walks ending at (i,0) and discuss

some open problems.

2.3 Preliminaries

2.3.1 Planar maps and dfs-trees

Planar maps. A planar map, or map for short, is an embedding of a connected planar
graph in the sphere without intersecting edges, defined up to orientation preserving homeo-
morphisms of the sphere. Loops and multiple edges are allowed. The faces are the connected
components of the complement of the graph. By removing the midpoint of an edge we obtain
two half-edges, that is, one-dimensional cells incident to one vertex. We say that each edge

has two half-edges, each of them incident to one of the endpoints.

A map is rooted if one of its half-edges is distinguished as the root. The edge containing
the root is the root-edge and its endpoint is the root-vertex. Graphically, the root is indicated
by an arrow pointing on the root-vertex (see Figure 50). All the maps considered in this

chapter are rooted and we shall not further precise it.
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root

Figure 50: A rooted map.

Growing maps. Our constructions lead us to consider maps with some legs, that is, half-
edges that are not part of a complete edge. A growing map is a (rooted) map together with
some legs, one of them being distinguished as the head. We require the legs to be (all) in
the same face called head-face. The endpoint of the head is the head-vertex. Graphically, the
head is indicated by an arrow pointing away from the head-vertex. The root of a growing
map can be the head, another leg or a regular half-edge. For instance, the growing map in

Figure 51 has 2 legs beside the head, and its root is not a leg.

leg
head

root
leg

Figure 51: A growing map.

Cubic maps. A map (or growing map) is cubic if every vertex has degree 3. It is k-near-
cubic if the root-vertex has degree k£ and any other vertex has degree 3. For instance, the
map in Figure 50 is 2-near-cubic and the growing map in Figure 51 is cubic. Observe that
cubic maps are in bijection with 2-near-cubic maps not reduced to a loop by the mapping

illustrated in Figure 52.

Figure 52: Bijection between cubic maps and 2-near-cubic maps.

The incidence relation between vertices and edges in cubic maps shows that the number of
edges is always a multiple of 3. More generally, if M is a k-near-cubic map with e edges and v
vertices, the incidence relation reads: 3(v—1)+k = 2e. Equivalently, 3(v—k+1) = 2(e—2k+3).
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The number v — k + 1 is non-negative for non-separable k-near-cubic maps (see definition
below). (This property can be shown by induction on the number of edges by contracting
the root-edge.) Hence, the number of edges has the form e = 3n + 2k — 3, where n is a
non-negative integer. We say that a k-near-cubic map has size n if it has e = 3n 4+ 2k — 3
edges (and v = 2n 4+ k — 1 vertices). In particular, the mapping of Figure 52 is a bijection

between cubic maps of size n (3n+3 edges) and 2-near-cubic maps of size n+1 (3n+4 edges).

Non-separable maps. A map is non-separable if its edge set cannot be partitioned into
two non-empty parts such that only one vertex is incident to some edges in both parts. In
particular, a non-separable map not reduced to an edge has no loop nor bridge (a bridge or
isthmus is an edge whose deletion disconnects the map). For cubic maps and 2-near-cubic
maps it is equivalent to be non-separable or bridgeless. The mapping illustrated in Figure 52
establishes a bijection between bridgeless cubic maps and bridgeless 2-near-cubic maps not

reduced to a loop.

Bridgeless cubic maps are interesting because their dual are the loopless triangulations.
Recall that the dual M* of a map M is the map obtained by putting a vertex of M* in each

face of M and an edge of M* across each edge of M. See Figure 53 for an example.

Figure 53: A cubic map and the dual triangulation (dashed lines).

Dfs-trees. A tree is a connected graph without cycle. A subgraph T of a graph G is a
spanning tree if it is a tree containing every vertex of G. An edge of the graph G is said to
be internal if it is in the spanning tree T and external otherwise. For any pair of vertices
u, v of the graph G, there is a unique path between v and v in the spanning tree T'. We call
it the T-path between u and v. A map (or growing map) M with a distinguished spanning
tree T will be denoted by Mr. Graphically, we shall indicate the spanning tree by thick
lines as in Figure 54. A vertex u of M7 is an ancestor of another vertex v if it is on the
T-path between the root-vertex and v. In this case, v is a descendant of u. Two vertices are
comparable if one is the ancestor of the other. For instance, in Figure 54, the vertices u; and

v1 are comparable whereas us and vy are not.
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A dfs-tree is a spanning tree such that any external edge joins comparable vertices. More-
over, we require the edge containing the root to be external. In Figure 54, the tree on the left
side is a dfs-tree but the tree on the right side is not a dfs-tree since the edge (ug,vy) breaks
the rule. The dfs-trees are strongly related to the depth-first search algorithm (see Section
2.7) and are also known as the Trémauz trees [Fray 82, Fray 85]. A dfs-map is a map with a

distinguished dfs-tree. A marked-dfs-map is a dfs-map with a marked external edge.

Uq U2

U1 V2

Figure 54: A dfs-tree (left) and a non-dfs-tree (right).

2.3.2 Kreweras walks and meanders

In what follows, Kreweras walks are considered as words on the alphabet {a, b, c}. The letter
a (resp. b, ¢) corresponds to a West (resp. South, North-East) step. For instance, the walk
in Figure 48 is cbeeebbeaaaaabb. The length of a word w is denoted by |w| and the number
of occurrences of a given letter « is denoted by |w|,. Kreweras walks are the words w on the

alphabet {a, b, c} such that any prefix w’ of w satisfies
[wle < Jw'le and  |w'ly < Jw'|c . (72)
Kreweras walks ending at the origin satisfy the additional constraint
wla = [wlp = |wle. (73)

These conditions can be interpreted as a ballot problem with three candidates. This is why

Kreweras walks sometimes appear under this formulation in the literature [Nied 83].

Similarly, the meanders, that is, the walks remaining in the half-plane i + j > 0, are the

words w on {a, b, ¢} such that any prefix w’ of w satisfies
wW'le + W'l < 2. (74)
Excursions, that is, meanders ending on the second diagonal, satisfy the additional constraint
[wla + |wlp = 2Jwlc . (75)

Note that the length of any walk ending on the second diagonal is a multiple of 3. The

size of such a walk of length 3n is n. Note also that a walk ending at point (i,0) has a
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length of the form | = 3n + 2¢ where n is a non-negative integer. A Kreweras walk of length

I = 3n + 2i ending at (i,0) has size n.

Unlike Kreweras walks, the excursions are easy to count.

Proposition 2.1 There are

4" (3n
n = 76
° 2n—|—1<n> (76)

excursions of size n.

Proof: We consider projected walks, that is, one-dimensional lattice walks starting and ending
at 0, remaining non-negative and made of steps +2 and —1. (They correspond to projections
of excursions on the first diagonal.) A projected walk is represented in Figure 55. Projected
walks can be seen as words w on the alphabet {a,c} with |w|, = 2|w|. and such that any
prefix w’ of w satisfies |w'|, < 2|w'|.. The projected walks can be counted bijectively by

applying the cycle lemma (see Section 5.3 of [Stan 99]): there are

1 3n+1 1 3n
Pn = m<2n+l> - m<n>
projected walks of size n (length 3n).
Given an excursion, we obtain a projected walk by replacing the occurrences of a and b by «a.
Conversely, taking a projected walk of length 3n and replacing the 2n letters a by a sequence of
letters in {a, b} one obtains an excursion. This establishes a 4"-to-1 correspondence between

excursions (of size n) and projected walks (of size n). Thus, there are 4"p, excursions of

size n.

0

Figure 55: The projected walk associated to the excursion of Figure 49.

2.4 A bijection between excursions and cubic marked-dfs-

maps

In this section we define a mapping & between excursions and bridgeless 2-near-cubic

marked-dfs-maps (2-near-cubic maps with a distinguished dfs-tree and a marked external
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edge). We shall prove in Section 2.5 that the mapping ® is a bijection between excursions
and bridgeless 2-near-cubic marked-dfs-maps. The general principle of the mapping &
is to read the excursion from right to left and interpret each letter as an operation for
constructing the map and the tree. This step-by-step construction is illustrated in Figure
57. The intermediate steps are tree-growing maps, that is, growing maps together with a

distinguished spanning tree (indicated by thick lines).

e We start with the tree-growing map MY consisting of one vertex and two legs. One of the
legs is the root, the other is the head (see Figure 56). The spanning tree is reduced to the

unique vertex.

e We apply successively certain elementary mappings ¢,, ©p, @ (Definition 2.2) correspond-

ing to the letters a, b, ¢ of the excursion read from right to left.

e When the whole excursion is read, there is only one leg remaining beside the head. At this
stage, we close the tree-growing map, that is, we glue the head and the remaining leg into a

marked external edge as shown in Figure 58.

Figure 56: The tree-growing map MJY.

e fef it
$9$$4%

Figure 57: Successive applications of the mappings ¢q, @p, @ for the walk cacbaaccaaba
(read from right to left).

Let us enter in the details and define the mapping ®. Consider a growing map M. We

make a tour of the head-face if we follow its border in counterclockwise direction (i.e. the
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Close

Figure 58: Closing the map (the marked edge is dashed).

border of the head-face stays on our left-hand side) starting from the head (see Figure 59).
This journey induces a linear order on the legs of M. We shall talk about the first and last
legs of M.

head

first leg
last leg

root

Figure 59: Making the tour of the head-face.

We define three mappings ¢4, ©p, (e On tree-growing maps.

Definition 2.2 Let My be a tree-growing map (the map is M and the distinguished tree is
T).

e The mappings v, and @y are represented in Figure 60. The tree-growing map M, = pq(Mr)
(resp. pp(Mr)) is obtained from My by replacing the head by an edge e together with a new
vertex v incident to the new head and another leg at its left (resp. right). The tree T’ is

obtained from T by adding the edge e and the vertex v.

e The tree-growing map p.(Mr) is only defined if the first and last legs exist (that is, if the
head-face contains some legs beside the head) and have distinct and comparable endpoints.
We call these legs s and t with the convention that the endpoint of s is an ancestor of the
endpoint of ¢.

In this case, the tree-growing map ML = p.(Mr) is obtained from My by gluing together the
head and the leg s while the leg t becomes the new head (see Figure 61). The spanning tree T

is unchanged.
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e For a word w = ajas...a, on the alphabet {a,b,c}, we denote by ¢, the mapping

Pai ©Paz © "0 Paqy, -

Figure 60: The mappings ¢, and @y.

Figure 61: The mapping ¢..

Definition 2.3 The image of an excursion w by the mapping ® is the map with a distin-
guished spanning tree and a marked external edge obtained by closing the tree-growing map

0w (MD), that is, by gluing the head and the unique remaining leg into a marked edge.

The mapping ® has been applied to the excursion cacbaaccaaba in Figure 57 and 58. Of

course, we still need to prove that the mapping ® is well defined.

Proposition 2.4 The mapping ® is well defined on any excursion w:
o [t is always possible to apply the mapping ¢. when required.
o The tree-growing map @.,(MQ) has exactly one leg beside the head. This leg and the head

are both in the head-face, hence can be glued together.
Before proving Proposition 2.4, we need three technical results.

Lemma 2.5 Let w be a word on the alphabet {a,b, c} such that @, (M?) is well defined. Then,
0w(M?) is a tree-growing map.

Proof: Let Mr = ,(M?). It is clear by induction that 7' is a spanning tree. The only
point to prove is that the legs of (,(M?) are in the head-face. We proceed by induction
on the length of w. This property holds for the empty word. If the property holds for
My = @,(MY) it clearly holds for ¢,(M7) and @y(Mr). If ¢. can be applied, the head is
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glued either to the first or to the last leg of Mp. Thus, all the remaining legs (including
the head of p.(Mr7)) are in the same face. O

We shall see shortly (Lemma 2.7) that whenever the tree-growing map ., (M?) is well
defined, the endpoints of any leg is an ancestor of the head-vertex. Observe that in this case

the endpoints of the legs are comparable.

Lemma 2.6 Let Mr be a tree-growing map. Suppose that the endpoint of any leg is an
ancestor of the head-vertex. Suppose also that the first and last legs exist and have distinct
endpoints. We call these endpoints u and v with the convention that u is an ancestor of
v. Then, v is the last vertex incident to a leg on the T-path from the root-vertex to the

head-vertez.

Proof: The situation is represented in Figure 62. We make an induction on the number of
edges that are not in the T-path P from the root-vertex to the head-vertex. The property
is clearly true if the tree-growing map is reduced to the path P plus some legs. If not, the
deletion of a edge not in P does not change the order of appearance of the legs around the

head-face. In particular, the first and last legs are unchanged. 0

Figure 62: The last vertex incident to a leg on the T-path from the root-vertex to the head-

vertex is v.

Lemma 2.7 Let w be a word on the alphabet {a,b,c} such that @, (M?) is defined. Then the
endpoint of any leg of v, (MYQ) is an ancestor of the head-verter.

Proof: We proceed by induction on the length of w. The property holds for the empty word.
We suppose that it holds for My = ,,(M). It is clear that the property holds for the tree-
growing maps @4 (Mr) and ¢p(M7). If ¢, can be applied, the endpoints of the first and last
leg are distinct and comparable. We call these endpoints v and v with the convention that u
is an ancestor of v. By the induction hypothesis, the conditions of Lemma 2.6 are satisfied
by Mr. Therefore, the vertex v is the last vertex incident to a leg on the T-path from the
root-vertex to the head-vertex. Hence, any endpoint of a leg of ¢.(Mr) is an ancestor of v

which is the head-vertex of ¢.(Mr). .
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Proof of Proposition 2.4: Let w be an excursion. We consider a suffix w’ of w and denote

by M} = @, (M?) the corresponding tree-growing map (if it is well defined).

o If M) is well defined, it has |w'|, + |w'|p — 2|w'|c + 1 legs besides the head. (Observe that,
by (74) and (75), the quantity |w’|, 4+ |w'|, — 2|w’|. is non-negative.)

We proceed by induction on the length of w’. The property holds for the empty word.
Moreover, applying ¢, or ¢ increases by 1 the number of legs whereas applying ¢. decreases

this number by 2. Thus, the property follows easily by induction.

e The tree-growing map M. is well defined.

We proceed by induction on the length of w’. The property holds for the empty word. We
write w’ = aw” and suppose that MY = ¢, (M?) is well defined. If @ = a or b the tree-
growing map M7, = (MY} is well defined. We suppose now that o = ¢. The tree-growing
map M7 has [w"|, + |w"|p = 2|w"|.+1 = |w'|q + |0’y — 2|w'|. +3 > 2 legs besides the head. It
is clear by induction that all these legs have distinct endpoints. Moreover, by Lemma 2.7, all
the endpoints of these legs are ancestors of the head-vertex. Thus the endpoints of the legs
are comparable. In particular, the endpoints of the first and last legs are comparable. Hence,

the mapping . can be applied.

o The tree-growing map My = @, (M?) is well defined and has exactly one leg beside the head.

This property follows from the preceding points since |wl|q + |w|p — 2|w|. = 0. O

We now state the key result of this chapter.

Theorem 2.8 The mapping ® is a bijection between excursions of size n and bridgeless 2-

near-cubic marked-dfs-maps of size n.

The proof of Theorem 2.8 is postponed to the next section. For the time being we explore
its enumerative consequences. We denote by d,, the number of bridgeless 2-near-cubic dfs-
maps of size n. Consider a 2-near-cubic map M of size n (3n + 1 edges, 2n + 1 vertices) and
a spanning tree T'. Since T" has 2n + 1 vertices, My has 2n internal edges and n + 1 external
edges. Hence, there are (n+ 1)d,, bridgeless 2-near-cubic marked-dfs-maps. By Theorem 2.8,
this number is equal to the number e,, of excursions of size n. Using Proposition 2.1, we

obtain the following result.

4n 3
Corollary 2.9 There are d, = ne—: T = T D@n 1) (:) bridgeless 2-near-cubic

dfs-maps of size n.

Observe that d,, is also the number of bridgeless cubic dfs-maps of size n — 1 since the
bijection between cubic maps and 2-near-cubic maps represented in Figure 52 can be turned

into a bijection between cubic dfs-maps and 2-near-cubic dfs-maps.
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2.5 Why the mapping ¢ is a bijection

In this section, we prove that the mapping ® is a bijection between excursions and bridgeless
2-near-cubic marked-dfs-maps. We first prove that the image of any excursion by the mapping
® is a bridgeless 2-near-cubic marked-dfs-map (Proposition 2.10). Then we define a mapping
VU from bridgeless 2-near-cubic marked-dfs-maps to excursions (Definition 2.13) and prove

that ® and ¥ are inverse mappings (Propositions 2.16 and 2.18).

Proposition 2.10 The image ®(w) of any excursion w is a bridgeless 2-near-cubic marked-

dfs-map.

Proof: Let w’ be a suffix of w and let M}, = 0w (M?) be the corresponding tree-growing

map.

e The tree-growing map M. is 2-near-cubic.
Applying ¢, or ¢, creates a new vertex of degree 3 and does not change the degree of the
other vertices. Applying . does not affect the degree of the vertices. The property follows

by induction.

e The head and the root of M/, are distinct half-edges.

The property holds for the empty word. We now write w’ = aw”. If a = a or b the property
clearly holds for w’. Suppose now that o = ¢. Let u and v be the vertices incident to the first
and last legs of M/. = (M) with the convention that u is an ancestor of v. By definition,
v is the head-vertex of M} = ¢.(M}) and is a proper descendant of u. Hence, the head-vertex

v and the root-vertex of M’T are distinct.

e The tree T is a dfs-tree of M.

The external edges are created by applying the mapping ., that is, by gluing the head to
another leg. By Lemma 2.7, any vertex incident to a leg is an ancestor of the head-vertex.
Hence, any external edge joins comparable vertices. Moreover, by the preceding point, if the
root is part of a complete edge, then this edge is external (internal edges are created by the

mappings ¢, or ¢, which replace the head by a complete edge).

e Let ug be the first vertex of M/, incident to a leg on the T-path from the root-vertex to the
head-vertex. Any isthmus of M} is in the T-path between ug and the head-vertex.

We proceed by induction on the length of w’. The property holds for the empty word. We
write w' = aw” and suppose that it holds for M}, = @, (MQ). If & = a or b the property
clearly holds for My = ¢,(MY). We suppose now that & = c¢. We denote by u; the first
vertex of M/ incident to a leg on the T-path from the root-vertex to the head-vertex. Let u
and v be the vertices incident to the first and last legs of M/, with the convention that u is
an ancestor of v. By Lemma 2.7, the vertices u1, v and v are all ancestors of the head-vertex
vy of M. Hence, u and v are on the T-path between u; and v;. This situation is represented

in Figure 63. By definition, the tree-growing map M/, is obtained from M/ by creating an
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edge e; between u and v; while v becomes the new head-vertex. We denote by P; (resp. Ps)
the T-path between u; and u (resp. u and v). We consider an isthmus e of M/.. The edge e
is an isthmus of M7 (since MY is obtained from My by deleting an edge). By the induction
hypothesis, the isthmus e is either in P; or in P,. The edge e is not in the path P, since
the new edge e creates a cycle with P,. The isthmus e is in P, therefore the vertices uq
and v are distinct. Hence u; = ug is the first vertex of M/. incident to a leg on the T-path
from the root-vertex to the head-vertex. Thus, the isthmus e is in the T-path from wug to the

head-vertex v of M.

e The dfs-map ®(w) has no isthmus.
By the preceding points, any isthmus of M7 = ¢, (M?) is on the T-path between the head-
vertex and the endpoint of the only remaining leg. Hence, no isthmus remains once the map

closed.
O

U1 U1
e
P v 1 v
Pe
U —_— U
Py
Uy Uy

Figure 63: Isthmuses are in the T-path between ug and the head-vertex.

We will now define a mapping ¥ (Definition 2.13) that we shall prove to be the inverse of
®. The mapping ¥ destructs the tree-growing map that & constructs and recovers the walk.

Looking at Figure 57 from bottom-to-top and right-to-left we see how ¥ works.

We first define three mappings 14, 1, ¥, on tree-growing maps that we shall prove to
be the inverse of ., wp and . respectively. We consider the following conditions for a
tree-growing map Mr:
(a) The head-vertex has degree 3 and is incident to an edge and a leg at the left of the head.
(b) The head-vertex has degree 3 and is incident to an edge and a leg at the right of the head.
(¢) The head-vertex has degree 3 and is incident to 2 edges which are not isthmuses.

Furthermore, the tree T is a dfs-tree.

The conditions (a), (b), (c) are the domain of definition of ¥4, ¥, 1. respectively. Before

defining these mappings we need a technical lemma.

Lemma 2.11 If Condition (c) holds for the tree-growing map M, then there exists a unique

external edge ey incident to the head-face with one endpoint u ancestor of the head-vertex and
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one endpoint vg descendant of the head-vertex.

Lemma 2.11 is illustrated by Figure 64.

Vo

Figure 64: The unique edge eg satisfying the conditions of Lemma 2.11.

Proof: We suppose that My satisfies Condition (¢). One of the two edges incident to the
head-vertex is in the T-path from the root-vertex to the head-vertex. Denote it e. The edge
e separates the tree T in two subtrees 77 and T5. We consider the set Ej of external edges
having one endpoint in 77 and the other in T5. Any edge satisfying the conditions of Lemma
2.11 is in Fjy. Since e is not an isthmus, the set Eg is non-empty. Moreover, any edge in Fjy
has one endpoint that is a descendant of the head-vertex. Since T is a dfs-tree, the other
endpoint is an ancestor of the head-vertex. It remains to show that there is a unique edge
ep in Ey incident to the head-face. By contracting every edge in Ty and T, we obtain a map
with 2 vertices. The edges incident to both vertices are precisely the edges in Eq U {e}. It is
clear that exactly 2 of these edges are incident to the head-face. One is the internal edge e
and the other is an external edge eg € Fy. This edge eg is the only external edge satisfying

the conditions of Lemma 2.11. 0

We are now ready to define the mappings 1., 1 and ..
Definition 2.12 Let My be a tree-growing map.

o The tree-growing map M’, = o(Mr) (resp. p(My)) is defined if Condition (a) (resp.
(b)) holds. In this case, the tree-growing map M., is obtained by suppressing the head-vertex
v and the 3 incident half-edges. The other half of the edge incident to v becomes the new
head.

o The tree-growing map M/, = .(Mr) is defined if Condition (c) holds. In this case, we
consider the unique external edge eq with endpoints u, vy satisfying the conditions of Lemma
2.11. The edge eq is broken into two legs. The leg incident to vy becomes the new head (the

former head becomes an anonymous leg).

e For a word w = ajay...a, on the alphabet {a,b,c}, we denote by 1, the mapping

Ya,, © Wa, 4 O 0Yq,. Moreover, we say that the word w is readable on a tree-growing map
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M if the mapping 1, is well defined on M.

Remarks:
e Applying one of the mappings 1., ¥ or ¥, to a 2-near-cubic map cannot delete the root
(only half-edges incident to a vertex of degree 3 can disappear by application of 1, or ).

e The conditions (a), (b), (c¢) are incompatible. Thus, for any tree-growing map M, there is

at most one readable word of a given length.

e Applying the mapping v¢,, ¥ or ¥. decreases by one the number of edges. Therefore, the
length of any readable word on a tree-growing map My is less than or equal to the number

of edges in M.

We now define the mapping ¥ on bridgeless 2-near-cubic marked-dfs-maps. Let Mt be
such a map and let e be the marked (external) edge. Observe first that, unless My is reduced
to a loop, the edge e has two distinct endpoints (or the endpoint of e would be incident to an
isthmus). We denote by u and v the endpoints of e with the convention that u is an ancestor
of v. We open this map if we disconnect the edge e into two legs and choose the leg incident
to v to be the head. We denote by M:}"_ the tree-growing map obtained by opening M. By
convention, opening the 2-near-cubic marked-dfs-map reduced to a loop gives M?. Note that

we obtain Mp by closing M;F. We now define the mapping W.

Definition 2.13 Let My be a bridgeless 2-near-cubic marked-dfs-map. The word W (Mr) is
the longest word readable on M;F.

We want to prove that & and ¥ are inverse mappings. We begin by proving that the

mapping v, is the inverse of ¢, for a = a, b, c.

We say that a tree-growing map satisfies Condition (¢’) if it satisfies Condition (¢) and is

such that the endpoint of every leg is an ancestor of the head-vertex.

Lemma 2.14
e For o = a or b, the mapping Vo © o s the identity on all tree-growing maps and the

mapping pq © Vo 18 the identity on tree-growing maps satisfying Condition (o).

e The mapping .o @, is the identity on tree-growing maps such that the endpoints of the first
and last legs exist and are distinct ancestors of the head-vertex. The mapping p. o Y. s the

identity on tree-growing maps satisfying Condition (c').
Before proving Lemma 2.14, we need the following technical result.

Lemma 2.15 Let My be a tree-growing map satisfying Condition (c') and let ey be the edge

with endpoints u, vy satisfying the conditions of Lemma 2.11. By definition, the tree-growing
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map Ye.(Mr) is obtained by breaking ey into two legs s and h incident to u and vy respectively
while h becomes the new head. The pair of first and last legs of ¥.(Mr) is the pair {s,t},
where t is the head of M.

Lemma 2.15 is illustrated by Figure 65.

Figure 65: The pair of first and last legs of the tree-growing map 1 .(Mr) is the pair {s,t}.

Proof of Lemma 2.15:

e Let v be the head-vertex of My (i.e. the endpoint of ¢). By Condition (¢’), the endpoint of
any leg of My is an ancestor of v. Therefore, in the tree-growing map t.(Mr), the vertex v
is the last vertex incident to a leg on the T-path from the root-vertex to the head-vertex vy.
Hence, by Lemma 2.6, the leg t is either the first or the last leg of ¥.(Mr).

e No leg lies between s and h on the tour of the head-face of 1.(Mr) since this leg would
have been inside a non-head face of Mp. Thus the leg s is either the first or the last leg of

Qpc(MT)- ]

Proof of Lemma 2.14:

e For @ = a or b, it is clear from the definitions that ¢, o 1, is the identity mapping on all
tree-growing maps and that ¢, 0, is the identity on tree-growing maps satisfying Condition
().

e Consider a tree-growing map M7 such that the endpoints of the first and last legs exist and
are distinct ancestors of the head-vertex vg. We call these legs s and ¢ with the convention
that the endpoint u of s is an ancestor of the endpoint v of . By definition, ¢ (Mr) is
obtained by gluing the head of M7 to s while ¢t becomes the new head. Let ey be the external
edge created by gluing the head to s. The head-vertex v of the tree-growing map ¢.(Mry) is
on the cycle made of ey and the T-path between its two endpoints u and vy, thus p.(Mr)

satisfies Condition (c). Moreover, the external edge e satisfies the conditions of Lemma 2.11.
Thus, ¥ o SOC(MT) = Mr.

e We consider a tree-growing map My satisfying Condition (¢’). We consider the edge ey with

endpoints u, vy satisfying the conditions of Lemma 2.11. By definition, v.(M7) is obtained
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by breaking eg into two legs s and h incident to u and vy respectively while h becomes the
new head. By Lemma 2.15, the pair of first and last legs of .(Mr) is {s,t}. Moreover, the
endpoint u of s is an ancestor of the endpoint v of ¢ (by definition of eq, u, vy in Lemma 2.11).

Therefore, the identity ¢, o ¥.(Mr) = My follows from the definitions. .

Proposition 2.16 The mapping W o ® is the identity on excursions.

Proof:

e For any word w on the alphabet {a,b,c} such that the tree-growing map ., (M?) is well
defined, the word w is readable on ©,,(M2) and 1y, 0 @, (M) = MY.

We proceed by induction on the length of w. The property holds for the empty word. We
write w = aw’ with a = a,b or ¢ and suppose that it holds for w’. Let ML = ¢, (MQ). If
a = ¢, the endpoints of the first and last legs of M. are distinct and comparable (since ¢, is
defined on M7.). Moreover, we know by Lemma 2.7 that these endpoints are ancestors of the

head-vertex. Thus, for & = a,b or ¢, Lemma 2.14 ensures that 1,04 (M) = M/.. Therefore,
Yo' © Paw (M) = Pur 0 Ya © Pa © 9o (M) = thur © o © pa(M7) = thur (M),

and b, (M7}) = M2 by the induction hypothesis.

o For any excursion w, we have Vo ®(w) = w.

By definition, the map My = ®(w) is obtained by closing ¢, (M?). In order to conclude that
MA™ = ¢, (M), we only need to check that the head of M7~ is the head of ¢,,(M?) (and the
non-head leg of M;" is the non-head leg of ¢,,(M)). This is true since the endpoint of the
non-head leg of ¢, (M?) is an ancestor of the head-vertex by Lemma 2.7. By the preceding
point, the word w is readable on M7~ = ¢, (M) and 1), (M) = by, 0 0y, (M2) = MY. Since
no letter is readable on MY, the longest word readable on M7" is w. Thus, ¥ o ®(w) =

\I/(MT) = w. O

It remains to show that ® o ¥ is the identity mapping on bridgeless 2-near-cubic marked-
dfs-maps. We first prove that the image of bridgeless 2-near-cubic marked-dfs-maps by ¥ are

excursion.

Proposition 2.17 For any bridgeless 2-near-cubic marked-dfs-map M, the longest word w

readable on M;F is an excursion. Moreover, the tree-growing map ww(M;F) is MO,

Proof: If Mr is the map reduced to a loop the result is trivial. We exclude this case in what
follows. Let w be a word readable on ]\/.I';F and let Np = zpw(M;F). We denote by wug the first

vertex of Np incident to a leg on the T-path from the root-vertex to the head-vertex.

o Any isthmus of Nt is in the T-path between ug and the head-vertex.
We proceed by induction on the length of w. Suppose first that w is the empty word. Let eg
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be the marked edge of Mp. By definition, the tree-growing map Np = M:;"_ is obtained from
Mt by breaking eg into two legs: the head and another leg incident to ug. Let e be an isthmus
of N7 and let N1, Ns be the two connected submaps obtained by deleting e. Since e is not an
isthmus of Mr, the edge ey joins N1 and Ns. Therefore, the root-vertex and head-vertex are
not in the same submap. Thus, the isthmus e is in any path between ug and the head-vertex,
in particular it is in the T-path.

We now write w = aw’ with o = a,b or ¢ and suppose, by the induction hypothesis, that the
property holds for w’. We denote by uj, the first vertex of N/ = tb,s(M;") incident to a leg
on the T-path from the root-vertex to the head-vertex. Suppose first that o = a or b. The
edge incident to the head-vertex of N7 is an isthmus hence, by the induction hypothesis, it is
in the T-path between u(, and the head-vertex v of N/.. Hence, ug # vj. Thus, vy = u; and
every isthmus of Ny = 1o (N7}) is in the T-path between ug and the head-vertex. Suppose
now that v = ¢. Since w is readable on Mf“_, the tree-growing map N/ = 1/1w'(Mf“_) satisfies
Condition (¢). We consider the edge ey with endpoints u, vy satisfying the conditions of
Lemma 2.11. The map N7 = ¢.(N7,) is obtained from Ny by breaking eg into two legs. By
definition, the head-vertex of Ny is vg. Moreover, the vertex wg is either wy or w if u is an
ancestor of u,. We consider an isthmus e of Np. If e is an isthmus of N/, it is in the T-path
between v to the head-vertex of N/ which is included in the T-path between ug and vg. If
e is not an isthmus of N., we consider the two connected submaps Ny, N obtained from
Nr by deleting the isthmus e. Since e is not an isthmus of N/., the edge eg joins N; and Ns.
Hence, the endpoints u and vg of eg are not in the same submap. Thus, the isthmus e is in
every path of Ny between u and the head-vertex vg, in particular, it is in the T-path between

up and vg.

e The tree-growing map Nt has at least one leg beside the head.

We proceed by induction. The property holds for the empty word. We now write w = aw’
with o = a, b or ¢ and suppose that the property holds for w’. Suppose first that o = a or b.
Since Condition («) holds, the edge incident to the head-vertex v(, of the tree-growing map
Nj = 1/Jw/(M;'_) is an isthmus. By the preceding point, this edge is on the T-path between wuy,
and v, where u, be the first vertex of N/ incident to a leg on the T-path from the root-vertex
to the head-vertex. Thus uf # v and Ny = 1o(N}) has at least one leg (the one incident
to u()) beside the head. In the case a = ¢, the tree-growing map N = 1.(N7.) has one more
legs than N7., hence it has at least one leg beside the head.

e The head and root of Nt are distinct half-edges.

By definition, the map Mf“_ has one leg beside the head whose endpoint is a proper ancestor
of the head-vertex. Hence, the head-vertex and root-vertex are distinct. We suppose now that
w = aw’ with a = a,b or ¢. If @ = a or b the head of N is an half-edge of N/ = th,r (M)
which is part of an internal edge. Hence it is not the root. If a = ¢, the head of N is
part of an external edge e of N/, = ww/(M:;"_). The edge is broken into the head of N7 and
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another leg whose endpoint is a proper ancestor of the head-vertex. Hence, the head-vertex

and root-vertex of Np are distinct.

o If w is the longest readable word, then Np = MQ.

We first prove that the root-vertex and the head-vertex of Np are the same. Suppose they
are distinct. In this case, the head-vertex has degree 3 and is incident to at least one edge. If
it is incident to one edge, then one of the conditions (a) or (b) holds and w is not the longest
readable word. Hence the head-vertex is incident to two edges e; and es. One of these edges,
say eq, is in the T-path from the root-vertex to the head-vertex and the other es is not. By a
preceding point, the edge e is not an isthmus . Therefore, e; is not an isthmus either (e; and
ez have the same ability to disconnect the map). In this case, Condition (¢) holds (since T is
a dfs-tree) and w is not the longest readable word. Thus, the root-vertex and the head-vertex
of Nt are the same. Therefore, the root-vertex has degree 2 and is incident to the head and
the root. The head and the root are distinct (by the preceding point). Moreover the root is a
leg. Indeed, if the root was not a leg it would be part of an external edge which is an isthmus
(which is impossible since the tree T is spanning). Hence the root-vertex is incident to two
legs: the root and the head. Thus, Ny = MQ.

e The tree-growing map Ny has 2|w|. — |w|q — |w|py + 1 legs beside the head.
The tree-growing map M:}"_ has one leg beside the head. Moreover, applying mapping v, or
1y, decreases by one the number of legs whereas applying mapping ). increases this number

by two. Hence the property follows easily by induction.

e The longest word w readable on Mf“_ 1S an ercursion.

By the preceding points, any prefix w’ of w satisfies 2|w’|, — |w'|, — |w'|p + 1 > 1 (since this
quantity is the number of non-head legs of 1, (M7")). Moreover, since 1,,(M;") = M has
one leg beside the root, we have 2|w|. — |w|, — |w|p + 1 = 1. These properties are equivalent

to (74) and (75), hence w is an excursion. -

Proposition 2.18 The mapping ® o W is the identity on bridgeless 2-near-cubic marked-dfs-

maps.

Proof: Let M7 be a bridgeless 2-near-cubic marked-dfs-map.

e For any word w readable on M;F, the endpoints of any leg of zpw(M;F) is an ancestor of
the head-vertex.

We proceed by induction on the length of w. The property holds for the empty word. We
now write w = aw’ with a@ = a, b or ¢ and suppose that it holds for w’. For o = a or b, the
property clearly holds for w. Suppose now that a = ¢. Since w is readable, the tree-growing
map N/ = b, (M) satisfies Condition (¢). We consider the edge ey with endpoints u, v
satisfying the conditions of Lemma 2.11. By definition, the head-vertex vg of Ny = ¢.(Nr.)
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is a descendant of the head-vertex v of N/.. By the induction hypothesis, the endpoint of any
leg of N/ is an ancestor of v. Hence, the endpoint of any leg of Nt is an ancestor of the

head-vertex vg.

e For any word w readable on M7, we have ¢y, o by, (M7") = M.

We proceed by induction. The property holds for the empty word. We now write w = aw’
with o = a, b or ¢ and suppose that the property holds for w’. If & = a or b the induction step
is given directly by Lemma 2.14 (since Condition («) holds for M/ = (M), If a = ¢,
that is, Condition (c) holds for M/, = 1,,(M;"), we must prove that Condition (¢’) holds (in
order to apply Lemma 2.14). But we are ensured that Condition (¢’) holds by the preceding
point. Thus, for o = a,b or ¢, Lemma 2.14 ensures that ¢4 0 9o (M}) = M}.. Therefore,

Paw © Yo (M77) = Pur © 9o © Pa © Yur (M7") = Pur © Pa 0 Ya(Mr) = pur (M),
and @, (M}) = M7" by the induction hypothesis.

o & oW (My) = Mr.

By definition, the word w = ¥ (M7 ) is the longest readable word on Mf“_. Hence, by Propo-
sition 2.17, 1, (M7") = M. By the preceding point, ., (M) = ¢y, 0 (M7 = M. By
definition, the map ®(w) is obtained by closing ¢,,(M?) = M;", hence ®(w) = Mr. Thus,

By Proposition 2.10, the mapping ® associates a bridgeless 2-near-cubic marked-dfs-map
with any excursion. Conversely, by Proposition 2.17, the mapping ¥ associates an excursion
with any bridgeless 2-near-cubic marked-dfs-map. The mappings ® and ¥ are inverse map-
pings by Propositions 2.16 and 2.18. Thus, the mapping ® is a bijection between excursions
and bridgeless 2-near-cubic marked-dfs-maps. Moreover, if an excursion w has size n (length
3n), the 2-near-cubic dfs-map ®(w) has size n (3n + 1 edges). This concludes the proof of

Theorem 2.19. 0

2.6 A bijection between Kreweras walks and cubic dfs-maps

In this section, we prove that the mapping ® establishes a bijection between Kreweras walks
ending at the origin and 2-near-cubic dfs-maps. This result is stated more precisely in the

following theorem.

Theorem 2.19 Let w be an excursion. The marked edge of the 2-near-cubic dfs-map ®(w)
is the root-edge if and only if the excursion w is a Kreweras walk ending at the origin.
Thus, the mapping ® induces a bijection between Kreweras walks of size n (length 3n) ending

at the origin and bridgeless 2-near-cubic dfs-maps of size n (3n + 1 edges).
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Figure 66 illustrates an instance of Theorem 2.19. Before proving this theorem we explore
its enumerative consequences. From Theorem 2.19, the number k,, of Kreweras walks of size
n is equal to the number d,, of bridgeless 2-near-cubic dfs-maps of size n. The number d,, is
given by Corollary 2.9. We obtain the following result.

4n

Theorem 2.20 There are k,, = CESNC R
n n

(3:> Kreweras walks of size n (length 3n)

ending at the origin.

RYER
Prs

Figure 66: The image of a Kreweras walk by ®: the root-edge is marked.

The rest of this section is devoted to the proof of Theorem 2.19.

Consider a growing map M such that the root is a leg. Recall that making the tour of
the head-face means following its border in counterclockwise direction starting from the head
(see Figure 59). We call left (resp. right) the legs encountered before (resp. after) the root
during the tour of the head-face. For instance, the growing map in Figure 59 has one left leg

and two right legs.

Lemma 2.21 For any Kreweras walk w ending at the origin, the marked edge of ®(w) is the

root-edge.

Proof: Let w’ be a suffix of w and let M}, = ¢,/(MJ) be the corresponding tree-growing

map.

e The root of M. is a leg and M} has |w'|q—|w'|. left legs and |w'|, —|w'|. Tight legs. (Observe
that, these quantities are non-negative by (72) and (73).)

We proceed by induction on the length of w’. The property holds for the empty word. We now
write w’ = aw” with a = a, b or ¢ and suppose that the property holds for w”. If &« = a or b the

property holds for w’ since applying ¢, (resp. ) increases by one the number of left (resp.
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right) legs. We now suppose that a = ¢. We know that |w”|, — [w"|. = |w|, — |0'|c +1 > 1.
Hence, by the induction hypothesis, the tree-growing-map M/, = 0w (M2) has at least one
left leg. Similarly, M/ has at least one right leg. Therefore, the first (resp. last) leg of M7 is
a left (resp. right) leg. Hence, applying ¢, to M7 decreases by one the number of left (resp.
right) legs. Thus, the property holds for w'.

e For w' = w, the preceding point shows that ¢,,(M?) has only one leg beside the head and

that this leg is the root. Thus, the marked edge of ®(w) is the root-edge. 0

Lemma 2.22 For any bridgeless 2-near-cubic dfs-map Mt marked on the root-edge, the word

w = U(M7) = ®Y(Mry) is a Kreweras walk ending at the origin.

Proof: Let w be a word readable on M7 and let Ny = t,(M7"). Observe that the root of

Ny is a leg (since it is the case in M, and the root never disappears).

e The tree-growing map Np has |w|. — |wl|, left legs and |w|. — |w|p right legs.

We proceed by induction on the length of w. The property holds for the empty word. We now
write w = aw’ with a = a, b or ¢ and suppose that the property holds for w’. If & = a or b the
property holds for w since applying 1, (resp. ) decreases by one the number of left (resp.
right) legs. We now suppose that a = ¢. The map N/ = th,(M7") satisfies Condition (c).
We have already proved (see the first point in the proof of Lemma 2.17) that the endpoint
of every leg is an ancestor of the head-vertex. Hence N satisfies Condition (¢’). Therefore,
Lemma 2.15 holds for NJ.. We adopt the notations h, s, t of this lemma which is illustrated in
Figure 65. By Lemma 2.15, the pair of first and last head of Ny = ).(N7.) is the pair {s,t}.
Hence, in the pair {s,t} one is a left leg and the other is a right leg of Np. Moreover, the
other left and right legs of Ny are the same as in N/.. Thus, applying 1. to N7, increases by
one the number of left (resp. right) legs. Hence, the property holds for w.

e The word w = V(Mry) is a Kreweras walk ending at the origin.

By definition, w is the longest word readable on M;F. By Proposition 2.17, ww(M;F) = MJ.
By the preceding point, we get |w|. — |w|, = 0 and |w|. — |w|, = 0 (since MY has no left nor
right leg). Moreover, for any suffix w’ of w, the preceding point proves that |w’|. — |w'|, > 0
and |w'|. —|w'[p > 0. These properties are equivalent to (72) and (73), hence w is a Kreweras

walk ending at the origin. 0

2.7 Enumerating dfs-trees and cubic maps

In Section 2.4, we exhibited a bijection ® between excursions and bridgeless 2-near-cubic

marked-dfs-maps. As a corollary we obtained the number of bridgeless 2-near-cubic dfs-maps
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of size n: d, 4z )(3:). In this section, we prove that any bridgeless 2-near-cubic

(n+1)(2n+1
map of size n has 2" dfs-trees (Corollary 2.27). Hence, the number of bridgeless 2-near-cubic
2n
(n+1)(2n+1)
and cubic maps (see Figure 52), we obtain the following theorem.

277/
(n+1)(2n+1)

By duality, ¢, is also the number of loopless triangulations with 3n edges. Hence, we

maps of size n is ¢, = & = 1) Given the bijection between 2-near-cubic maps
p n =5 . \ P

3
Theorem 2.23 There are ¢,, = < n> bridgeless cubic maps with 3n edges.
n

recover Equation (71) announced in the introduction. As mentioned above, an alternative

bijective proof of Theorem 2.23 was given in [Poul 03a)].

The rest of this section is devoted to the counting of dfs-trees on cubic maps and,
more generally, on cubic (potentially non-planar) graphs. We first give an alternative
characterization of dfs-trees. This characterization is based on the depth-first search (DFS)
algorithm (see Section 23.3 of [Corm 90]). We consider the DFS algorithm as an algorithm

for constructing a spanning tree of a graph.

Consider a graph G with a distinguished vertex vg. If the DFS algorithm starts at vy,
the subgraph T' (see below) constructed by the algorithm remains a tree containing vy. We
call visited the vertices in T' and wnwisited the other vertices. The distinguished vertex vq is
considered as the root-vertex of the tree. Hence, any vertex in T' distinct from v has a father
inT.

Definition 2.24 Depth-first search (DFS) algorithm.

Initialization: Set the current vertex to be vg and the tree T to be reduced to vy.

Core: While the current verter v is adjacent to some unvisited vertices or is distinct from
vo do:

If there are some edges linking the current vertex v to an unwvisited vertex, then choose one
of them. Add the chosen edge e and its unvisited endpoint v’ to the tree T. Set the current
vertex to be v'.

Else, backtrack, that is, set the current vertex to be the father of v in T.

End: Return the tree T'.

It is well known that the DFS algorithm returns a spanning tree. It is also known
[Corm 90] that the two following properties are equivalent for a spanning tree 7' of a graph
G having a distinguished vertex vg:

(i) Any external edge joins comparable vertices.

(ii) The tree T can be obtained by a DFS algorithm on the graph G starting at vy.
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Before stating the main result of this section, we need an easy preliminary lemma.

Lemma 2.25 Let G be a connected graph with a distinguished vertex vg whose deletion does
not disconnect the graph. Then, any spanning tree T of G satisfying conditions (i)-(it) has

exactly one edge incident to vg.

Proof: Let ey be an edge of T incident to vy and let v; be the other endpoint of eg. We
partition the vertex set V' of G into {vo} U Vi U Vi, where V; is the set of descendants of v;.
There is no internal edge joining a vertex in Vj and a vertex in V. There is no external edge
either or it would join two non-comparable vertices. Thus Vjy = () or the deletion of vg would

disconnect the graph. 0

Theorem 2.26 Let G be a loopless connected graph with a distinguished vertexr vy whose
deletion does not disconnect the graph. Let eg be an edge incident to vy. If G is a k-near-
cubic graph (vo has degree k and the other vertices have degree 3) of size n (3n+2k—3 edges),

then there are 2" trees containing eg and satisfying conditions (1)-(3).

Given that the dfs-trees are the spanning trees satisfying conditions (i)-(ii) and not con-

taining the root, the following corollary is immediate.
Corollary 2.27 Any bridgeless 2-near-cubic map of size n (3n + 1 edges) has 2™ dfs-trees.

Remark: Theorem 2.26 implies that any k-near-cubic loopless graph of size n has k2" trees

satisfying the conditions (i)-(ii).

The rest of this section is devoted to the proof of Theorem 2.26. The proof relies on the
intuition that exactly n real binary choices have to be made during the execution of a DFS

algorithm on a k-near-cubic map of size n.

Given a graph G and a subset of vertices U, we say that two vertices u and v are U-

connected if there is a path between u and v containing only vertices in U U {u, v}.

Lemma 2.28 Let v be the current vertex and let U be the set of unvisited vertices at a given
time of the DFS algorithm. The vertices that will be visited before the last visit to v are the

vertices in U that are U-connected to v.

Proof: Let S be the set of vertices in U that are U-connected to v. We make an induction
on the cardinality of S. If the set S is empty, there is no edge linking v to an unvisited vertex.
Hence, the next step in the algorithm is to backtrack and the vertex v will never be visited
again. In other words, it is the last visit to v, hence the property holds. Suppose now that S

is non-empty. In this case, there are some edges linking the current vertex v to an unvisited
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vertex. Let e be the edge chosen by the DFS algorithm and let v’ € U be the corresponding
endpoint. Let S7 be the set of vertices in U that are U-connected to v" and let Sy = S\ Sj.
Observe that no edge joins a vertex in 57 and a vertex in S3. This situation is represented in
Figure 67. The set of vertices in U’ = U \ {v'} that are U’-connected to v is S] = S1 \ {v'}
(since a vertex is U-connected to v if and only if it is U’-connected to v’). By the induction
hypothesis, S} is the set of vertices visited between the first and last visit to v’. Hence S is
the set of vertices visited before the algorithm returns to v. Since no edge joins a vertex in
S7 and a vertex in Sy, the vertices in Sy are the vertices in U \ Sy that are (U \ Sp)-connected
to v. By the induction hypothesis, S5 is the set of vertices visited before the last visit to v.

Thus, the property holds. 0

Figure 67: Partition of the vertices in S.

Proof of Theorem 2.26: Clearly, the spanning trees containing ep and satisfying the con-
ditions (i)-(ii) are the spanning trees obtained by a DFS algorithm for which the first core
step is to choose eg. We want to prove that there are 2" such spanning trees.

We consider an execution of the DFS algorithm for which the first core step is to choose eq
and denote by 7 the spanning tree returned by the DFS algorithm (in order to distinguish
it from the evolving tree T'). After the first core step, the tree T is reduced to ey and its
two endpoints vy and v. Let V be the vertex set of G and let V' = V' \ {vg,v}}. Since the
deletion of vy does not disconnect the graph, every vertex in V' is V'-connected to v;. Hence,
by Lemma 2.28, every vertex will be visited before the algorithm returns to vg. Thus, from
this stage on, the current vertex v is incident to 3 edges e, e1, es, where e € T links v to its
father.

e We denote by v; and ve the endpoints of e; and e respectively (these endpoints are not
necessarily distinct) and we denote by U the set of unvisited vertices. We distinguish three
cases:

(cv) at least one of the vertices vy, vg is not in U,

(B) the two vertices vq, vg are in U and are U-connected with each other,

(7) the two vertices vy, vo are in U and are not U-connected with each other.

The three cases are illustrated by Figure 68. We prove successively the following properties:
- In case (a), no choice has to be done by the algorithm.

Indeed, there is at most one edge (e1 or ey) linking the current vertex v to an unvisited vertex.
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- In case (B3), the algorithm has to choose between ey and es. This choice necessarily leads to
two different spanning trees T . Indeed the edge ey (resp. es) is in T if and only if the choice
of e1 (resp. ez) is made.

Suppose (without loss of generality), that the choice of e; is made. The vertex vq is (UU{v1 })-
connected to vy (a vertex is (U U {1 })-connected to vy if and only if it is U-connected to v1).
Hence, by Lemma 2.28, the vertex vo will be visited before the last visit to v1, that is, before
the algorithm returns to the vertex v. Therefore, the edge es will not be in the spanning tree
T.

- In case (), the algorithm has to choose between ey and ey. Moreover, any tree T obtained
by choosing ey can be also obtained by choosing es.

Let S and S5 be the set of vertices in U that are U-connected to v and wve respectively.
Observe that the sets S; and Sy are disjoint and no edge links a vertex in S; and a vertex
in Sy (otherwise the vertices v and vy would be U-connected). Suppose that the choice of
e1 is made. The set of vertices in U \ {v1} that are U \ {v1 }-connected to vy is Sy \ {v1}.
Hence, by Lemma 2.28, the set of vertices visited before the last visit to v1, that is, before
the algorithm returns to v is S;. Since vo is not in S; the next step of the algorithm is to
choose eg. Let Uy = U \ S be the set of unvisited vertices at this stage. Since no vertex in
Sy is adjacent to a vertex in Sy, the set of vertices in Us \ {va} that are (Us \ {va})-connected
to vg is S\ {ve}. Hence, by Lemma 2.28, the set of vertices visited before the last visit to va,
that is, before the algorithm returns to v is Sy. Let T} (resp. T3) be the subtree constructed
by the algorithm between the first and last visit to vy (resp. wv3). Since no vertex in Sp is
adjacent to a vertex in S, the subtree T could have been constructed exactly the same way
if the algorithm had chosen e (instead of e;) at the beginning. Similarly, the subtree T%
could have been constructed exactly in the same way if the algorithm had chosen es at the
beginning. Therefore, the tree 7 returned by the algorithm could have been constructed if

the algorithm had chosen es (instead of eq) at the beginning.

e During any execution of the DFS algorithm we are exactly n times in case ([3).

The k-near-cubic graph G has 3n+ 2k — 3 edges and 2n + 2k — 1 vertices. Hence, the spanning
tree 7 has 2n + 2k — 2 edges. Thus, there are n+ k — 1 external edges among which k£ —1 are
incident to vy. Let Ej be the set of the n external edges not incident to vg. Since G is loop-
less and the spanning tree 7 satisfies (i)-(ii), the edges in Eg have distinct and comparable
endpoints. For any edge e in Eg, we denote by v, the endpoint of e which is the ancestor of
the other endpoint. The vertex v, is incident to e, to the edge of 7 linking v to its father and
to another edge in 7 linking v, to its son (otherwise v, has no descendant). In particular, if
e and ¢’ are distinct edges in Ejg, then the vertices v, and v, are distinct. Thus, the set of
vertices V3 = {v./e € Eg} has size n.

We want to prove that the case () occurs when the algorithm visit a vertex in Vj for the

first time (and not otherwise). Let v be a vertex in V. The vertex v is incident to an edge
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e1 in Eg, an edge e in 7 linking v to its father and another edge ez in 7 linkink v to its son.
Let T be the tree constructed by the algorithm at the time of the first visit to v and let U
be the set of unvisited vertices. Any descendant of v is in U. In particular, the endpoints v
and vy of e; and e are in U and are U-connected with each other (take the 7-path between
vy and vy). Thus, we are in case ((3). Conversely, if we are in case (3) during the algorithm,
the current vertex v is visited for the first time (or one of the vertices vy, vy would already
be in U). Moreover, by the preceding point, one of the edges (e or ez) incident to v is not in

7 and joins v to one of its descendants. Hence, the current vertex v is in V3.

e During the DFS algorithm we have to make n binary choices that will affect the outcome
of the algorithm (case (f)). The other choices (case (7)) do not affect the outcome of the

algorithm. Therefore, there are 2™ possible outcomes.
O

V1 V9 U1 V2

Figure 68: Case («) (left), case (8) (middle) and case (y) (right). The visited vertices are

indicated by a square while unvisited ones are indicated by a circle.

2.8 Applications, extensions and open problems

2.8.1 Random generation of triangulations

The random generation of excursions of length 3n (with uniform distribution) reduces to
the random generation of 1-dimensional walks of length 3n with steps +2, -1 starting and
ending at 0 and remaining non-negative. The random generation of these walks is known to
be feasible in linear time. (One just needs to generate a word of length 3n + 1 containing
n letters ¢ and 2n + 1 letters o and to apply the cycle lemma.) Given an excursion w,
the construction of the 2-near-cubic marked-dfs-map ®(w) can be performed in linear
time. Therefore, we have a linear time algorithm for the random generation (with uniform
distribution) of bridgeless 2-near-cubic marked-dfs-maps. For any bridgeless 2-near-cubic
map there are 2" dfs-trees and (n + 1) possible marking. Therefore, if we drop the marking
and the dfs-tree at the end of the process, we obtain a uniform distribution on bridgeless

2-near-cubic maps. This allows us to generate uniformly bridgeless cubic maps or, dually,
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loopless triangulations, in linear time.

2.8.2 Kreweras walks ending at (i,0) and (i + 2)-near-cubic maps

The Kreweras walks ending at (z,0) are the words w on the alphabet {a,b, ¢} with |w|, +1i =
|w|p = |wl|. such that any suffix w’ of w satisfies |w'|, + 7 > |w'|. and |w'|, > |w'|.. There is a
very nice formula [Krew 65] giving the number of Kreweras walks of size n (length 3n + 2i)

ending at (7,0):

)

There is also a similar formula [Mull 65] for non-separable (i 4+ 2)-near-cubic maps of size n
(3n + 2i + 1 edges):

B inl(f éZ —13 2+ 1) <2zz> <3n: 2i>‘ (78)

In this subsection, we show that the bijection ® (Definition 2.3) can be extended to
Kreweras walks ending at (i,0). This gives a bijective correspondence explaining why

—9n
k‘n’z‘ =2 Cn,z‘-

Consider the tree-growing map M} reduced to a vertex, a root, a head and i left legs
(Figure 69). We define the image of a Kreweras walk w ending at (i,0) as the map obtained
by closing ., (M?). We get the following extension of Theorem 2.19.

Theorem 2.29 The mapping ® is a bijection between Kreweras walks of size n (length 3n+2i)
ending at (i,0) and non-separable (i+ 2)-near-cubic maps of size n (3n+2i+ 1 edges) marked
on the root-edge with a dfs-tree that contains the edge following the root in counterclockwise

order around the root-vertex.

Figure 69: The tree-growing map M when i = 3.

By Theorem 2.26, there are 2" such dfs-trees. Consequently, we obtain the following

corollary:

Corollary 2.30 The number ky; of Kreweras walks of size n ending at (i,0) and the number

n,i of non-separable (i+2)-near-cubic maps of size n are related by the equation ky; = 2"cy, ;.
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One can define the counterpart of excursions for Kreweras walks ending at (7,0). These
are the walks obtained when one chooses an external edge in a non-separable (74 2)-near-cubic
dfs-map such that the edge following the root is in the tree and applies the mapping ¥ = & 1.

Alas, we have found no simple characterization of this set of walks nor any bijective proof

AM(2i+1) (20 (3n+2
explaining why this set has cardinality ﬁ < ;) ( n : Z>,
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Chapter 3

Bijective decomposition of

tree-rooted maps

Abstract: The number of tree-rooted maps, that is, rooted planar maps with a distin-

guished spanning tree, of size n is C,Cy41 where C,, = n%rl(%ff

We present a (long awaited) simple bijection which explains this result. We prove that our

) is the n* Catalan number.

bijection is isomorphic to a former recursive construction on shuffles of parenthesis systems

due to Cori, Dulucq and Viennot.

Résumé : On considere les cartes boisé€es, c’est-a-dire les cartes planaires enracinées dont

un arbre couvrant est distingué. Le nombre de cartes boisées de taille n est donné par
1 (2n

n—-i—l(n

bijection simple (et longtemps attendue) qui explique ce résultat. Nous montrons ensuite

le produit C,Cp41 ou C,, = ) est le n®™® nombre de Catalan. Nous présentons une

que notre bijection est isomorphe & une construction récursive antérieure due a Cori, Dulucq

et Viennot et définie sur les mélanges de mots de parentheses.

103
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3.1 Introduction

In the late sixties, Mullin published an enumerative result concerning planar maps on which
a spanning tree is distinguished [Mull 67]. He proved that the number of rooted planar maps
with a distinguished spanning tree, or tree-rooted maps for short, of size n is C,C,+1 Where
Cn = n+r1(2:) is the n'* Catalan number. This means that tree-rooted maps of size n are
in one-to-one correspondence with pairs of plane trees of size n and n + 1 respectively. But
although Mullin asked for a bijective explanation of this result, no natural mapping was
found between tree-rooted maps and pairs of trees. Twenty years later, Cori, Dulucq and
Viennot exhibited one such mapping while working on Baxter permutations [Cori 86]. More
precisely, they established a bijection between pairs of trees and shuffles of two parenthesis
systems, that is, words on the alphabet a,@,b,b, such that the subword consisting of the
letters a, @ and the subword consisting of the letters b, b are parenthesis systems. It is known
that tree-rooted maps are in one-to-one correspondence with shuffles of two parenthesis
systems [Mull 67, Lehm 72], hence the bijection of Cori et al. somehow answers Mullin’s
question. But this answer is quite unsatisfying in the world of maps. Indeed, the bijection of
Cori et al. is recursively defined on the set of prefixes of shuffles of parenthesis systems and
it was not understood how this bijection could be interpreted on maps. We fill this gap by
defining a natural, non-recursive, bijection between tree-rooted maps and pairs made of a tree
and a non-crossing partition. Then, we show that our construction is isomorphic to the con-

struction of Cori et al. via the encoding of tree-rooted maps by shuffles of parenthesis systems.

Tree-rooted maps, or alternatively shuffles of parenthesis systems, are in one-to-one
correspondence with square lattice walks confined in the quarter plane (we explicit this
correspondence in the next section). Therefore, our bijection can also be seen as a way of
counting these walks. Some years ago, Guy, Krattenthaler and Sagan worked on walks in
the plane [Guy 92] and exhibited a number of nice bijections. However, they advertised the
result of Cori et al. as being considerably harder to prove bijectively. We believe that the

encoding in terms of tree-rooted maps makes this result more natural.

The outline of this chapter is as follows. In Section 3.2, we recall some definitions and
preliminary results on tree-rooted maps. In Section 2.6, we present our bijection between
tree-rooted maps of size n and pairs consisting of a tree and a non-crossing partition of size n
and n + 1 respectively. This simple bijection explains why the number of tree-rooted maps of
size n is C,Cpy1. In Section 3.4, we prove that our bijection is isomorphic to the construction
of Cori et al.

Our study requires to introduce a large number of mappings; we refer the reader to Figure

87 which summarizes our notations.
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3.2 Preliminary results

We begin by some preliminary definitions on planar maps. A planar map, or map for short,
is a two-cell embedding of a connected planar graph into the oriented sphere considered
up to orientation preserving homeomorphisms of the sphere. Loops and multiple edges are
allowed. A rooted map is a map together with a half-edge called the root. A rooted map
is represented in Figure 70. The vertex (resp. the face) incident to the root is called the
root-vertex (resp. root-face). When representing maps in the plane, the root-face is usually
taken as the infinite face and the root is represented as an arrow pointing on the root-vertex
(see Figure 70). Unless explicitly mentioned, all the maps considered in this chapter are

rooted.

A planted plane tree, or tree for short, is a rooted map with a single face. A vertex v is
an ancestor of another vertex v’ in a tree T' if v is on the (unique) path in 7' from v’ to the
root-vertex of T. When v is the first vertex encountered on that path, it is the father of v’. A
leaf is a vertex which is not a father. Given a rooted map M, a submap of M is a spanning
tree if it is a tree containing all vertices of M. (The spanning tree inherit its root from the
map.) We now define the main object of this study, namely tree-rooted maps. A tree-rooted
map is a rooted map together with a distinguished spanning tree. Tree-rooted maps shall be
denoted by symbols like Mt where it is implicitly assumed that M is the underlying map
and T the spanning tree. Graphically, the distinguished spanning tree will be represented by
thick lines (see Figure 74). The size of a map, a tree, a tree-rooted map, is the number of

edges.

Figure 70: A rooted map.

A number of classical bijections on trees are defined by following the border of the tree.
Doing the tour of the tree means following its border in counterclockwise direction starting
and finishing at the root (see Figure 73). Observe that the tour of the tree induces a linear
order, the order of appearance, on the vertex set and on the edge set of the tree. For
tree-rooted maps, the tour of the spanning tree T also induces a linear order on half-edges
not in 7' (any of them is encountered once during a tour of 7"). We shall say that a vertex,

an edge, a half-edge precedes another one around T.

Our constructions lead us to consider oriented maps, that is, maps in which all edges are
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oriented. If an edge e is oriented from u to v, the vertex u is called the origin and v the end.
The half-edge incident to the origin (resp. end) is called the tail (resp. head). The root of an

oriented map will always be considered and represented as a head.

end

origin -
tail head

Figure 71: Half-edges and endpoints.

We now recall a well-known correspondence between tree-rooted maps and shuffles of two
parenthesis systems [Mull 67, Lehm 72]. We derive from it the enumerative result mentioned
above: the number of tree-rooted maps of size n (i.e. with n edges) is C,Cp41. For this
purpose, we introduce some notations on words. A word w on a set A (called the alphabet)
is a finite sequence of elements (letters) in A. The length of w (that is, the number of
letters in w) is denoted |w| and, for a in A, the number of occurrences of a in w is denoted
|w|e. A word w on the two-letter alphabet {a,a} is a parenthesis system if |w|, = |w|z
and for all prefixes w’, |w'|, > |w'|g. For instance, aa@aaa is a parenthesis system. A
shuffle of two parenthesis systems, or parenthesis-shuffle for short, is a word on the alphabet
{a,a@,b,b} such that the subword of w consisting of letters in {a,@} and the subword consist-

ing of letters in {b, b} are parenthesis systems. For instance abababa@ba is a parenthesis-shuffle.

Parenthesis-shuffles can also be seen as walks in the quarter plane. Consider walks made
of steps North, South, Fast, West, confined in the quadrant = > 0, y > 0. The parenthesis-
shuffles of size n are in one-to-one correspondence with walks of length 2n starting and
returning at the origin. This correspondence is obtained by considering each letter a (resp.
@,b,b) as a North (resp. South, East, West) step. For instance, we represented the walk
corresponding to abbabaabbaab in Figure 72. The fact that the subword of w consisting of
letters in {a,@} (resp. {b,b}) is a parenthesis system implies that the walk stays in the half-
plane y > 0 (resp. = > 0) and returns at y = 0 (resp. = 0).

s

L4

y !

Figure 72: A walk in the quarter plane.

The size of a parenthesis system, a parenthesis-shuffle, is half its length. For instance, the

parenthesis-shuffle abababa@ba has size 5. It is well known that the number of parenthesis
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n%rl (2: ) From this, a simple calculation

proves that the number of parenthesis-shuffles of size n is S,, = C,Cr11. Indeed, there are

systems of size n is the n” Catalan number C,, =

(gz) ways to shuffle a parenthesis system of size k (on {a,a}) with a parenthesis system of

size n — k (on {b,b}). And summing on k gives the result:

so= X (Gac = a0 (00

k=0
() (2m+2\
= El ) = Galun

Note, however, that this calculation involves the Chu-Vandermonde identity.

It remains to show that tree-rooted maps of size n are in one-to-one correspondence with
parenthesis-shuffles of size n. We first recall a very classical bijection between trees and
parenthesis systems. This correspondence is obtained by making the tour of the tree. Doing
so and writing a the first time we follow an edge and @ the second time we follow that edge (in
the opposite direction) we obtain a parenthesis system. This parenthesis system is indicated
for the tree of Figure 73. Conversely, any parenthesis system can be seen as a code for

constructing a tree.

aaaaaaaaaaaaaaad

Figure 73: A tree and the associated parenthesis system.

Now, consider a tree-rooted map. During the tour of the spanning tree we cross edges of
the map that are not in the spanning tree. In fact, each edge not in the spanning tree will
be crossed twice (once at each half-edge). Hence, making the tour of the spanning tree and
writing a the first time we follow an edge of the tree, @ the second time, b the first time
we cross an edge not in the tree and b the second time, we obtain a parenthesis-shuffle. We
shall denote by Z this mapping from tree-rooted maps to parenthesis-shuffles. We applied the
mapping = to the tree-rooted map of Figure 74.

The reverse mapping can be described as follows: given a parenthesis-shuffle w we first
create the tree corresponding to the subword of w consisting of letters a, @ (this will give the
spanning tree) then we glue to this tree a head for each letter b and a tail for each letter b.

There is only one way to connect heads to tails so that the result is a planar map (that is, no
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@@ H—» babaababaabaabbabbababbaaaabba

Figure 74: A tree-rooted map and the associated parenthesis-shuffle.

edges intersect). Note that, if the map M has size n, the corresponding parenthesis-shuffle w
has size n since |w|, is the number of edges in the tree and |w|; is the number of edges not
in the tree.

This encoding due to Walsh and Lehman [Lehm 72] establishes a one-to-one correspondence
between tree-rooted maps of size n and parenthesis-shuffles of size n. Hence, there are C,,C, 41

tree-rooted maps of size n.

Such an elegant enumerative result is intriguing for combinatorists since Catalan numbers
have very nice combinatorial interpretations. We have just seen that these numbers count
parenthesis systems and trees. In fact, Catalan numbers appear in many other contexts (see
for instance Ex. 6.19 of [Stan 99] where 66 combinatorial interpretations are listed). We now
give another classical combinatorial interpretation of Catalan numbers, namely non-crossing
partitions. A non-crossing partition is an equivalence relation ~ on a linearly ordered set
S such that no elements ¢ < b < ¢ < d of S satisfy a ~ ¢, b ~ d and a ~ b. The
equivalence classes of non-crossing partitions are called parts. Non-crossing partitions have
been extensively studied (see [Simi 00] and references therein).

Non-crossing partitions can be represented as cell decompositions of the half-plane. If the
set S is {s1,...,8,} with s < s9 < --- < s, we associate with s; the vertex of coordinates
(7,0) and with each part we associate a connected region of the lower half-plane y < 0 incident
to the vertices of that part. The existence of a cell decomposition with no intersection between
cells is precisely the definition of non-crossing partitions. A non-crossing partition of size 8 is
represented in Figure 75. The only non-trivial parts of this non-crossing partition are {1,4,5}
and {6,8}.

Non-crossing partitions of size n (i.e. on a set of size n) are in one-to-one correspondence
with trees of size n. One way of seeing this is to draw the dual of the cell-representation
of the partition, that is, to draw a vertex in each part and each anti-part (connected cells
complementary to parts in the half-plane decomposition) and connect vertices corresponding
to adjacent cells by an edge. The root is chosen in the infinite cell as indicated in Figure
75. In the sequel, this mapping between non-crossing partitions and trees is denoted Y. It

is a bijection between non-crossing partitions of size n and trees of size n. It proves that the
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number of non-crossing partitions of size n is C,,.

12345678

Figure 75: A non-crossing partition and the associated tree.

3.3 Bijective decomposition of tree-rooted maps

We begin with the presentation of our bijection between tree-rooted maps and pairs consisting
of a tree and a non-crossing partition. This bijection has two steps: first we orient the edges

of the map and then we disconnect properly the vertices.

Map orientation: Let Mg be a tree-rooted map. We denote by MT the oriented map
obtained by orienting the edges of M according to the following rules:
e edges in the tree T' are oriented from the root to the leaves,
e edges not in the tree T are oriented in such a way that their head precedes their tail around
T.
As always in this chapter, the root is considered as a head.

In the sequel, the mapping M7 — M7 is denoted §. We applied this mapping to the
tree-rooted map of Figure 76. Note that any vertex of MT is incident to at least one head

(since the spanning tree is oriented from the root to the leaves).

ol

Figure 76: A tree-rooted map M7 and the corresponding oriented map MT.

Vertex explosion: We replace each vertex v of the oriented map MT by as many vertices
as heads incident to v and we suppress some adjacency relations between half-edges incident
to v according to the rule represented in Figure 77. That is, each tail ¢ becomes adjacent to

exactly one head which is the first head encountered in counterclockwise direction around v
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starting from t.

/-

Figure 77: Local rule for suppressing the adjacency relations.

We shall prove (Lemma 3.11) that this suppression of some adjacency relations in MT
produces a tree denoted g (M 7. Observe that this tree has the same number of edges, say
n, as the original map M. Hence, its vertex set S has size n + 1. This set is linearly ordered
by the order of appearance around the tree goO(MT). We define an equivalence relation
gpl(]\_j Ty on S: two vertices are equivalent if they come from the same vertex of MT. We will
prove (Lemma 3.12) that the equivalence relation ¢ (M7) is a non-crossing partition on the
set . The mapping M7 — (po(MT), p1(M7T)) is called the vertez explosion process and is
denoted .

Therefore, with any tree-rooted map Mr of size n we associate a tree goo(M Ty of size n
and a non-crossing partition gol(M T of size n + 1. The following theorem states that this

correspondence is one-to-one.

Theorem 3.1 Let & be the mapping associating the ordered pair (po(M7T), o1 (MT)) with the
tree-rooted map My. This mapping is a bijection between the set of tree-rooted maps of size
n and the Cartesian product of the set of trees of size n and the set of non-crossing partitions
of sizen + 1.

It follows that the number of tree-rooted maps of size n is Cp,Cp1.

Graphically, the bijection ® is best represented by keeping track of the underlying
non-crossing partition during the vertex explosion process. This is done by creating for
each vertex of M a connected cell representing the corresponding part of the non-crossing
partition. The graphical representation of the vertex explosion process ¢ becomes as in-

dicated in Figure 78. For instance, we applied the mapping ¢ to the oriented map of Figure 79.

The rest of this section is devoted to the proof of Theorem 3.1. We first give a
characterization of the set of oriented maps, called tree-oriented maps, associated to
tree-rooted maps by the mapping 6. We also define the reverse mapping . Then we

prove that the vertex explosion process ¢ is a bijection between tree-oriented maps (of
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L

Figure 78: The vertex explosion process and a part of the non-crossing partition.
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Figure 79: The vertex explosion process .
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size n) and pairs made of a tree and a non-crossing partition (of size n and n+ 1 respectively).

3.3.1 Tree-rooted maps and tree-oriented maps

In this subsection, we consider certain orientations of maps called tree-orientations (Def-
inition 3.2). We prove that the mapping 6 : My — MT restricted to any given map M
induces a bijection between spanning trees and tree-orientations of M. The key property
explaining why the mapping ¢ is injective is that during a tour of a spanning tree T, the tails
of edges in T are encountered before their heads whereas it is the contrary for the edges not
in T. Using this property we will define a procedure « for recovering spanning trees from
tree-orientations of M (Definition 3.5). We will prove that  and v are reverse mappings

that establish a one-to-one correspondence between tree-rooted maps and tree-oriented maps



112 CHAPTER 3. BIJECTIVE DECOMPOSITION OF TREE-ROOTED MAPS

(Proposition 3.3). The mapping 0 Mp — MT shall appear again but in a more general setting
in Chapter 6. In this Chapter, the mapping 0 is extended into a bijection between subgraphs

and orientations.

We begin with some definitions concerning cycles and paths in oriented maps. A simple
cycle (resp. simple path) is directed if all its edges are oriented consistently. A simple cycle
defines two regions of the sphere. The interior region (resp. exterior region) of a directed
cycle is the region situated at its left (resp. right) as indicated in Figure 80. We call positive
cycle a directed cycle having the root in its exterior region. Graphically, positive cycles appear
as counterclockwise directed cycles when the map is projected on the plane with the root in

the infinite face.

. Exterior region
Interior

region

Figure 80: Interior and exterior regions of a directed cycle.

Definition 3.2 A tree-orientation of a map is an orientation without positive cycle such that
any vertex can be reached from the root by a directed path. A tree-oriented map is a map with

a tree-orientation.

We will prove that the images of tree-rooted maps by the mapping § are tree-oriented

maps. More precisely, we have the following proposition.

Proposition 3.3 For any given map M, the mapping 6 : Mp — MT induces a bijection

between spanning trees and tree-orientations of M.

We first prove the following lemma.
Lemma 3.4 For all tree-rooted map M, the map MT is tree-oriented.

Proof: For any vertex v, there is a path in T" from the root to v. This path is oriented from
the root to v in M7. It remains to prove that there is no positive cycle. Suppose the contrary
and consider a positive cycle C. By definition, the root is in the exterior region of C'. Since C
is a cycle there are edges of C' which are not in T'. Consider the first such edge e encountered
during the tour of 7. When we first cross e we enter for the first time the interior region of
C'. Given the orientation of C, the half-edge of e that we first cross is its tail (see Figure 81).
But, by definition of M T the half-edge of e that we first cross should be its head. This gives

a contradiction.
O



3.3. BLIECTIVE DECOMPOSITION OF TREE-ROOTED MAPS 113

—— The tree T
The tour of T

Figure 81: Entering the cycle C.

We now define a procedure « constructing a spanning tree 7' on a tree-oriented map M.

Algorithm 3.5
Procedure :

1. At the beginning, the submap T is reduced to the root and the root-vertew.

2. We make the tour of T (starting from the root) and apply the following rule.
When the tail of an edge e is encountered and its head has not been encountered yet,
we add e to T (together with its end).
Then we continue the tour of T, that is, if e is in T we follow its border, otherwise

we Cross €.

3. We stop when arriving at the root and return the submap T .

We prove the correction of the procedure ~.

Lemma 3.6 The mapping 7y is well defined (terminates) on tree-oriented maps and returns

a spanning tree.

Proof:

e At any stage of the procedure, the submap T is a tree.

Suppose not, and consider the first time an edge e creating a cycle is added to T. We denote
by Tp the tree T' just before that time. The edge e is added to Ty when its tail ¢ is encountered.
At that time, its head h has not been encountered but is incident to T (since adding e creates
a cycle). We know that, when e is added, the border of T\ from the root to ¢ has been followed
but not the border of Ty from t to the root. Moreover, the head h lies after ¢ around T} (since
h has not been encountered yet). Observe that the right border of any edge of Ty has been
followed (just after this edge was added to Tj). Thus, the border of Tj from ¢ to h is made of
the left borders of some edges eq,es,...,e,. Hence, these edges form a directed path from A
to t and e, eq,eq,..., e, form a directed cycle C. Since h lies after ¢ around T}, the root is in

the exterior region of C' (see Figure 82). Therefore, the cycle C' is positive which is impossible.

o The procedure v terminates.
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— The tree Tj
The tour of T’

Figure 82: The submap T remains a tree.

The set T remains a tree connected to the root. Hence, it is impossible to follow the same
border of the same edge twice without encountering the root.

e At the end of the procedure -y, the tree T is spanning.

At the end of the procedure, the whole border of T" has been followed. Hence, any half-edge
incident to T" has been encountered. Now, suppose that a vertex v is not in T" and consider a
directed path from the root to v. (This path exists by definition of tree-orientations.) There
is an edge of this path with its origin in T" and its end out of T". Therefore, its tail is incident
to T but not its head. Thus, it should have been added to T' (with its end) when its tail was

encountered. We reach a contradiction. .

We continue the proof of Proposition 3.3. We proved that the mapping § associates a
tree-orientation of a map to any spanning tree of that map (Lemma 3.4). We proved that the
mapping v associates a spanning tree of a map to any tree-orientation of that map (Lemma

3.6). It remains to prove that 6 o v and o § are identity mappings.

Lemma 3.7 Let M be a tree-oriented map and T be the spanning tree constructed by the
procedure v. The edges in T are oriented from the root to the leaves and the edges not in T

are oriented in such a way that their head precedes their tail around T'.

Proof:

e Fdges in T are oriented from the root to the leaves. An edge e is added to T when its tail
is encountered. At that time the end of e is not in T' or adding e would create a cycle. The
property follows by induction.

e Fdges not in T are oriented in such a way that their head precedes their tail around T. If

an edge breaks this rule it should have been added to T" when its tail was encountered.

Corollary 3.8 The mapping 6 oy is the identity mapping on tree-oriented maps.

Proof: Let M be a tree-oriented map and T be the tree constructed by the procedure v. By

Lemma 3.7, the edges in T are oriented from the root to the leaves and the edges not in T’
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are oriented in such a way that their head precedes their tail around 7. By definition of §,

this is also the case in § o y(M). Thus, § o 7 is the identity mapping on tree-oriented mapg-,

Lemma 3.9 The mapping v o d is the identity mapping on tree-rooted maps.

Proof: Let My be a tree-rooted map. Suppose the spanning tree T’ constructed by the
procedure (6(Myp)) differs from T'. We consider the order of edges induced by the tour of
T. Let e be the smallest edge in the symmetric difference of T and T’. The tours of T and
T’ must coincide until a half-edge h of e is encountered. We distinguish the head and the
tail of e according to its orientation in 6(Mrp). If e is in T, its tail is encountered before its
head around T' (by definition of 6(M7)). In this case, h is a tail. If e is not in 7", its head is
encountered before its tail around 7”7 (by Lemma 3.7). In this case, h is a head. Therefore, e
cannot be in 7'\ T7”. Similarly, e cannot be in 7"\ T since e being in T’ implies that h is a

head and e not being in T implies that h is a tail. We obtain a contradiction. 0

This completes the proof of Proposition 3.3: tree-oriented maps are in one-to-one corre-

spondence with tree-rooted maps. .

3.3.2 The vertex explosion process on tree-oriented maps

This subsection is devoted to the proof of the following proposition.

Proposition 3.10 The mapping ¢ : M — (po(M),¢1(M)) is a bijection between tree-
oriented maps of size n and ordered pairs consisting of a tree of size n and a non-crossing

partition of size n + 1.
We start with a lemma concerning the mapping .

Lemma 3.11 The image of any tree-oriented map M by @o is a tree (oriented from the root

to the leaves).

Proof: Let M be a tree-oriented map. Any vertex is incident to at least one head (there is a
directed path from the root to any vertex), hence the mapping ¢ is well defined. The image
900(]\2) has the same number of edges, say n, as M. The map M has n + 1 heads (one per
edge plus one for the root). Since any vertex in cpo(M ) is incident to exactly one head, the
image @o(M) has n + 1 vertices. Thus, it is sufficient to prove that ¢o(M) has no cycle (it
will imply the connectivity).

Suppose goo(M ) contains a simple cycle C. Since any vertex in C is incident to exactly one
head, the edges of C' are oriented consistently. We identify the edges of M and the edges of
gpo(]\_j ). The edges of C' form a cycle in M but this cycle might not be simple. We consider

a directed path P in M from the root to a vertex v (of M) incident with an edge of C.
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We suppose (without loss of generality) that v is the only vertex of P incident with an edge
of C. Let h be the head in P incident with v and ¢’ be the first tail in C following h in
counterclockwise direction around v. We can construct a directed simple cycle C’ (in M )
made of edges in C and containing ¢’ (see Figure 83). Let h’ be the head of C’ incident
with v. Since C’ is a directed cycle of the tree-oriented map M , it contains the root in its
interior region. Since v is the only vertex of P incident with an edge in C’, the head h is
in the interior region of C’. Therefore, in counterclockwise direction around v we have h, h’
and t' (and possibly some other half-edges). We consider the tail ¢ following A in the cycle
C (considered as a directed simple cycle of ¢o(M)). By the choice of ¢ we know that ¢ is
between ¢ and h in counterclockwise direction around v (¢ and ¢’ may be distinct or not).
Hence, in counterclockwise direction around v we have h, h’ and t. Hence, h’' is not the
first head encountered in counterclockwise direction around v starting from ¢. Therefore, by
definition of the vertex explosion process, h’ and t are not adjacent in gpo(M ). We reach a

contradiction.

O

Cl
t/
v
h/

Figure 83: The cycle C’ in M.

We now study the properties of the mapping ¢;. Two consecutive half-edges around a
vertex define a corner. A vertex has as many corners as incident half-edges. Let T be a tree
and v be a vertex of T. The first corner of the vertex v is the first corner of v encountered
around 7. If the tree is oriented from the root to the leaves, the first corner of v is at the

right of the head incident to v as shown in Figure 84.

first corner of v

v

Figure 84: The first corner of a vertex.

—

We compare the vertices of the tree po(M) according to their order of appearance around

this tree. We write u < v if u precedes v (i.e. the first corner of u precedes the first corner of
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v) around the tree.

Lemma 3.12 For any tree-oriented map M, the equivalence relation gpl(M) on the set of
vertices of the tree gpo(M ) ordered by their order of appearance around this tree is a non-

crossing partition.

Proof: The proof relies on the graphical representation of the equivalence relation ~= (M )
given by Figure 78. During the vertex explosion process, we associate a connected cell C', with
each vertex v of M , that is, with each equivalence class of the relation ~. The cell C,, can be
chosen to be incident only with the first corners of the vertices in its class but not otherwise
incident with the tree. Moreover the cells can be chosen so that they do not intersect.

Suppose v1 < v < v3 < V4, v1 ~ v3 and vy ~ v4. One can draw a path from the first corner
of v1 to the first corner of vg staying in a cell C' and a path from the first corner of vy to the
first corner of vy staying in a cell C’. It is clear that these two paths intersect (see Figure 85).

Thus C = C' and v1 ~ vs. .

Figure 85: The two paths intersect.

We have proved that the application ¢ : M (o (M ), p1 (M )) associates a tree of size n
and a non-crossing partition of size n + 1 with any tree-oriented map of size n. Conversely,

we define the mapping .

Definition 3.13 Let T be a tree of size n and ~ be a non-crossing partition on a linearly
ordered set S of sizen+1. We identify S with the set of vertices of T ordered by the order of
appearance around T. We construct the oriented map (T, ~) as follows. First we orient the
tree T' from the root to the leaves. With each part {vy,va,...,vi} of the partition, we associate
a simply connected cell incident to the first corner of v;, i = 1...k but not otherwise incident
with T'. Since ~ is a non-crossing partition, these cells can be chosen without intersections.

Then we contract each cell into a vertex in such a way no edges of T intersect.

We first prove the following lemma.

Lemma 3.14 For any tree T of size n and any non-crossing partition ~ of size n + 1, the

oriented map (T, ~) is tree-oriented.
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Proof: Every vertex of M = (T, ~) is connected to the root by a directed path (since it is
the case in T'). It remains to show that there is no positive cycle.

Let C be a positive cycle of M and e an edge of C'. We consider the directed path P of
T from the root to e (the root and e included). By definition, the root is in the exterior
region of C'. Let h be the last head of P contained in the exterior region of C' and ¢ the
tail following h in P (the tail ¢ exists since the last edge e of P is in C). By definition, the
tail ¢ is either in C or in its interior region. Let v be the end of h (i.e the origin of ¢) in M
and A’ the head of C incident with v (see Figure 86). In counterclockwise direction around
v, we have h, t and h’ (and possibly some other half-edges). The vertex v is obtained by
contracting a cell C, of the partition ~ corresponding to some vertices of T'. Each of these
vertices is incident to one head in T', hence h and h’ were incident to two distinct vertices, say
v1 and wvg, of T. The cell C, is incident to the first corner of v; which is situated between A
and ¢ in counterclockwise direction around vy. Therefore, after the cell C,, is contracted, the
half-edges of vy are situated between h and t in counterclockwise direction around v. Thus, in
counterclockwise direction around v, we have h, h’ and ¢ (and possibly some other half-edges).

We obtain a contradiction. 0

Figure 86: The map M = (T, ~) has no positive cycle.

We now conclude the proof of Theorem 3.1.

e Let M be a tree-oriented map. We know from Lemma 3.11 that T = gDO(M) is a tree
oriented from the root to the leaves. Moreover, we know from Lemma 3.12 that the partition
~= ¢0(M) of the vertex set of T is non-crossing. Let u be a vertex of T. Let {v1,...,v;}
be a part of the partition ~ corresponding to a vertex v of M. The cell C, associated to v
during the vertex explosion process is incident to the corner of v;, ¢ = 1...k at the right of
the head incident with v; (see Figure 78). Since T is oriented from the root to the leaves, this
corner is the first corner of v;. Therefore, by definition of v, we have ¥ o go(M ) = M. Thus,
1 o  is the identity mapping on tree-oriented maps.

e Let T be a tree of size n and ~ be a non-crossing partition on a linearly ordered set S of
size n + 1. We know from Lemma 3.14 that M = (T, ~) is a tree-oriented map. We think
to the tree T" as being oriented from the root to the leaves and we identify the set S with the
vertex set of T. Let v be a vertex of M corresponding to the part {v1,..., v} of the partition

~. The vertex v is obtained by contracting a cell C, incident with the first corner of v;,
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1 =1...k, that is, the corner at the right of the head h; incident with v;. Therefore, if ¢ is a
tail incident with v; in T, then, h; is the first head encountered in counterclockwise direction
around v starting from ¢ (in M ). Given the definition of the vertex explosion process, the
adjacency relations between the half-edges incident with v that are preserved by the vertex
explosion process are exactly the adjacency relations in the tree T. Thus, the trees goo(M )
and T are the same. Moreover, the part of the partition gpl(M ) associated to the vertex v is
{v1,...,vx}. Thus, the partitions gol(M) and ~ are the same. Hence, ¢ o) is the identity
mapping on pairs made of a tree of size n and a non-crossing partition of size n + 1.

Thus, the mapping ¢ is a bijection between tree-oriented maps of size n and pairs made
of a tree of size n and a non-crossing partition of size n + 1. This completes the proof of

Proposition 3.10 and Theorem 3.1. 0

3.4 Correspondence with a bijection due to Cori, Dulucq and

Viennot

In this section, we prove that our bijection ® is isomorphic to a former bijection due to Cori,
Dulucq and Viennot defined on parenthesis-shuffles [Cori 86]. We know that tree-rooted maps
are in one-to-one correspondence with parenthesis-shuffles by the mapping = defined in Section
3.2. Our bijection ® : My — (po(MT), o1 (M7T)) associates with any tree-rooted map Mrp
of size n, a tree goo(MT) of size n and a non-crossing partition gol(MT) of size n + 1. The
bijection A : w — (Aj(w), N} (w)) of Cori et al. associates with any parenthesis-shuffle w of
size n, a tree Aj(w) of size n and a binary tree \|(w) of size n + 1. We shall prove that these
two bijections are isomorphic via the encoding of tree-rooted maps by parenthesis-shuffles.
That is, we shall prove that there exist two independent bijections €2 and © such that, if
w = E(Mg), then o(MT) = Q(N(w)) and @1 (MT) = ©(X;(w)). In fact, we have adjusted
some definitions from [Cori 86] so that € is the identity mapping on trees. This situation is

represented in Figure 87.

Tree-rooted maps i »~ Trees x Non-crossing partitions
My 5 T T
¢ wo(MT), pi(M")
\ Tree-oriented maps/
= "Y\ MT %
= Id S}
w \ Nw),  Xi(w)
Parenthesis-shuffles - Trees x Binary trees

Figure 87: The bijection diagram.
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3.4.1 The bijection A of Cori, Dulucq and Viennot

We begin with a presentation of the bijection A of Cori et al. For the sake of simplicity, the
presentation given here is not completely identical to the one of the original article [Cori 86].
But, whenever our definitions differ there is an obvious equivalence via a composition with a
simple, well-known bijection. The interested reader can look for more details in the original
article. In this article, Cori et al. defined recursively two mappings A\g and A\; on the set
of prefiz-shuffles. A prefix-shuffle is a word w on the alphabet {a,@,b,b} such that, for all
prefixes w’ of w, we have |[w'|, > |w'|z and |w'[, > |w'[;. Note that the set of prefix-shuffles
is the set of prefixes of parenthesis-shuffles. The mappings A\g and A; both eventually return
trees. In the original article [Cori 86], the trees returned by Ao and A; were called the leaf

code and the tree code respectively.

We first define the mapping Ag. It involves the mapping o that associates the tree o(T7,Ts)
represented in Figure 88 with the ordered pair of trees (17, T%).

[,

Figure 88: The mapping o on ordered pairs of trees.

We consider the alphabet U = {u,v} and the infinite alphabet T consisting of all trees.
A word s on the alphabet U U T is a tree-sequence if s = utiu...t;_jut;vt; 1 ...txv where
1 <1i¢ < kand ty,...,t; are trees. The mapping Ay associates tree-sequences with prefix-
shuffles.

Definition 3.15 The mapping Ao is recursively defined on prefiz-shuffles by the following

rules:

If w = € is the empty word, \o(w) is the tree-sequence utv where T is the tree reduced

Tii

o Ifw =wa, the tree-sequence \o(w) is obtained from Ao(w') by replacing the last occur-

to a root and a vertex.

rence of u by utv.

o Ifw = w'b, the tree-sequence \g(w) is obtained from \o(w') by replacing the first occur-

rence of v by utv.

e If w = w'a, we consider the first occurrence of v in Aog(w') and the trees Ty and T,

directly preceding and following it. The tree-sequence Ao(w) is obtained from \o(w') by
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replacing the subword TyvTy by the tree o(Ty,T5).

o If w = w'b, we consider the last occurrence of u in Xo(w') and the trees Ty and Ty
directly preceding and following it. The tree-sequence Ao(w) is obtained from \o(w') by
replacing the subword TyuTy by the tree o (T, Ts).

We applied the mapping \g to the word w = ba@aba. The different steps are represented
in Figure 89.

udvb _ududv @ uduivv Luiutv Luiuivfu b_u H @ ugv

Figure 89: The mapping Ao applied to the prefix-shuffle w = ba@aba.

It is easily seen by induction that the number of v (resp. u) in A\g(w) is |w|, — |w|g + 1
(resp. |wl|p —w[;+1). Hence, the mapping Ag is well defined on prefix-shuffles. Moreover, the
first letter u and last letter v are never replaced by anything. Observe also (by induction) that
the letters u always precede the letters v in A\g(w). Thus, Ag(w) is indeed a tree-sequence. If
w is a parenthesis-shuffle, there is exactly one letter u and one letter v in Ag(w), hence A\g(w)

is a three letter word uT1v.

Definition 3.16 The mapping X\, associates with a parenthesis-shuffle w the unique tree T

in the tree-sequence \o(w) = uTv.

Observe that, for any prefix-shuffle w, the total number of edges in the trees tq,...,tg
of the tree-sequence Ao(w) = utiu...ti_qut;vtipr...tpv is |wlg + |wl;. Hence, if w is

parenthesis-shuffle of size n, the tree A\j(w) has size n.

We now define the mapping Ay which associates binary trees with prefix-shuffles. A
binary tree is a (planted plane) tree for which each vertex is either of degree 3, a node, or
of degree 1, a leaf. The size of a binary tree is defined as the number of its nodes. It is
well-known that binary trees of size n (i.e. with n nodes) are in one-to-one correspondence

with trees of size n (i.e. with n edges).

In a binary tree, the two sons of a node are called left son and right son. In counter-
clockwise order around a node we find the father (or the root), the left son and the right son
(see Figure 90). A left leaf (resp. right leaf) is a leaf which is a left son (resp. right son).
As before, we compare vertices according to their order of appearance around the tree and
we shall talk about the first and last leaf. Moreover, a leaf will be either active or inactive.

Graphically, active leaves will be represented by circles and inactive ones by squares.
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father

left son right son
Figure 90: Left and right son of a node

Definition 3.17 The mapping A1 is recursively defined on prefiz-shuffles by the following

rules:

o [fw = € is the empty word, A\ (w) is the binary tree By consisting of a root, a node and

A

o Ifw = wa, the tree \1(w) is obtained from A(w’) by replacing the last active left leaf

by Bl. / a
— A

o Ifw =w'b, the tree \1(w) is obtained from \1(w') by replacing the first active right leaf

N

o Ifw=w'a, the tree \1(w) is obtained from \1(w') by inactivating the first active right

leaf. _
N, L N

o Ifw = w'b, the tree A\{(w) is obtained from A1 (w') by inactivating the last active left leaf.
b

two active leaves.

.

We applied the mapping \; to the word w = ba@aba. The different steps are represented
in Figure 91.

Ab_» L%a_»ijza_» L L

Figure 91: The mapping A; on the word w = baaaba.
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It is easily seen by induction that the number of active right leaves (resp. left leaves) in
A(w) is |w|y — |w|g + 1 (resp. |w|p — |w|; + 1). Hence, the mapping A is well defined on
prefix-shuffles. Observe that the binary tree Aj(w) has |w|, 4+ |w|p + 1 nodes. Observe also
(by induction) that active left leaves always precede active right leaves in Aq(w). Moreover, if
w is a parenthesis-shuffle, only the first left leaf and the last right leaf are active (since they

can never be inactivated).

Definition 3.18 The mapping \] associates with a parenthesis-shuffle w of size n the binary

tree of size n+ 1 obtained from \i(w) by inactivating the two active leaves.

We now make some informal remarks explaining why the mapping w — (Ag(w), A1 (w))
is injective. It is, of course, possible to decide from (Ag(w), A\;(w)) if w is the empty word.
Indeed, w is the empty word iff A\j(w) = By (equivalently iff A\g(w) = 7). Otherwise, the
remarks below show that the last letter o of w = w’a can be determined as well as A\g(w’)

and Aj(w'). So any prefix-shuffle w can be entirely recovered from (Ag(w), A1 (w)).

Remarks:

e For any prefix-shuffle w, the number of letters u (resp. v) in the tree-sequence Ao(w) is equal
to the number of active left leaves (resp. right leaves) in the binary tree A;(w). Furthermore,
it can be shown by induction that the size of the tree t; lying between the i*"* and i 4+ 1"
letters u,v in Ag(w) is the number of inactive leaves lying between the it and i 4+ 1** active
leaves in A1 (w).

e The three following statements are equivalent:

- the word w is not empty and the last letter « of w = w’« is in {a, b},

- there is a sequence urv in Ag(w),

- there is an active left leaf and an active right leaf which are siblings.

In this case, A\1(w’) is obtained from A1(w) by deleting the two actives leaves and making the
father an active leaf £. Moreover, & = a (resp. a = b) if £ is a left leaf (resp. right leaf) in
A1(w') in which case \g(w’) is obtained from A\g(w) by replacing the subword urv by w (resp.
v).

o If the last letter a of w = w’ar is in {@, b}, we know from the above remark that the tree T
lying between the last letter v and the first letter v in the tree-sequence \g(w) has size k& > 0.
Since k > 0, the tree T admits a (unique) preimage (71, T5) by the mapping o. Let k' be the
size of the tree Ty. Then k' < k. We know that there are k inactive leaves lying between the
last active left leaf and the first active right leaf in A;(w). The binary tree A;(w’) is obtained
from A;(w) by activating the k' + 1/ leaf ¢ encountered when following the border of the
tree starting from the last active left leaf. Moreover, o = @ (resp. o = b) if £ is a right leaf
(resp. left leaf), in which case the tree-sequence Ag(w’) is obtained from Ag(w) by replacing
T by ThvTy (resp. TiuTy).
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From these remarks, we see that the mapping w +— (Ag(w), A1 (w)) is injective. It can be
shown, with the same ideas, that it is bijective on the set of pairs consisting of a tree-sequence
S and a binary tree B with active and inactive leaves satisfying the following conditions:

- the active left leaves precede the active right leaves in B,

- the number of active left leaves (resp. right leaves) in B is the same as the number of u
(resp. v) in S,

- the number of inactive leaves lying between the i*" and i + 1*" active leaves in B is the size

of the tree lying between the i*" and i + 1% letters u, v in S.

We now define the mapping A of Cori et al. on parenthesis-shuffles.

Definition 3.19 The mapping w — (A\y(w), N} (w)) defined on parenthesis-shuffles is denoted
A.

We know that A associates with a parenthesis-shuffle of size n a pair consisting of a tree of
size n and a binary tree of size n + 1. The remarks above should convince the reader that

the mapping A is a bijection between these two sets of objects.

3.4.2 The bijections ® and A are isomorphic

We now return to our business and prove that the bijection A of Cori et al. and our bijection
® are isomorphic. Before stating precisely this result, we define a (non-classical) bijection
0 between binary trees and trees. By composition, this allows us to define a bijection ©

between binary trees and non-crossing partitions.

Let e be an edge of a binary tree. The edge e is said to be branching if one of its vertices
is a right son and the other is a left son or the root-vertex. Intuitively, this means that the
edge e is non-parallel to its parent-edge. For instance, the branching edges of the binary tree

in Figure 92 are indicated by thick lines.

Definition 3.20 Let B be a binary tree. The tree 6(B) is obtained by contracting every non-
branching edge. The non-crossing partition ©(B) is the image of 0(B) by the mapping Y ~*
(see Figure 75).

We applied the mapping © to the binary tree of Figure 92.
The mapping O is a bijection between binary trees of size n (n nodes) and trees of size n
(n edges). The proof is omitted here since we will not use this property.

We now state the main result of this section.

Theorem 3.21 Let My be a tree-rooted map and w = Z(My) its associated parenthesis-
shuffle. Let o(M7T) and @1 (MT) be the tree and the non-crossing partition obtained from
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&&@y /

Figure 92: The mappings # and ©.

Mr by the mapping ®. Let \j(w) and N (w) be the tree and binary tree obtained from w by
the mapping A. Then oo(MT) = Ny(w) and @1(MT) = (X, (w)).

This relation between the mappings A and & is represented by Figure 87. As an
illustration, we applied the mapping ® to the tree-rooted map My of Figure 93 and we
applied the mapping A to w = Z(M7) = ba@aba. The rest of this section is devoted to the
proof of Theorem 3.21.

AN
\@/ L

baaaba

Figure 93: The isomorphism between A and ®.

3.4.3 Prefix-maps

The mappings \{, and \| are defined on parenthesis-shuffles from the more general mappings
Ao and \; defined on prefix-shuffles. In order to relate ¢o(M7T) and Ap(w) (resp. o1 (MT)
and A} (w)) we need to define the prefiz-maps which are in one-to-one correspondence with
prefix-shuffles. As we will see, prefix-maps are tree-oriented maps together with some

dangling heads in the root-face. In Subsections 3.4.4 and 3.4.5 we shall extend the mappings
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o and ¢1 defined in Section 3.3 to prefix-maps.

For any prefix-shuffle w we denote by w, (resp. wp) the subword of w consisting
of the letters a,a@ (resp. b,b). The words w, and w, are prefixes of parenthesis sys-
tems. We say that an occurrence of a letter ¢ = a,b is paired with an occurrence of ¢
if the subword of w. lying between these two letters is a parenthesis system. There are
|w|q — |w|z non-paired letters a and |w|, — |w|; non-paired letters b in w. We denote by w;

the parenthesis system obtained from w, by adding |w|, —|w|z letters @ at the end of this word.

Let w be a prefix-shuffle. We define T}, as the tree associated to the parenthesis system

w, that is, T, is such that, making the tour of T}, and writing a the first time we follow an
edge and @ the second time, we obtain w;. We orient the edges of T, from the root to the
leaves. Then, we add half-edges to T}, by looking at the position of the letters b and b in w.
More precisely, we read the word w and while making the tour of T" according to the letters
a, @, we insert heads for the letters b and tails for the letters b. If an occurrence of b and an
occurrence of b are paired in w we connect the corresponding head and tail. We obtain an
oriented map together with some heads called dangling heads corresponding to non-paired
letters b of w. In the tree T, the edges corresponding to non-paired letters a are called
active while the others are called inactive. We denote by M,,, and call prefix-map associated
with w, the oriented map (with dangling heads and active edges) obtained. For instance, the
prefix-map associated with bab@ababaab has been represented in Figure 94 (the active edges
are dashed).
Observe that T, is a spanning tree of the prefix-map M,,. The orientation of M, is the
tree-orientation associated to the spanning tree T, by the mapping J defined in Section 3.3.
In particular, when w is a parenthesis-shuffle, the prefix-map M,, is a map (i.e. it has no
active edge and no dangling head except for the root) which is tree-oriented. More precisely,
if w = E(Mr), the tree-oriented map M, is M7 = 6(My).

the root

! the last active edge

{ the last dangling head

Figure 94: The prefix-map associated to babaababaab.

Let w be a prefix-shuffle. The heads of active edges in the prefix map M,, are called
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rooting heads, and their ends are called rooting vertices. By convention, the root is considered
as a rooting head. As before, we compare active edges (resp. rooting vertices, dangling
heads) of M,, according to their order of appearance around T,,. By convention, the root is
considered as the first rooting head.

Let w™ be the word w followed by |w|, — |w|q letters @. We obtain w™ by making the tour
of the tree T,, and writing a the first time we follow an edge of the tree, @ the second time,
b when we cross a head not in the tree and b when we cross a tail not in the tree. Each
prefix of w™ corresponds to a given time in this journey. In particular, w corresponds to a
given corner c of a vertex v. The |w|, — |w|g letters @ at the end of w™ correspond to the left
border of active edges followed from ¢ to the root. Thus, the active edges are the edges on
the directed path of T;, from the root to v. Note that an active edge precedes another one if
it appears before on the path from the root to v. Therefore, v is the last rooting vertex and
c is the corner at the left of the last rooting head. Moreover, active edges are directed from
a rooting vertex to the next one (for the appearance order). In particular, the next-to-last

rooting vertex (if it exists) is the origin of the last active edge.

We now explore the relation between M,, and M,, when « is a letter in {a,a,b,b}.

Lemma 3.22 Let ¢ be the corner at the left of the last rooting head of M.,,.

o M, is obtained from M, by adding an edge e in the corner c. It is oriented from this

corner to a vertex not present in M,,. The edge e is the last active edge of M.

o M,y is obtained from M,, by adding a dangling head h in the corner c. The head h is
the last dangling head of M.

o Mg is obtained from M,, by inactivating the last active edge e. The origin of e becomes

the last rooting vertex.

o M, 7 is obtained from M, by adding a tail in the corner c and connecting it to the last

dangling head.

In any case, the appearance order on the edges, half-edges and vertices present in M,, is the

same in My,.

Proof: As mentioned above, the corner c is the corner reached when the word w is written
during the tour of Ty, in M,,.

e Case a = a. The letter a added to w is not paired. Therefore, it corresponds to a new
active edge e added to T,,. This new edge is added in the corner c¢. The edge e is oriented
from ¢ to a new vertex (since it is leaf of T,,). All active edges of M,, are encountered before
c around the spanning tree T,,. Therefore, e is the last active edge of M.

e Case @ = b. The letter b added to w is not paired. Therefore, it corresponds to a new

dangling head h. This new head is added in the corner c¢. All dangling heads of M,, are
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encountered before ¢ around the spanning tree T,,. Therefore, h is the last dangling head of
Myp-

e Case a = a. The last letter a of w is paired with the letter @ added to w. This last letter
a corresponds to the last active edge. Therefore, the last active edge e of M, is inactivated.
We know that the next-to-last rooting vertex of M, is the origin v of the last active edge e.
Therefore, v becomes the last rooting vertex.

e Case av = b. The last letter b of w is paired with the letter b added to w. This last letter b
corresponds to the last dangling head h'. Hence, M, ; is obtained from M, by adding a tail

h in the corner ¢ and connecting it to h'. .

This completes our study of prefix-maps. We are now ready to extend the mappings ¢ and

1 to prefix maps and to prove Theorem 3.21.

3.4.4 The trees ¢o(M7) and \)(w) are the same

In this subsection, we prove that, when w = Z(Mr), the trees ¢o(MT) and Ap(w) are the same.

Let w be a prefix-shuffle and M, the corresponding prefix-map. Note that any vertex of
M, is incident to at least one head. The prefiz-forest of w, denoted by F,,, is obtained by
deleting the tails of active edges and then applying the vertex explosion process of Figure 78
(we forget about the cells corresponding to the parts of the non-crossing partition). We will
prove that the prefix-forest is indeed a forest (i.e. a collection of trees) in Proposition 3.23.

For instance, we represented the prefix-forest of w = babaababaab in Figure 95.

Figure 95: The prefix-forest F,, (on the right).

Note that, if w = Z(Mry) is a parenthesis-shuffle, the prefix-map M,, is MT and no edge
is active. Thus, in this case, the prefix-forest F), is the tree gpo(M 7). We now prove a relation

between the prefix-forest F,, and the tree-sequence Ag(w).

Proposition 3.23 Let w be a prefix-shuffle. Let h1 < --- < hy be the dangling heads and
hy < --- < hj be the rooting heads of the prefiz-map M, (linearly ordered by the appearance
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order). The prefiz-forest Fy, is a collection of k + 1 trees ti,...,tg,t,...,t;. The root of
the tree t;,;i = 1,...,k is h; and the root of the tree t;,i = 1,...,1 is h}. Moreover, the

tree-sequence Ao(w) is utiu. .. utgputyv ... vthv .

Proof: We use Lemma 3.22 and prove the property by induction on the length of w.

If w is the empty word, the prefix-map M,, is the tree 7 reduced to a vertex and a root.
Hence, the prefix-forest F, is reduced to a single tree 7 = t}. The tree-sequence \o(w’) is
equal to urv thus the property is satisfied. If w’ = wa, we suppose the lemma true for w, we
write A\o(w) = utju. .. utkutgv ... vthv and study separately the four possible cases.

e Case a = a. The prefix-map M,,, is obtained from M, by adding an edge e incident to
the last rooting vertex. The edge e is the last active edge of M,,. It is oriented toward a
new vertex v not present in M,,. The tail of e is deleted in the construction of F,, and its
head h = hj 41 1s only incident to v. Therefore, Fly, is obtained from F), by adding the tree
T =1}, (the tree reduced to a root and a vertex) rooted on the last rooting head h.

By definition, A\o(wa) = utiu. .. utgurvtjv. .. vt\v, so we observe that the property is satisfied
by wa.

e Case a = b. The prefix-map M, is obtained from M,, by adding a dangling head h = hj,1
in the corner at the left of the last rooting head hj. Therefore, during the vertex explosion
process h 7steals” the tree t; rooted on h; in F,, (see Figure 96). That is, in Fyy;, the tree
rooted on hj is reduced to a vertex and the tree rooted on h is ¢;. The head h is the last

dangling head of M.

t) In F,:

b 2 vertex explosion‘ hg A\§

\

~

vertex explosion
/ '
h h A\§

Figure 96: The case a = b.

By definition, \o(wb) = utiu...utgutjurvt;_, ...vthv, so we observe that the property is
satisfied by wb.
e Case @ = @. The prefix-map M,z is obtained from M, by inactivating the last active edge

e. The origin v of e is the next-to-last rooting vertex of M,,. Moreover, e is the first edge
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encountered in clockwise order around v starting from ) ;. In F,qg, the head hj is part of
the edge e which links the tree ¢ to the tree ¢;_; rooted on hj ; (see Figure 97). Therefore,

the tree rooted on h)_, in Fyg is t = o(t],t,_,).

hl n Ly h;

v vertex explosion

;—1/; i : B} hy_, /m\ ti_

In FwE:

vertex explosion

/
/
1—1 hz-1

AN

Figure 97: The case a = @.

By definition, A\g(wa) = utiu. .. utgutvt; ,...vthv, so we observe that the property is satis-
fied by wa.

e Case o = b. The prefix-map M w3 18 obtained from M, by adding a tail in the corner at
the left of the last rooting head h; and connecting it to the last dangling head hy. In F 3,
the head hy, is part of an edge e which links the tree ¢ to the tree ¢; rooted on hj. Therefore,
the tree rooted on hj in F, ; is t = o(ty, ;). The illustration would be the same as Figure 97
except hy_,,hj,t;_,,t; would be replaced by hy, hy, t], ti, respectively.

By definition, Ag(wb) = utiu. .. tr—1utvt)_jv...vt}v, so we observe that the property is sat-

isfied by wb. 0

As mentioned above, when w is a parenthesis-shuffle w = Z(M7), the prefix-map M, is
the tree-oriented map MT and the prefix-forest I, is the tree g (M 7. Therefore, Proposition
3.23 implies that the tree-sequence Ao(w) is equal to ug (M7 )v. Thus, the trees A(w) and

©o(MT) are the same. 0

3.4.5 The partitions ¢;(M7) and © o X,(w) are the same

In this subsection, we prove that, when w = Z(Mr), the non-crossing partition gol(M Ty is

the image of the binary tree A} (w) by the mapping © defined in Definition 3.20.
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Let My be a tree-rooted map. We call partition-tree of My the tree P = Y o gol(MT)
(the mapping Y is represented in Figure 75). Observe that the tree P can be drawn directly
on the map obtained after the vertex explosion process of Figure 78. To do so, one keeps the
cells corresponding to the vertices of M T/ (These cells are glued to the first corner of the
vertices of the tree g (M 7). Then, one draws a vertex in each face of M7 and in each cell
corresponding to a vertex of Mrp: this gives the vertices of P. The edges of P join vertices in
adjacent cells and faces. The tree is rooted canonically. In particular, the root-vertex of P

lies in the root-face of Mp. This construction is illustrated in Figure 98.

Figure 98: The partition-tree of a tree-rooted map.

We want to extend this construction to prefix-maps. We need some extra vocabulary.
Consider a prefix-shuffle w and the corresponding prefix map M,,. We denote by MX the
map obtained after the vertex explosion process when one keeps the cells corresponding to
the vertices of M,,. A face of M[,f is said white if it corresponds to a face of M,, and black if
it corresponds to a vertex of M,,. For instance, the map sz in Figure 99 has 2 white faces
and 4 black faces. We call regular the edges of M,,, and permeable the edges that separate
black and white faces. The map M[f inherits the root of M,,. In particular, it has the same
root-face. The map MK has k = |wl, — |w|; dangling heads which are all in the root-face. We
can compare these heads according to their order of appearance around the root-face, that
is, when following its border in counterclockwise direction starting from the root. We denote
by h1,...,h; the heads of MX encountered in this order around the root-face.

We define the partition-tree P, of the prefix-map M,, as follows. (We shall prove later
that the partition-tree is indeed a tree.) We draw a vertex in each face of M X. The vertex vg
drawn in the root-face is called the exterior verter. We draw k additional vertices vq,..., v
in the root-face, each associated to a dangling head (v; is associated to h;). These are the
vertices of P,. The edges of P, are the duals of permeable edges. We need to be more precise.
If e is a permeable edge that is not incident to the root-face, its dual joins the vertices drawn

in the incident black and white faces. If e is a permeable edge incident to the root-face
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the root

hi

Figure 99: The prefix-map associated to w = baabbbaa and the map MX.

and a black face f, its dual joins the vertex drawn in f to v; if h; is the last dangling head
encountered before e around the root-face, or to vg if no dangling head precedes e. Note that
the partition-tree P, can be drawn in such a way that no edge of P,, intersects another. For
instance, the partition-tree associated to w = baabbbaa is shown in Figure 100.

Moreover the vertices of the partition-tree have an activity. We call white and black the
vertices of P, corresponding to white and black faces of MX. The active white vertices are
vg, - - ., Uk. The active black vertices are the vertices corresponding to rooting vertices of M,
(see Subsection 3.4.3 where the notion of rooting vertex is introduced). The other vertices are
said to be inactive.

It remains to define the root of the partition-tree. Consider the first edge e followed around
the root-face of MX. It is a permeable edge. Its dual e* in P, joins the exterior vertex vy to
the vertex drawn in the black face corresponding to the root-vertex of M,,. The root of P, is
incident to vy and follows e* in counterclockwise direction around vg. This root is indicated

in Figure 100.

Figure 100: The partition-tree P, (thick lines) drawn on MX (w = baabbbaa).

Observe that, when w = Z(M7) is a parenthesis-shuffle, the map M, = MT has no dangling
heads and the partition-tree P, is T o g@l(M .

We now relate the partition-tree P, to the binary tree Aj(w).

Proposition 3.24 For all prefiz-shuffle w, the partition-tree Py, is equal to 6 o Aj(w) where
A1(w) is the binary tree defined in Definition 3.17 and 6 is the mapping defined in Definition
3.20.
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Proposition 3.24 implies that for any parenthesis-shufle w = Z(Mp) we have
P, =00 X, (w). Given that P, = T o ¢ (MT), we obtain o1 (MT) = © o N (w).

The rest of this subsection is devoted to the proof of Proposition 3.24. We first describe
a recursive construction of the partition-tree P,. That is, we describe how to obtain
P, from P, when « is a letter in {a,@,b,b} (Lemma 3.25). Then we describe a recursive

construction of fo\; (w) (Lemma 3.26). We conclude the proof by induction on the length of w.

Recursive construction of the partition-tree P,

The recursive description of the partition-tree requires to define an order on active vertices.
Let w be a prefix-shuffle and M,, be the associated prefix-map. The rooting vertices of
M,, can be compared by their order of appearance around the spanning tree T,, of M,,.
The active black vertices inherit their order from the rooting vertices. The black vertex
of P, corresponding to the root-vertex of M, is the first element for this order. We can
also compare the dangling heads hi,...,h; of M, according to their order of appearance
around T,,. This order is the same as the order of appearance around the root-face of
MX. Indeed, the order of appearance around the root-face of MX is also the order of
appearance around the root-face of M,,. Furthermore, the deletion of an edge of M,, not in
T, does not modify this order. By deleting all the edges not in T}, we obtain the appearance
order around T;,. The active white vertices inherit their order from the dangling heads.

The exterior vertex vg is considered the first element. That is, v; precedes v; for 0 < i < j < k.
Let v be a vertex of a tree which is not a leaf. We call leftmost son (resp. rightmost
son) of v the son following (resp. preceding) the father of v (or the root) in counterclockwise

direction around v (see Figure 101).

father

leftmost son rightmost son

Figure 101: A vertex and its leftmost and rightmost sons.

We are now ready to describe the relation between the partition-tree P,, and the partition-

tree Py, when a is a letter in {a,a,b,b}.

Lemma 3.25 The partition-tree P,, is a tree. Moreover,

e the partition-tree Py, is obtained from P, by adding a new leaf which becomes the last



134 CHAPTER 3. BIJECTIVE DECOMPOSITION OF TREE-ROOTED MAPS

active black vertex. This leaf is the leftmost son of the last active white vertez,

e the partition-tree Py, is obtained from P, by adding a new leaf which becomes the last

active white verter. This leaf is the rightmost son of the last active black vertex,
e the partition-tree P,g is obtained from P, by inactivating the last active black vertex,
e the partition-tree P, 7 is obtained from P, by inactivating the last active white vertex.

To illustrate this lemma we have represented the evolution of a partition-tree in Figure
102. Active vertices are represented by circles and inactive ones by squares. The white (resp.

black) active vertices are denoted vg, vy, ... (resp. r1,72,...).

T2 T
T2 v 2 v
b 2 a 2
r —_— 7"3 —_—
3
1 vy ) U1 1 V1
(%) Vo Vo
r9 r3 : r2 "3
a s »
1 V1 ™ V1
Vo Vo

Figure 102: Evolution of the partition-tree from w = baabb to w = baabbbaab.

Before we embark on the proof, we need to define a correspondence E (resp. V') between

the heads of M,, and the edges (resp. vertices distinct from vg) of P,. The correspondences
FE and V are represented in Figure 103.
Consider a head h of M, and its end v in MX. The edge following h in counterclockwise
direction around v is a permeable edge. The dual of this edge in the partition-tree P, is
denoted E(h). The correspondence E between heads of M,, and edges of P, is one-to-one.
The edge E(h) is incident to a white and to a black vertex. If h is in the tree T (in
particular, if A is the root), we define V' (h) as the black vertex incident to E(h). Else V(h)
is the white vertex incident to E(h). The correspondence V' is a bijection between heads of
M, and vertices of P, distinct from vg. Indeed, black vertices of P, correspond to vertices
of M,, which are in one-to-one correspondence with heads in T;,, white vertices distinct from
Vg, . . .,V correspond to faces of M, which are in one-to-one correspondence with heads not
in T, (a face f is associated with the head we cross when we first enter f during the tour
of Ty,), and the vertices vy,..., v, are in one-to-one correspondence with the dangling heads
hi,...,hg.
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V(n7)

h” not in T,

h in T,

k' not in T,
.
Toward vg

Figure 103: Left: a typical vertex of the prefix map M,, incident with three heads: h in T,
and b’ , b not in Ty,. Right: the correspondence E (resp. V') between heads of M,, and edges

(resp. vertices) of P,.

Proof: We prove the lemma by induction on the length of w. If w is the empty word, P, is
a tree. Suppose now, by induction hypothesis, that P, is a tree. We first show the following
property: for any head h of M,, the edge E(h) links V (h) to its father in P,. The mapping
V o E~! is a bijection from the edges of P, to the vertices of P, distinct from its root-vertex
vg. Moreover an edge e of P, is always incident to the vertex V o E‘l(e) in P,. Since P, is
a tree, the only possibility is that any edge e of P, links the vertex V o E~1(e) to its father
in P,.

We are now ready to study separately the different cases o = a,@, b,b. We use Lemma
3.22 and denote by c the corner of M,, at the left of the last rooting head of M,,.

e Case a = a.

- The prefix-map M, is obtained from M,, by adding a new edge e in the corner c¢ oriented
away from c. Let h be the head of e and s its end. The vertex s is the last rooting vertex
in My,,. The partition-tree Py, is obtained from P, by adding the edge E(h) and the black
vertex V(h) to P, (see Figure 104). By definition, the vertex V(h) is the last active black
vertex in Py,.

- By definition, the corner c¢ is situated after any dangling head around T),. Hence, it is
situated after any dangling head around the root-face of MX. Therefore, the edge E(h) joins
V(h) to the last active white vertex vg. Moreover, since V' (h) is only incident to E(h) and
P, is a tree, we check that P, is a tree and V'(h) a leaf.

- It remains to show that V'(h) is the leftmost son of vj. By definition, the permeable edges
that have their dual incident to vy are situated between hy (or the root hgy of M[,f if k=0)
and ¢ around the root-face of M. The dual of the first of these permeable edge is E(hy)
and the dual of the last of them is E(h). If k # 0, we know that E(hy) links vy = V' (hg) to
its father in P,,. Therefore, V'(h) is the leftmost son of vy. If k = 0, we know (by definition)
that the root of P, follows E(hg) in counterclockwise direction around vg. Therefore, V' (h)

is the leftmost son of vy.
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— .~ Making the tour of the root-face

last dangling head hy (or the rOo‘*

Figure 104: The new vertex V' (h) is the leftmost son of vy.

e Case a = b.

We denote by h and v the last rooting head and vertex.

- The prefix-map M, is obtained from M,, by adding a dangling head hi1 in the corner c.
It is the last dangling head of M,,;,. The partition-tree P,y is obtained by adding the vertex
Vg+1 = V(hgs1) and the edge E(hgy1) to Py, (see Figure 105). By definition, v, is the last
active white vertex of P,y.

- The dangling head hy1 is incident to v in M. Hence, the edge F(hj41) joins vy to the
last active black vertex V' (h) of P,. Moreover, since vgy; is only incident to E(hgy1) and P,
is a tree, Py is a tree and vy a leaf.

- It remains to prove that vgy; is the rightmost son of V' (h). By definition, E(h.1) and E(h)
are respectively the dual of the permeable edges preceding and following the head h in coun-
terclockwise direction around its end. Therefore, F(h) follows E(hy11) in counterclockwise
direction around V' (h). Given that E(h) links V' (h) to its father, vi4q is the rightmost son of
V(h).

Figure 105: The new vertex vy is the rightmost son of V (h).

e Case a = .

The prefix-map M,z is obtained from M, by inactivating the last active edge e. Thus, P,g
is obtained from P, by inactivating the last active black vertex.

e Case o = b.

The prefix-map M, ; is obtained from M,, by adding a tail in the corner ¢ and connecting it
to the last dangling head hy. This creates a new face of M,, (hence of MX ) and lowers by
one the number of dangling heads. The last active white vertex v, is trapped in the new face

of M 3. Hence, P ; is obtained from P, by inactivating the last active black vertex vy.
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Recursive construction of the tree 6o A\ (w).

We continue the proof of Proposition 3.24. We now describe the relation between the trees
0 o A\(w) and 6 o A\;(wa) when « is a letter in {a,@,b,b} (the mapping \; is defined in
Definition 3.17).

We first need to define a correspondence between the leaves of a binary tree B and the
vertices of the tree §(B). An edge of B is said left (resp. right) if it links a node to its
left son (resp. right son). We consider a leaf [ of B. If [ is a left (resp. right) leaf, the
path from [ to the root begins with a non-empty sequence of left (resp. right) edges. By
definition, only the last edge e(l) of this sequence is branching except if [ is the first left leaf
in which case no edge is branching. We associate the first left leaf of B with the root-vertex

of §(B) and we associate any other leaf [ with the son of the branching edge e(l) in 0(B).

This correspondence is one-to-one. For instance, the leaves [q,...,lg of the binary tree B in
Figure 106 are associated with the vertices vy, ..., vg of the tree 6(B).
U1
0

_— Vg Vg

l v

o I v3 !

4 I s

Figure 106: Correspondence between leaves of B and vertices of 6(B).

Consider a prefix-shuffle w. In the binary tree A1(w), leaves are either active or inactive.
We say that a vertex of o Aj(w) is left, right, active, inactive if the associated leaf of A\ (w) is
so. Moreover, the leaves of the binary tree A\j(w) can be compared by their order of appear-
ance around this tree. The vertices of o1 (w) inherit this order. For instance, the root-vertex

of @o 1 (w) is the first active left vertex (recall that the first left leaf of A1 (w) is always active).

We are now ready to state the last lemma which is the counterpart of Lemma 3.25.

Lemma 3.26 Let T be the tree 0 o \y(w) and T, = 0 o Ay (wa) for a in {a,b,a,b}.

o The tree 1, is obtained from T by adding a new leaf which becomes the first active right

verter. This leaf is the leftmost son of the last active left verter.

o The tree Ty is obtained from T by adding a new leaf which becomes the last active left
verter. This leaf is the rightmost son of the first right vertex.
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o The tree T3 is obtained from T by inactivating the first active right vertex.
o The tree T; is obtained from T by inactivating the last active left vertex.

Proof: We study separately the four cases a = a, b, @, b.

e Case o = a. By definition of the mapping A\; (Definition 3.17), the binary tree A(wa) is
obtained from Aj(w) by replacing the last active left leaf [ by a node with two leaves [; and
. The left leaf [; replaces [ as the last left leaf. The right leaf [, becomes the first right leaf.
The edge from [ to [, is branching. The other branching edges are unchanged. Therefore, 7,
is obtained from 7 by adding a new leaf. This leaf is associated with [,, hence becomes the
first active right vertex. The father of this leaf was associated with [ in 7 and is associated
with [; in 7,. Therefore, it was and remains the last active left vertex. It is easily seen that
the new leaf becomes its leftmost son.

e The case a = b is symmetric to the case a = a. We do not detail it.

e Case « = @. The binary tree \;(wa) is obtained from A;(w) by inactivating the first active
right leaf. Therefore, 77 is obtained from 7 by inactivating the first active right vertex.

e The case o = b is symmetric to the case o = @. 0

Recursive proof of Proposition 3.24.

We want to show that, for any prefix-shuffle w, the partition-tree P, is the tree 6 o A1 (w).
We show by induction the following more precise property: for any prefix-shuffle w,

- the partition-tree P, is equal to 6 o \;(w) ,

- the active and inactive vertices of P, and 6 o A;(w) are the same,

- the white (resp. black) vertices of P, correspond to left (resp. right) vertices of 6 o A1 (w),
- the order on white (resp. black) vertices of P, is equal (resp. inverse) to the order on left

(resp. right) vertices of 6 o A\j(w).

Suppose that w is the empty word. The partition-tree P, has one edge, an active white
vertex which is its root-vertex and an active black vertex. Similarly, § o Aj(w) has one edge,
an active left vertex which is its root-vertex and an active right vertex. Hence, we check that
the property is true. In view of Lemma 3.25 and Lemma 3.26, it is clear that the property is

true by induction on the set of prefix-shuffles. 0

This concludes the proof of Proposition 3.24 and Theorem 3.21.
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In the following chapters, we exhibit and exploit a characterization of the Tutte
polynomial based on combinatorial embeddings. Our characterization is valid for general
graphs (as opposed to planar graphs). In Chapter 5, we define a notion of activity, the
embedding-activity, for spanning trees. We prove that the Tutte polynomial is the generating
function of spanning trees counted by internal and external embedding-activities. We
compare this characterization of the Tutte polynomial to earlier ones. We also take a glimpse
at the applications of our characterization to be developed in the following chapters. In
Chapter 6, we define a partition of the set of subgraphs based on the embedding activities.
Each part of this partition is associated with a spanning tree. The partition of the set of
subgraphs is used in order to define a bijection ® between subgraphs and orientations. This
bijection extends the correspondence between spanning trees and tree-orientations that we
exhibited in Chapter 3. In Chapter 7, we study the restriction of the bijection ® to several
classes of subgraphs. Among other results, we obtain an interpretation for all the evaluations
Tc(i,7),0 < i,j < 2 of the Tutte polynomial in terms of orientations. For instance the
strongly connected orientations are counted by 7(0,2) while the acyclic orientations are
counted by T¢(2,0). The strength of our approach is to derive all our results from a
unique bijection ® specialized in various ways. Some of the results are expressed in terms
of outdegree sequences. For instance, we obtain a bijection between forests and outdegree
sequences (this answers a question by Stanley [Stan 80a]). We also obtain a bijection
between spanning trees and root-connected outdegree sequences. Lastly, in Chapter 8 we
define a bijection between spanning trees and the recurrent configurations of the sandpile
model. Combining our results, we obtain a bijection between recurrent configurations and
root-connected outdegree sequences which leaves the configurations at level 0 unchanged

(this answers a question by Gioan [Gioa 06]).

Before we get started, we summarize the definitions and notations needed for the four

following chapters.

4.1 Definitions and notations

We denote by N the set of non-negative integers. For any set S, we denote by |S| its
cardinality. For any sets Sp,S2, we denote by S1 A S5 the symmetric difference of S and
Sy. If S C S’ and S’ is clear from the context, we denote by S the complement of S, that is,
S'\S. If S C S and s € S, we write S + s and S — s for SU {s} and S\ {s} respectively
(whether s belongs to S or not).
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4.1.1 Graphs

In the following chapters we consider finite, undirected graphs. Loops and multiple edges
are allowed. Formally, a graph G = (V, E) is a finite set of vertices V, a finite set of edges
E and a relation of incidence in V' x E such that each edge e is incident to either one or
two vertices. The endpoints of an edge e are the vertices incident to e. A cycle is a set of
edges that form a simple closed path. A cut is a set of edges C' whose deletion increases
the number of connected components and such that the endpoints of every edge in C' are in
distinct components of the resulting graph. A cut is shown in Figure 107. Given a subset
of vertices U, the cut defined by U is the set of edges with one endpoint in U and one
endpoint in U. A cocycle is a cut which is minimal for inclusion (equivalently it is a cut
whose deletion increases the number of connected components by one). For instance, the set

of edges {f,g,h} in Figure 107 is a cocycle.

Figure 107: The cut {e, f,g,h,i,j} and the connected components after deletion of this cut
(shaded regions).

Let G = (V,E) be a graph. A spanning subgraph of G is a graph G' = (V, E’) where
E' C E. All the subgraphs considered in the following chapters are spanning and we shall
not further precise it. A subgraph is entirely determined by its edge set and, by convenience,
we shall identify the subgraph with its edge set. A forest is an acyclic graph. A tree is a
connected forest. A spanning tree is a (spanning) subgraph which is a tree. Given a tree T
and a vertex distinguished as the root-vertex we shall use the usual family vocabulary and talk
about the father, son, ancestors and descendants of vertices in T'. By convention, a vertex is
considered to be an ancestor and a descendant of itself. If a vertex of the graph G is distin-

guished as the root-vertex we implicitly consider it to be the root-vertex of every spanning tree.

Let T be a spanning tree of the graph G. An edge of G is said to be internal if it is in T
and ezternal otherwise. The fundamental cycle (resp. cocycle) of an external (resp. internal)
edge e is the set of edges €’ such that the subgraph T'— ¢’ + e (resp. T — e+ ¢€’) is a spanning
tree. Observe that the fundamental cycle C of an external edge e is a cycle contained in T+ ¢
(C is made of e and the path of T" between the endpoints of e). Similarly, the fundamental
cocycle D of an internal edge e is a cocycle contained in T + e (D is made of the edges linking

the two subtrees obtained from T by removing e). Observe also that, if e is internal and e’ is
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external, then e is in the fundamental cycle of €’ if and only if € is in the fundamental cocycle

of e.

4.1.2 Embeddings

We recall the notion of combinatorial map introduced by Cori and Machi [Cori 75, Cori 92].
A combinatorial map (or map for short) G = (H, 0, «) is a set of half-edges H, a permutation
o and an involution without fixed point a on H such that the group generated by ¢ and «
acts transitively on H. A map is rooted if one of the half-edges is distinguished as the root.
For hg € H, we denote by G = (H, 0, a, hg) the map (H, o, «) rooted on hy. From now on all

our maps are rooted.

Given a map G = (H, 0, «, hg), we consider the underlying graph G = (V, E), where V is
the set of cycles of o, E is the set of cycles of a and the incidence relation is to have at least
one common half-edge. We represented the underlying graph of the map G = (H,0,a) on
the left of Figure 108, where the set of half-edges is H = {a,a’,b,V',¢c,c,d,d' e, e, f, f'}, the
involution « is (a,a’)(b,b")(c,d)(d,d")(e,€')(f, ') in cyclic notation and the permutation o
is (a, f',b,d)(d")(d e, f,c)(e,b, ). Graphically, we keep track of the cycles of o by drawing
the half-edges of each cycle in counterclockwise order around the corresponding vertex.
Hence, our drawing characterizes the map G since the order around vertices give the cycles of
the permutation ¢ and the edges give the cycles of the involution «. On the right of Figure
108, we represented the map G’ = (H,o’,«), where o' = (a, f',b,d)(d")(d,e,c, f)(',V, ).
The maps G and G’ have isomorphic underlying graphs.

Note that the underlying graph of a map G = (H, 0, «) is always connected since o and
« act transitively on H. A combinatorial embedding (or embedding for short) of a connected
graph G is a map G = (H, o0, a) whose underlying graph is isomorphic to G (together with
an explicit bijection between the set H and the set of half-edges of G). When an embedding
G of G is given we shall write the edges of G as pairs of half-edges (writing for instance
e = {h,h'}). Moreover, we call root-vertex the vertex incident to the root and root-edge the
edge containing the root. In the following, we use the terms combinatorial map and embedded

graph interchangeably. We do not require our graphs to be planar.

Intuitively, a combinatorial embedding corresponds to the choice of a cyclic order on the
edges around each vertex. This order can also be seen as a local planar embedding. As
explained in the introduction of this thesis (Subsection 0.1.3), there is a one-to-one corre-
spondence between the combinatorial embeddings of graphs and the cellular embeddings of

graphs in surfaces (defined up to homeomorphism).
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Figure 108: Two embeddings of the same graph.

4.1.3 Orientations and outdegree sequences

Let G be a connected graph and let G be an embedding of G. An orientation is a choice
of a direction for each edge of GG, that is to say, a function O which associates to any edge
e = {h1,ha} one of the ordered pairs (h1, ho) or (hy,hs). Note that loops have two possible
directions. We call O(e) an arc, or oriented edge. If O(e) = (hi,hg) we call hy the tail and
ho the head. We call origin and end of O(e) the endpoint of the tail and head respectively.

Graphically, we represent an arc by an arrow going from the origin to the end (see Figure 109).

origin »e end
tail head

Figure 109: Half-edges and endpoints of arcs.

A directed path is a sequence of arcs (aq,as,...,ax) such that the end of a; is the origin
of a;41 for 1 <i < k—1. A directed cycle is a simple directed closed path. A directed cocycle
is a set of arcs ay, ..., ax whose deletion disconnects the graph into two components and such
that all arcs are directed toward the same component. If the orientation O is not clear from
the context, we shall say that a path, cycle, or cocycle is O-directed. An orientation is said
to be acyclic if there is no directed cycle (resp. cocycle). An orientation is said to be totally

cyclic or strongly connected if there is no directed cocycle.

We say that a vertex v is reachable from a vertex u if there is a directed path
(a1,as,...,ar) such that the origin of a; is u and the end of ay is v. If v is reachable from
u in the orientation O denote it by ugv. An orientation is said to be u-connected if every
vertex is reachable from u. Observe that an orientation O is totally cyclic if and only if the
origin of every arc is reachable from its end. Equivalently, O is totally cyclic if every pair of

vertices are reachable from one another.

The outdegree sequence of an orientation O of the graph G = (V,E) is the function

6 : V — N that associates to every vertex the number of incident tails. We say that O is a
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d-orientation. The outdegree sequences are strongly related to the cycle flips, that is, the
reversing of every edge in a directed cycle. Indeed, it is known that the outdegree sequences
are in one-to-one correspondence with the equivalence classes of orientations up to cycle flips

(see Lemma 7.12).

There are nice characterizations of the functions § : V +— N that are outdegree sequences.

Given a function § : V +— N we define the excess of any subset of vertices U C V by

exes(U) = (Z 6<u>> - |Gul,

uelU

where |Gy is the number of edges of G having both endpoints in U. By definition, if ¢ is the
outdegree sequence of an orientation O, the sum ) ;;6(u) is the number of tails incident
with vertices in U. From this number, exactly |G| are part of edges with both endpoints
in U. Hence, the excess excs(U) corresponds to the number of tails incident with vertices
in U in the cut defined by U. This property is illustrated in Figure 110. It is clear that if
6 : V — N is an outdegree sequence, then the excess of V' is 0 and the excess of any subset
U C V is non-negative. In fact, the converse is also true: every function ¢ : V +— N satisfying

these two conditions is an outdegree sequence [Fels 04].

Nk

0

Figure 110: The excess of the subset U is excs(U) = (4+2+1) —4 = 3.

We now prove that the reachability properties between vertices in a directed graph only

depend on the outdegree sequence of the orientation.

Lemma 4.1 Let G = (V, E) be a graph and let u, v be two vertices. Let O be an orientation
of G and let & be its outdegree sequence. Then v is reachable from u if and only if there is no

subset of vertices U C V' containing v and not v and such that excs(U) = 0.

Proof: Lemma 4.1 is illustrated in Figure 111. Observe that the excess of a subset U C V' is
0 if and only if the cut defined by U is directed toward U.

e Suppose there is a subset of vertices U C V containing u and not v such that exzcs(U) = 0.
Then, the cut defined by U is directed toward U. Thus, there is no directed path from U to

U. Hence v is not reachable from v.



146

e Conversely, suppose v is not reachable from u. Consider the set of vertices U reachable from
u. The subset U contains u but not v. Moreover, the cut defined by U is directed toward U,

hence excs(U) = 0. 0

Figure 111: Reachability is a property of the outdegree sequence.

Since the reachability properties only depend on the outdegree sequence of the orienta-
tion, we can define an outdegree sequence ¢ to be u-connected or strongly connected if the
d-orientations are. The u-connected outdegree sequences were considered in [Gioa 06] in

connection with the cycle/cocycle reversing system (see Section 7.7.1).

Remark: From the characterization of outdegree sequences given above and Lemma 4.1
it is possible to characterize u-connected and strongly connected outdegree sequences. Let
G = (V,E) be a graph and 0 : V ~— N be a mapping such that ) i d(v) = |E|. The
mapping 0 is a strongly connected outdegree sequence if and only if the excess of any subset
U C V is positive. The mapping § is a u-connected outdegree sequence if and only if the

excess of any subset U C V is non-negative and is positive whenever v € U.

4.1.4 The sandpile model

The sandpile model is a dynamical system introduced in statistical physics in order to study
self-organized criticality [Bak 87, Dhar 90]. It appeared independently in combinatorics
as the chip firing game [Bjor 91]. Roughly speaking, the model consists of grains of sand
toppling through edges when there are too many on the same vertex. Recurrent configura-
tions play an important role in the model: they correspond to configurations that can be
observed after a long period of time. Despite its simplicity, the sandpile model displays in-

teresting enumerative [Cori 03, Dhar 92, Meri 97] and algebraic properties [Cori 00, Dhar 95].

Let G = (V,E) be a graph with a vertex vy distinguished as the root-vertez. A config-
uration of the sandpile model is a function § : V' +— N, where S(v) represents the number
of grains of sand on v. A vertex v is unstable if S(v) is greater than or equal to its degree
deg(v). An unstable vertex v can topple by sending a grain of sand through each of the
incident edges. This leads to the new configuration S’ defined by §’'(u) = S(u) + deg(u,v) for
all u # v and 8’ (v) = S(v) — deg(v, *), where deg(u, v) is the number of edges with endpoints
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u,v and deg(v, %) is the number of non-loop edges incident to v. We denote this transition by

S, S’ An evolution of the system is represented in Figure 112.

./UQ e o e

®e UO °

Figure 112: A recurrent configuration and the evolution rule.

A configuration is stable if every vertex v # wvg is stable. A stable configuration S is
recurrent if S(vo) = deg(vo) and if there is a labeling of the vertices in V' by vo, vy, ..., vy
such that § 8 ", ... WI71Sy = S. This means that after toppling the root-vertex vy,
there is a valid sequence of toppling involving each vertex once that gets back to the initial
configuration. For instance, the configuration at the left of Figure 112 is recurrent. The level

of a recurrent configuration S is

level(S) = (Z 8(v)> —|E|.

veV

4.1.5 The Tutte polynomial

We recall the subgraph expansion of the Tutte polynomial. We postpone the presentation of
the other characterizations of this polynomial to Chapter 5 (Section 5.3).

Definition 4.2 The Tutte polynomial of a graph G = (V, E) is

To(z,y) = ) (x = )" AD (y — )eHSV (79)
SCE

where the sum is over all subgraphs S and c¢(S) (resp. ¢(G)) denotes the number of connected

components of S (resp. G).

For example, if GG is the triangle K3 there are 8 subgraphs. The subgraph with no edge has
contribution (x — 1)2, each subgraph with one edge has contribution (z — 1), each subgraph
with two edges has contribution 1 and the subgraph with three edges has contribution (y —1).
Summing up these contributions, we get Tk, (7,y) = (x—1)2+3(z—1)+3+(y—1) = 22+ +y.

The subgraph expansion (79) of the Tutte polynomial is the generating function of
subgraphs according to two parameters: the (normalized) number of connected components
c(S) — ¢(G@) and the cyclomatic number c(S) + |S| — |V|. The cyclomatic number is the

maximum number of edges that can be removed from S without increasing the number of
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connected components. In particular, ¢(S) + |S| — |V| = 0 if and only if S is a forest. From
the subgraph expansion (79), it is easy to check that whenever G is the disjoint union of
two graphs G = G U Gy, then Tg(z,y) = Tg,(z,y) X Tg,(z,y). This relation allows us
to restrict our attention to connected graphs. In the following chapters, all the graphs we

consider are connected.

Before we close this section, we recall the relations of induction satisfied by the Tutte poly-
nomial [Tutt 54]. (These relations reminiscent of the relations of induction of the chromatic

polynomial [Whit 32a] are easy to prove from (79)).

Proposition 4.3 (Tutte) Let G be a graph and e be any edge of G. The Tutte polynomial
of G satisfies:

To(r,y) =| z-Tge(w,y) if e s an isthmus,
Y- Tene(w,y) if e is a loop, (80)
Tare(z,y) + Tene(z,y) if € is neither a loop nor an isthmus.

This concludes our presentation of the notions needed for the four following chapters. We
will now present a new characterization of the Tutte polynomial and exploit its numerous

consequences.



Chapter 5

Characterization of the Tutte
polynomial via combinatorial

embeddings

Abstract: We give a new characterization of the Tutte polynomial of graphs. Our
characterization is formally close (but inequivalent) to the original definition given by Tutte
as the generating function of spanning trees counted according to activities. Tutte’s notion of
activity requires to choose a linear order on the edge set. We define a new notion of activity,
the embedding-activity, which requires to choose a combinatorial embedding of the graph,
that is, a cyclic order of the edges around each vertex. We prove that the Tutte polynomial

equals the generating function of spanning trees counted according to embedding-activities.

Résumé : Nous présentons une nouvelle caractérisation du polyndéme de Tutte des
graphes. Notre caractérisation est proche dans sa formulation (mais non équivalente) &
la premiere définition donnée par Tutte comme la série génératrice des arbres couvrants
comptés selon leurs activités. La caractérisation de Tutte demande d’ordonner linéaire-
ment l'ensemble des arétes. Nous définissons une nouvelle notion d’activité, [’activité de
plongement, qui demande de choisir un plongement combinatoire du graphe, soit un ordre
cyclique des arétes autour de chaque sommet. Nous montrons que le polynéme de Tutte

est égal a la série génératrice des arbres couvrants comptés selon leurs activités de plongement.

149
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5.1 Introduction

In 1954, Tutte defined a graph invariant that he named dichromate because he thought of it
as a bivariate generalization of the chromatic polynomial [Tutt 54]. The first definition by
Tutte was a generating function of spanning trees counted according to their activities. Since
then, this polynomial, which is now known as the Tutte polynomial, has been widely studied
(see for instance, [Bryl 91] and references therein). We refer the reader to [Boll 98, Chapter
X] for an easy-to-read but comprehensive survey of the properties and applications of the

Tutte polynomial.

In this chapter, we give a new characterization of the Tutte polynomial of graphs. Our
characterization is formally close (but not equivalent) to the original definition by Tutte in
terms of the ordering-activities of spanning trees (compare (85) and (84)). Tutte’s notion
of activity requires to choose a linear order on the edge set. The Tutte polynomial is then
the generating function of spanning trees counted according to their (internal and external)
ordering-activities (this generating function being, in fact, independent of the linear order).
Our characterization of the Tutte polynomial requires instead to choose an embedding of
the graph, that is, a cyclic order for the incidences of edges around each vertex. Once
the embedding is chosen, one can define the (internal and external) embedding-activities of
spanning trees. We prove that the Tutte polynomial is equal to the generating function of
spanning trees counted according to their (internal and external) embedding-activities (this

generating function being, in fact, independent of the embedding).

This chapter is organized as follows. In Section 5.2, we study the tour of spanning trees.
In Section 5.3, we define the embedding activities and characterize the Tutte polynomial as
the generating function of spanning trees counted by embedding-activities. We also compare
this characterization to earlier definitions of the Tutte polynomial. In Section 5.4, we give
the proof of the characterization of the Tutte polynomial by embedding activities. Lastly, in

Section 5.5, we take a glimpse at the results to be developed in the following chapters.

5.2 The tour of spanning trees

We first define the tour of spanning trees. Informally, the tour is a walk around the tree that
follows internal edges and crosses external edges. A graphical representation of the tour is
given in Figure 113. We already encountered this notion in chapter 3 in the case of planar

embeddings. We will now define it below for general embeddings.

Let G = (H, 0, «) be an embedding of the graph G = (V| E). Given a spanning tree T', we
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Tour of the tree

Figure 113: Intuitive representation of the tour of a spanning tree (indicated by thick lines).

define the motion function t on the set H of half-edges by:

t(h) =1 o(h) if h is external,

(81)

oa(h) if h is internal.

Clearly, the motion function ¢ is a bijection on H (since the inverse mapping is easily seen
to be t=1(h) = o~ 1(h) if o7 1(h) is external and t~1(h) = ac~!(h) if o~1(h) is internal).
In fact, we will prove shortly that the motion function ¢ is a cyclic permutation. For
instance, the motion function of the embedded graph in Figure 113 is the cyclic permutation
(aye, f,e,d, f1,0,d, €0, d,d"). The cyclic order defined by the motion function ¢ on the set
of half-edges is what we call the tour of the tree T.

Our proof that the motion function ¢ is a cyclic permutation is by induction on the number
of edges of the graph. This proof requires to define the deletion and contraction of edges in
embedded graphs. Our definitions preserve the cyclic order of the half-edges around each
vertex. We represented the result of deleting and contracting the edge e = {b,b'} in Figure
114.

Deletion

Figure 114: Deletion and contraction of the edge e = {b,b'}.

Let G be a graph and let e be an edge. If e is not an isthmus (resp. loop), we denote by
G\, (resp. G.) the graph obtained by deleting e (resp. contracting e). Let G = (H,0,q)
be an embedding of the graph G and let e = {hy,ho} be an edge. If e is not an isthmus,
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we define the embeddings G\, = (H',0",an.) of G\, by H' = H \ {h1, ha}, the involution o

equals the involution « restricted to H' and

o\e(h) = | ooa(h) if (¢(h) = h1 and o(h1) = ha) or (o(h) = hg and o(hs) = h1),
oo(h) if (o(h) = hy and o(h1) # ha) or (o(h) = hy and o(hs) # h1), (82)

o(h) otherwise.

Similarly, if e is not a loop, we define the embeddings G, = (H',0',a/.) of G/, by H' =

H \ {hq, hy}, the involution o’ equals the involution « restricted to H' and

0/e(h) =| oo(h) if (0(h) = hy and o(h2) = hg) or (o(h) = hz and o(h1) = h1),
oac(h) if (o(h) = hy and o(hg) # he) or (o(h) = he and o(hy) # h1),  (83)

o(h) otherwise.
We now describe the effect of a contraction or deletion on the motion function.

Lemma 5.1 Let G = (H,o0,a) be an embedded graph, let T be a spanning tree and let t be
the corresponding motion function. For all external (resp. internal) edge e = {h1,ha}, the
spanning tree T' (resp. T —e) of G\, (resp. G,.) defines a motion function t' on H \ {h1,ha}
such that

Y(h) =|totot(h) if (t(h) = h1 and t(hy) = hs) or (t(h) = he and t(h2) = h1),
to t(h) Zf (t(h) = h1 and t(hl) 7'5 hQ) or (t(h) = h2 and t(hQ) 75 hl),
t(h) otherwise.

Proof: Lemma 5.1 follows immediately from the definitions and Equations (82) and (83). O

Remark: Another way of stating Lemma 5.1 is to say that the cycles of the permutation ¢’
are obtained from the cycles of ¢ by erasing hi and hsy. Consider, for instance, the embedded
graph and the spanning tree represented in Figure 113. The motion function is the cycle
t = (aye, fye,d, f0,d, e,V ,d,d"). If we delete the edge the external edge {e,e’} (resp.
internal edge {b,b'}), the motion function becomes t' = (a, f,c,d’, f',b,c, V', d,d") (resp.
t' = (a,e, f,c,d, f',c e d,d)).

We are now ready to prove the main result this section:

Proposition 5.2 For any embedded graph and any spanning tree, the motion function is a

cyclic permutation.

Proof: We prove the lemma by induction on the number of edges of the graph. The property
is obviously true for the graph reduced to a loop and the graph reduced to an isthmus.
We assume the property holds for all graphs with at most n > 1 edges and consider an
embedded graph G with n + 1 edges. Let T be a spanning tree and t the corresponding

motion function. We know that ¢ is a permutation, that is, a product of cycles. We consider
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an edge e = {hy, ha}.

e In any cycle of the motion function t, there is a half-edge h # hy, ho.

First note that t(h;) # h; for i = 1,2. Indeed, if e is external, this would mean o(h;) = h;
which is excluded or e would be an isthmus not in the spanning tree. Similarly, if e is
internal, we would have oa(h;) = h; which is excluded or e would be a loop in the spanning
tree. Moreover, we cannot have (t(h1) = he and t(hs) = h1). Indeed, this would mean that e
is either an isolated loop (if e is external) or an isolated isthmus (if e is internal) contradicting
our hypothesis that G is connected and has more than one edge.

e The motion function is cyclic.

If e is external (resp. internal), we consider the motion function ¢’ defined by the spanning
tree T' (resp. T —e) on G\, (resp. G/.). By Lemma 5.1, the cycles of #' are the cycles of ¢
where the half-edges hq, ho are erased. Suppose now that ¢ is not cyclic. Then ¢ has at least
two cycles each containing a half-edge h # hi, hs. Therefore, ¢’ has at least two non-empty

cycles, which contradicts our induction hypothesis. 0

5.3 The Tutte polynomial of embedded graphs

We now define the embedding-activities of spanning trees. We consider an embedded graph
G and a spanning tree T. By Proposition 5.2, the motion function is a cyclic permutation on
the set H of half-edges, hence defines a cyclic order on H. If the embedding G is rooted, that
is, a half-edge h € H is distinguished as the root, we can consider the linear order for which

h is the smallest element.

Definition 5.3 Let G = (H,o0,a, h) be an embedded graph and let T be a spanning tree. We
define the (G,T)-order on the set H of half-edges by h < t(h) < t2(h) < ... < tiHI=1(p),
where t is the motion function. (Note that the (G,T)-order is a linear order on H since t is
a cyclic permutation.) We define the (G, T)-order on the edge set by setting e = {h1,ha} <
¢ = {h},hs} if min(hy, he) < min(hy, hh). (Note that this is also a linear order.)

Example: Consider the embedded graph G rooted on a and the spanning tree T
represented in Figure 113. The (G,T)-order on the half-edges is ¢ < e < f < ¢ <
d < ff<b<d <€ <V <d< d. Therefore, the (G,T)-order on the edges is

{a,d'} <{e,e'} <{f, f'} <{c,d} <{b,b'} < {d,d'}.

We are now ready to define the embedding-activity.

Definition 5.4 Let G be a rooted embedded graph and T be a spanning tree. We say that an
external (resp. internal) edge is (G, T)-active (or embedding-active if G and T' are clear from

the context) if it is minimal for the (G, T)-order in its fundamental cycle (resp. cocycle).
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Example: In Figure 113, the (G,T)-order on the edges is {a,a’} < {e,e'} < {f,f'} <
{c,d} < {b,b'} < {d,d'}. Hence, the internal active edges are {a,a’} and {d,d’} and there is
no external active edge. For instance, {e, e’} is not active since {a,a’} is in its fundamental

cycle.

We are now ready to give a characterization of the Tutte polynomial based on
embedding-activities. This characterization of the Tutte polynomial by embedding-activities
is reminiscent of Tutte’s original characterization [Tutt 54]. We urge to say that these two

characterizations are not equivalent.

Theorem 5.5 Let G be any rooted embedding of the connected graph G (with at least one
edge). The Tutte polynomial of G is equal to

To(r,y)= Y, 2t DyD) (84)

T spanning tree

where the sum is over all spanning trees and Z(T) (resp. E(T')) is the number of (G, T)-active

internal (resp. external) edges.

Example: We represented the spanning trees of K3 in Figure 115. If the embedding is
rooted on the half-edge a, then the embedding-active edges are the one indicated by a .

2

Hence, the spanning trees (taken from left to right) have respective contributions x, z° and

y and the Tutte polynomial is Tk, (z,y) = 2> + = + y.

v c v c v c
a a a a a a

Figure 115: The embedding-activities of the spanning trees of K3.

Note that Theorem 5.5 implies that the sum in (84) does not depend on the embedding,
whereas the summands clearly depends on it. We postpone the proof of Theorem 5.5 to the
next section. In the rest of this section we present some other characterizations of the Tutte

polynomial which will serve as an element of comparison with the present work.

The characterization of the Tutte polynomial given in Theorem 5.5 is reminiscent of the
first definition given by Tutte in 1954 [Tutt 54]. Tutte’s characterization is also a generating
function of spanning trees counted according to some activities, the ordering-activities. In
order to define the ordering-activities we need to choose a linear ordering of the edge set

(instead of an embedding). Let G be a graph whose edge set is linearly ordered. Then,
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given a spanning tree 7', an external (resp. internal) edge is said to be ordering-active if it is

minimal in its fundamental cycle (resp. cocycle). Tutte proved in [Tutt 54| that

TG($7 y) = Z :L,Z'(T)ye(T)7 (85)

T spanning tree

where the sum is over all spanning trees and i(7") (resp. e(7")) is the number of internal (resp.

external) ordering-active edges. We indicated the ordering-activities of the spanning trees of

K3 in Figure 116.
bi ic bi tc b/ \c
a a a

Figure 116: The ordering-activities of the spanning trees of K3 (indicated by a x) for the linear
order a < b < ¢. The spanning trees (taken from left to right) have respective contribution

z2, z and y.

Tutte’s characterization implies that the sum in (85) does not depend on the ordering of
the edge set (whereas the summands clearly depends on that order). This characterization
is easily proved by induction. Indeed, it is simple to prove that the induction relation of

Proposition 4.3 holds for the edge having the largest label.

We emphasize that Theorem 5.5 is not a special case of Tutte’s result since the (G,T)-

order is a linear order on the edge set that depends on the tree T.

The characterization of the Tutte polynomial in terms of the ordering-activities of
spanning trees is sometimes thought of as slightly unnatural. It is true that the dependence
of this characterization on a particular linear ordering of the edge set is a bit puzzling. We
want to argue that an embedding may be a less arbitrary structure than a linear order on the
edge set. As a matter of fact, there are a number of mathematical conjectures dealing with
the Tutte polynomial, or sometimes the chromatic polynomial, of planar graphs. A graph
is planar if and only if can be embedded in the sphere. Equivalently, it has an embedding
(H,0,a) with Euler characteristic equal to 2. For instance, the four color theorem can be

stated as: Tg(—3,0) # 0 for any loopless planar embedding G.

We now present a characterization of the Tutte polynomial given by Las Vergnas as the
generating function of orientations counted according to their cyclic-activities [Las 84b]. Let
G be a graph whose edge set is linearly ordered. Given an orientation O, a cyclic (resp.

acyclic) edge is said to be cyclic-active (resp. acyclic-active) if it is minimal in an O-directed
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cycle (resp. cocycle). It was proved in [Las 84b] that

Te(z.y) = Z (g)ic(O) (%)60(0)7 (56)

O orientation

where the sum is over all orientations and ic(Q) (resp. ec(Q)) is the number of cyclic-active
(resp. acyclic-active) edges. We indicated the cyclic-activities of the orientations of K3 in
Figure 117.

A WA AP ANT S WA NN

Figure 117: The cyclic-activities of the spanning trees of K3 (indicated by a x) for the linear
2 .2

T
order a < b < c¢. The orientations have respective contribution —, —, —, =, =, —, — and —.
P 247422 41 2

Comparing the Characterizations (85) and (86) makes it appealing to look for a
correspondence between spanning trees and orientations in which each spanning tree T
having ordering-activities (i(T),e(T)) is associated with 24T)+e(T) orientations @ having
cyclic-activities (ic(O),ec(O)) = (i(T),e(T). This was first done in [Las 84a]. Another
correspondence was defined in [Gioa 05] which has the advantage of being extendable to the
context of oriented matroids. In some senses, the correspondence we establish in Chapter
6 between subgraphs and orientations can be seen as the counterpart of [Gioa 05] for

embedding activities.

Lastly, Gessel and Wang [Gess 79] introduced a notion of external activity, the DFS-
activity (based on the depth-first search algorithm) which was further investigated in [Gess 95,
Gess 96]. Consider a connected graph G, a linear order on the vertex set and a linear order
on the edge set (the latter can be derived from the former if G is simple). Consider a forest
F of G. We define the root-vertex of any tree T' of F' as the smallest vertex in T. An edge
e ¢ F having both endpoints in the same tree T of F' is called external. The fundamental
cycle C of e is the union of e and the path in T between its two endpoints. The external edge
e is DFS-active if one of its endpoints, say u, is the ancestor of the other and e < e, where

ey is the internal edge in C' incident to u. It was proved in [Gess 96] that
Ta(z,y) = Y (z— 1)) Tyedd), (87)
F forest

where the sum is over all forests and ed(F') is the number of external DFS-active edges. We

indicated the external DFS-active edges for the forests of K3 in Figure 118.
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PN A AN AN

Figure 118: The external DFS-active edges of the 7 forests the of K3 for the linear order
a < b < c¢. There only one external DFS-active edge which is indicated by a x. The forests
have respective contribution (z — 1)%, (z — 1), (z — 1), (z — 1),1,1 and y.

We will prove shortly (Lemma 5.8) a characterization for external embedding-active
edges which is very close (in its formulation) to the definition of external DFS-active edges.
In fact it is the same except that in the case of embedding-activities the comparison between
e and e, is made according to the (G,T)-order. In other words, the condition e < e, for
DFS-activity is replaced by the condition that eg,e,e, are in cyclic order around u for
embedding-activity, where eq is the edge linking u to its father in T' (or the root-edge if u is
the root-vertex). It does not seem to exist a nice way of defining a DFS-activity for internal
edges. The intuitive reason for this is that linear local orders (as opposed to cyclic local

orders) do not behave well when an edge is contracted.

5.4 Proofs of the characterization of the Tutte polynomial by

embedding activities

In this section we prove the characterization of the Tutte polynomial given by Theorem 5.5.

We also establish several lemmas that will be useful in the following chapters.

Lemma 5.6 Let G be an embedded graph. Let T be a spanning tree and let e = {hy,ha} be
an internal edge. Assume that hy < hy (for the (G,T)-order) and denote by vi and ve the
endpoints of h1 and ho respectively. Then, v is the father of vy inT. Moreover, the half-edges
h such that hy < h < hgy are the half-edges incident to a descendant of va.

Proof: Let ¢t be the motion function associated to the tree T' (¢ is defined by (81)). We
consider the subtrees T7 and T3 obtained from 7' by deleting e with the convention that hq is
incident to T} and he is incident to T5. Let h be any half-edge distinct from h; and he. By
definition of ¢, the half-edges h and t(h) are incident to the same subtree T;. Therefore, the

(G, T)-order is such that hg <1y < -+ <l; < hy <] <---<l;<h2<l’1'<---<lg where

/ /
1ro0 IE

Since the subtree T5 does not contain vy its vertices are the descendants of vy in T'.

ho are the half-edges incident with the subtree T5 not containing the root-vertex vy.

0
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Lemma 5.7 With the same assumption as in Lemma 5.6, let e = {hy,ho} with hy < hs be
an internal edge and let e’ = {hY, hl} with h} < b, be an external edge.

e Then, e is in the fundamental cycle of €' (equivalently, €' is in the fundamental cocycle of
e) if and only if hy < b} < hg < hy, or b} < hy < hfy < hs.

e Suppose that e is in the fundamental cycle of €' and denote by vy, ve, v}, vh the endpoints of
ha, ha, b, b} respectively. Recall that vy is the father of vo in T (Lemma 5.6) and that exactly
one of the vertices v}, vy is a descendant of vy. If e < €', then v} is the descendant of va, else

it is vh.

Proof:

e Let V5 be the set of descendants of vo. Recall that the edge €’ is in the fundamental cocycle
of e if and only if it has one endpoint in V5 and the other in V5. By Lemma 5.6, this is
equivalent to the fact that exactly one of the half-edges h/, b, isin {h' : hy < b’ < ho}. Thus,
¢’ is in the fundamental cocycle of e if and only if hy < b} < hg < h}, or by < hy < hfy < ha.
e Suppose that e is in the fundamental cycle of ¢/. By the preceding point, e < e’ implies
hi < b} < ha < hb. In this case, h] is incident to a descendant of v by Lemma 5.6. Similarly,

¢/ < e implies b} < h; < hl, < hg, hence R, is incident to a descendant of vs. O

Lemma 5.8 An external edge e = {h!, hy} with by < bl is (G, T)-active if and only if the

endpoint of h is an ancestor of the endpoint of hl,.

Proof: Denote by v} and v) the endpoints of k] and R, respectively.

e Suppose v} is an ancestor of v5,. We want to prove that e’ is active. Let e = {h1, ho} with
hi < hg be an internal edge in the fundamental cycle of ¢’. The edge e is in the path of T
between v] and v}. Denote by v and v the endpoints of hy and hy respectively. Recall that
vy is the father of vy (Lemma 5.6). Since v} is a descendant of v, we have ¢’ < e by Lemma
5.7. The edge €’ is less than any edge in its fundamental cycle hence it is (G, T)-active.

e Suppose that v} is not an ancestor of v5. Then the edge e = {h1, ha} with h; < hg linking
v} to its father in 7' is in the fundamental cycle of e’. If we denote by v and vy the endpoints
of hy and hg respectively, we get vy = v} by Lemma 5.6. Since the endpoint v} of A} is a

descendant of the endpoint v of he, we get ¢ < €’ by Lemma 5.7. Thus, €’ is not (G, T)-active.

O

Lemma 5.9 Let G be a rooted embedded graph with edge set E and half-edge set H. Let T
be a spanning tree and e = {h1, ho} be an edge not containing the root. If e is external (resp.
internal), the (G, T)-order (resp. (Gje, T — e)-order) on H \ {h1,h2} and E — e is simply
the restriction of the (G,T)-order to these sets.
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Proof: By Lemma 5.1, we see that if e is external (resp. internal), the (G, T')-order (resp.
(G)e, T —e)-order) on the half-edge set H \ {h1, ha} is simply the restriction of the (G, T)-order

to this set. The same property follows immediately for the edge set. 0

Proof of Theorem 5.5: We associate to the rooted embedded graph G the polynomial

Tlwy) = Y, Dy,

T spanning tree

where Z(T) (resp. £(T)) is the number of embedding-active internal (resp. external) edges.
We want to show that the polynomial 7g(x,y) is equal to the Tutte polynomial T (z,y) of
G. We proceed by induction on the number of edges, using the induction relations (80) of the
Tutte polynomial.

e The graphs with one edge are the graph L reduced to a loop and the graph I reduced to an
isthmus. The graph L (resp. I) has a unique rooted embedding £ (resp. Z). We check that
Tr(z,y) =y =Tr(x,y) and Ti(x,y) = z = Tz(x, y).

e We assume the property holds for all (connected) graphs with at most n > 1 edges and
consider a rooted embedding G = (H, 0, a, hp) of a graph G with n+ 1 edges. We denote by v
the vertex incident to the root hg and ey the edge containing hy. We denote by h, = U_l(h())
the half-edge preceding hy around vy and by e, = {hy, hl,} the edge containing h.

We study separately the 3 different cases of the induction relation (80).

Case 1: The edge e, is neither an isthmus nor a loop.

The set T of spanning trees of G can be partitioned into T = Ty U Tq, where T; (resp. T2)
is the set of spanning trees containing (resp. not containing) the edge e,. The set T; (resp.
Ts) is in bijection by the mapping ®1 : T — T — e, (resp. @ : T — T) with the spanning
trees of G, (resp. G\, ). We want to show e. is never embedding-active and that the
mappings ®; preserve the embedding-activities: for any tree 7" in T; (resp. Ts), an edge is
(G, T)-active if and only if it is (G, ,T — e«)-active (resp. (G\.,,T)-active). We are going to

prove successively the following four points:

e The edges e, and ey are distinct.

First note that hg # hs or we would have o(h,) = h, implying that vy has degree one hence
that e, is an isthmus. Also, hg # h/, or we would have o(h.) = a(hy) implying that e, is a
loop. Thus, e, = {h, h.} does not contain hg.

e Given any spanning tree, the edge e, is mazximal in its fundamental cycle or cocycle.

Let T be a spanning tree of G. Suppose first that the edge e, is internal. In this case, the
motion function ¢ satisfies, t(h!) = oa(h!) = hg. Hence, h/, is the greatest half-edge for the
(G,T)-order. Let e = {h,h'} with h < h’ be an edge in the fundamental cocycle of e.. By
Lemma 5.7, the half-edges h, ', h, h!, satisfy h < h, < h' < h’. Hence, the edge e is less
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than e,. Thus, the edge e, is maximal in its fundamental cocycle. Suppose now that the
edge e, is external. In this case, t(h.) = o(h.) = ho hence, h, is the greatest half-edge for
the (G, T)-order. Let e = {h,h'} with h < b/ be an edge in the fundamental cycle of e.. By
Lemma 5.7, the half-edges h, b/, h,, b/, satisfy h < h!, < h’ < hy, hence, the edge e is less than

ex. Thus, the edge e, is maximal in its fundamental cycle.

e For any tree T in Ty (resp. Tz), the (G,T)-active and (G, , T — ex)-active (resp. (G\e,,T)-
active) edges are the same.

First note that e, is never alone in its fundamental cycle or cocycle (or e, would be a loop or
isthmus). Hence, by the preceding point, e, is never embedding-active. We now look at the
embedding-activities of the other edges. Let T" be a tree in T; (i.e. containing e,). Let e be
an external (resp. internal) edge distinct from e, and let C' be its fundamental cycle (resp.
cocycle). The fundamental cycle (resp. cocycle) of e in (G, ,T — ex) is C' — e.. Note that
the (G, T)-minimal element of C'is in C' — e, (since, if e, is in C then e is in the fundamental
cycle of e, hence e < e, for the (G,T)-order). Moreover, by Lemma 5.9, the (G,T')-order
and (G Jews T — ex)-order coincide on C' — e,. Hence, the (G,T)-minimal element of C' is the
(GJe,, T — es)-minimal element in C' — e.. Therefore, the edge e is (G, T)-active if and only if
it is (Q/e*,T — ey)-active.

The case where T is a tree in Ty (i.e. not containing e,) is identical.

e The polynomial Tg(x,y) is equal to the Tutte polynomial Tg(x,y).

From the properties above, we have

To(wy) = Y, 2Dy

T spanning tree of G

= 30 SIDYED L 3 IO

TET, TET,
_ Z T/ (Tes) £/ (Tex) | Z (1) €7(T) (88)
TET, TET,

where Z'(T'—ex), £'(T—ex), I"(T), T"(T) are respectively the number of internal (G, , T —ex)-
active, external (G/.,,T — ex)-active, (G\.,,T)-active and external (G\,,T)-active edges.
In the right-hand side of (88) we recognize the polynomials 7g,, (z,y) and 7g,, (z,y). By the

induction hypothesis, these polynomials are the Tutte polynomials T (x,y) and T, (z,y).
Thus,

,Z-g(ll,’, y) = ’Z-g/e* ({ZJ‘, y) + 7-g\5* (‘Tv y) = TG/e* ({ZJ‘, y) + TG\E* ({ZJ‘, y) (89)
In view of the induction relation of Proposition 4.3, this is the Tutte polynomial T (x,y).

Case 2: The edge e, is an isthmus.

Since e, is an isthmus, it is in every spanning tree. Moreover, being alone in its fundamental
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cocycle, it is always active. We want to show that for any spanning tree T', the embedding-
activity of any edge other than e, is the same in (G,T) and in (G, ,T — e.). Before we do
that, we must cope with a (little) technical difficulty: the edge e, might be equal to ey in
which case we should specify how to root the graph G, .

First note that hg # h/, or we would have o(h) = a(hy) implying that e, is a loop. Suppose
now that hg = h. (equivalently, o(h«) = hs). In this case, we define the root of G,., to be

hi = o(kl,) (hy is not an half-edge of e, or e, would be an isolated isthmus).

e For any spanning tree T' of G, the (G,T)-order and the (G.,,T — ex)-order coincide on
E —e,.

If e, # e the property is given by Lemma 5.9. Now suppose that e, = ey (that is h, = hy).
Since e, is internal, the motion function t satisfies t(h]) = ho and t(hg) = hy. Therefore,
the (G, T)-order on half-edges is hg = hs < hy; < t(h1) < ... < h. Let us denote by G; the
embedded graph G rooted on hi. The (G1,T)-order on half-edges is hy < t(h1) < ... < h} <
ho = hy. Thus, the (G, T)-order and (G, T)-order coincide on E — e,. Moreover, by Lemma
5.9, the (G1,T)-order and (G, ,T')-order coincide on £ — e,.

e For any spanning tree T, the set of (G, T)-active edges distinct from e, is the set of (G e, , T —
es)-active edges.

For any tree T' and any external (resp. internal) edge e # e,, the fundamental cycle (resp.
cocycle) of e does not contain e, and is the same in (G,T) and in (G/.,,T — es). Since the
(G, T)-order and the (G, ,T — ex)-order coincide on E — e, the edge e is (G, T)-active if and
only if it is (Q/e*,T — ey )-active.

e The polynomial Tg(x,y) is equal to the Tutte polynomial Tg(x,y).

From the properties above, we have

Tg(x,y) = Z 2F D)y E(T)
T spanning tree of G
— Z xl—l—T(T—e*)yé"(T—e*)
T spanning tree of G
g x€X - Z xI/(T_e*)yS/(T_e*) (90)

T spanning tree of G

where Z'(T — e,) and &£'(T — e) are respectively the number of internal (G .., T — ex)-active
and external (g/e*,T — ey )-active edges.

In the right-hand side of (90) we recognize the sum as being 7g - (z,y). By the induction
hypothesis, we know this polynomial to be equal to the Tutte polynomial Ta Jew (x,y). Thus,

7?}($7y) = x-'ﬂ;/e*(x,y) :.I"TG/E*(QZ',Z/). (91)

In view of the induction relation of Proposition 4.3, this is the Tutte polynomial T¢(x,y).
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Case 3: The edge e, is a loop.

This case is dual to Case 2.

Since e, is a loop, it is always external and always active. We want to show that for any
spanning tree 7', the embedding-activity of any edge other than e, is the same in (G,T)
and in (G\,,T). Before we do that, we must choose a root for G\., when e, = ey. We see
that hg # h. or we would have o(h,) = h, implying that e, is an isthmus. Suppose now
that ho = hi (equivalently, a(h«) = o(h«)). In this case, we define the root of G\., to be
hi = o(ho) (h; is not an half-edge of e, or e, would be an isolated loop).

e For any spanning tree T of G, the (G, T)-order and the (G\.,,T)-order coincide on E — e..
The proof of Case 2 can be copied verbatim except “e, is internal” is replaced by “e, is

external”.

e For any spanning tree T, the set of (G,T)-active edges distinct from e, is the set of (G\e,,T)-
active edges.

The proof of Case 2 can be copied verbatim.

e The polynomial Tg(x,y) is equal to the Tutte polynomial Tg(x,y).

From the properties above, we have

Tg(x,y) = Z 2F D) E(T)
T spanning tree of G

T spanning tree of G

where Z"(T') and £"(T') are respectively the number of internal (G, ,T)-active and external
(Ge.» T')-active edges.

In the right-hand side of (92) we recognize the sum as being Tg.., (z,y). By the induction
hypothesis, we know this polynomial to be equal to the Tutte polynomial TG\E* (z,y). Thus,

77@(3373/) = y'%\e*('rvy):y'TG\E*($7y)' (93)

In view of the induction relation of Proposition 4.3, this is the Tutte polynomial T¢(z,y). 0

5.5 A glimpse at the results contained in the next chapters

We now take a glimpse at the results to be developed in the following chapters. In order
to present these results, we define two mappings I' and A on the set of spanning trees of a
graph. Consider a graph G with a distinguished vertex vg. The mapping I' is a bijection
between the spanning trees of G and the vg-connected outdegree sequences. The mapping
A is a bijection between the spanning trees of G and the recurrent configurations of the

sandpile model. These two bijections are very close in their formulations (see Definitions
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5.10 and 5.11) and are both related to a mapping ® from spanning trees to orientations.
The mapping ® will be extended into a bijection between subgraphs and orientations in
Chapter 6. The bijection I' between spanning trees and vg-connected outdegree sequences
will be extended into a bijection between forests and outdegree sequences in Chapter 7. The
bijection A between spanning trees and recurrent sandpile configurations will be studied in
Chapter 8.

We first define a mapping ® between from spanning trees to orientations. The mapping
® is reminiscent of the mapping § studied in Chapter 3 between spanning trees and
tree-orientations. We only give here a reformulation based on combinatorial embeddings
(this presentation is more convenient for the extensions to be presented in the following
chapters). Consider an embedded graph G = (H, 0, a, hy). Recall that the tour of a spanning
tree T has been defined in Subsection 4.1.2 as a way of visiting every half-edge of G in cyclic
order. This tour is based on the motion function (giving the next half-edge in the cyclic
order) defined on H by (81). The tour of T" defines a linear order, the (G,T')-order, on H for

which the root hg is the least element.

We now define an orientation Or of G associated to the spanning tree T' by:

For any edge e = {hy, ha} with hy < he, Orp(e) = | (h1,hs) if e is internal,

94
(ha,hy) if e is external. (94)

We illustrate this definition in Figure 119 (left).

ho * 3 1 4 2

Figure 119: Left: Orientation O associated the spanning tree T (indicated by thick lines)
and active edges (indicated by a star). Middle: outdegree sequence I'(T"). Right: recurrent
configuration of the sandpile model A(T).

Let vy be the root-vertex of GG. Observe that the spanning tree T' is oriented from its
root-vertex vy to its leaves in Op. Indeed, it is clear from the definitions and Lemma 5.6
that every internal edge is oriented from father to son. This property implies that for every

spanning tree T' the orientation O is vg-connected.

The mapping ® : T — O from spanning trees to wvp-connected orientations is not

bijective. However, it is injective and in Chapter 6 we will extend it into a bijection between
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subgraphs and orientations. For the time being, let us observe (the proof will be given
in Chapter 6) that the tree T can be recovered from the orientation Op by the following

procedure:

Procedure Construct-tree:
Initialization: Initialize the current half-edge h to be the root hg. Initialize the tree T and

the set of visited arcs F' to be empty.

Core: Do:
C1: If the edge e containing h is not in F' and A is a tail then add e to T
Add e to F.

C2: Move to the next half-edge around T

If e is in T, then set the current half-edge h to be oa(h), else set it to be o(h).
Repeat until the current half-edge h is hy.
End: Return the tree 7.

In the procedure Construct-tree we keep track of the set F' of edges already visited.
The decision of adding an edge e to the tree T or not is taken when e is visited for the first
time. The principle of procedure Construct-tree, which consists in constructing a tree T'

while making its tour, will appear again in the next chapters.

Building on the mapping ® : T +— O we define two mappings I and A.

Definition 5.10 Let G be an embedded graph. The mapping I' associates with any spanning

tree T the outdegree sequence of the orientation Orp.

Definition 5.11 Let G be an embedded graph and let V be the vertex set. The mapping A
associates with any spanning tree T the configuration St : V +— N, where Sp(v) is the number

of tails plus the number of external (G, T)-active heads incident to v in the orientation Or.

The mappings I' and A are illustrated in Figure 119. As observed above, the orientation
Or is always wvo-connected. We shall prove in Chapter 7 that I' is a bijection between
spanning tree and wvg-connected outdegree sequences. As for the mapping A, we shall prove
in Chapter 8 that it is a bijection between spanning trees and recurrent configurations of the
sandpile model. Moreover, the number of external (G,T)-active edges is easily seen to be
the level of the configuration A(7"). This gives a new bijective proof of a result by Merino
linking external activities to the level of recurrent sandpile configurations [Cori 03, Meri 97]
(see Chapter 8). The two mappings I' and A are very similar and coincide on internal
trees, that is, trees that have external activity 0. Thus, the mapping I o A~! is a bijection
between recurrent configurations of the sandpile model and vg-connected outdegree sequences
that leaves the configurations at level 0 unchanged. This answers a problem raised by
Gioan [Gioa 06].
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We now highlight a relation (to be exploited in Chapter 7) between the embedding-
activities of the spanning tree T and the acyclicity or strong connectivity of the associated

orientation Op.

Lemma 5.12 Let G be an embedded graph ant let T be a spanning tree. The fundamental
cycle (resp. cocycle) of an external (resp. internal) edge e is Op-directed if and only if e is
(G, T)-active.

Lemma 5.12 is illustrated by Figures 120 and 121. From this lemma we deduce that if
Or is acyclic (resp. strongly connected) then T is internal (resp. external), that is, has no
external (resp. internal) active edge. In fact, we shall prove in Chapter 7 that the converse
is true: if the tree T is internal (resp. external), then the orientation Orp is acyclic (resp.

strongly connected).

Figure 120: Fundamental cocycles of an active internal edge (left) and of a non-active internal
edge (right).

Figure 121: Fundamental cycles of an active external edge (left) and of a non-active external
edge (right).

Proof: Consider an edge e = {hy,ho} with hy < hy and denote by v; and v the endpoints
of hy and hs respectively.

e Suppose that e is internal. We want to prove that the fundamental cocycle D of e is directed
if and only if e is (G,T)-active. Recall that vy is the father of v by Lemma 5.6. Let V5 be
the set of descendants of vy. Recall that D is the cocycle defined by V. By definition, the



166 CHAPTER 5. THE TUTTE POLYNOMIAL FOR EMBEDDED GRAPHS

arc Op(e) is directed toward ve € V5. By Lemma 5.7, for all edge ¢’ = {h),h}} with b} < R,
in D — e, the arc Op(e’) = (hh, b)) is directed toward V5 if and only if e < €’. Therefore, the
fundamental cocycle D is directed if and only if e is minimal in D, that is, if e is (G, T')-active.
e Suppose that e is external. We want to prove that the fundamental cycle C' of e is directed
if and only if e is (G, T)-active. Recall that C' — e is the path in T" between v and vs. Since
Or(e) is directed toward vy, the cycle C is directed if and only if the path C' — e is directed
from v to va. Since every edge in C'—e C T is directed from father to son (Lemma 5.6), the
cycle C is directed if and only if v; is an ancestor of ve. This is precisely the characterization

of external (G, T)-active edges given by Lemma 5.8. 0

Until now we have looked at mappings defined on the set of spanning trees. In order to
extend these mappings to general subgraphs we will now associate a spanning tree to every

subgraph. This will be our first task in the next chapter.



Chapter 6

Partition of the set of subgraphs
and a bijection between subgraphs

and orientations

Abstract: In the previous chapter, we defined the embedding activities of spanning trees.
In the present chapter, we define a partition of the set of subgraphs based on embedding
activities. Each part of the partition is associated to a spanning-tree. We use this partition
in order to define a bijection ® between subgraphs and orientations that displays nice

properties. The bijection ® will be further investigated in the next chapter.

Résumé: Dans le chapitre précedent nous avons défini les activités de plongement des
arbres couvrants. Dans le présent chapitre, nous définissons une partition de ’ensemble
des sous-graphes basée sur les activités de plongement. Chaque part de la partition est
associée a un arbre couvrant. Nous utilisons cette partition des sous-graphes pour définir
une bijection ® entre les sous-graphes et les orientations qui a des propriétés intéressantes.

Nous étudierons la bijection ® plus en détail dans le prochain chapitre.

167
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6.1 Introduction

In the previous chapter we defined the embedding-activities of edges. This definition was
based on the tour of spanning trees. We then characterized the Tutte polynomial as the
generating function of spanning trees counted by internal and external embedding-activities.
In the present chapter we use the embedding-activities in order to define a partition of the
set of subgraphs. Our partition is the counterpart for embedding-activities of some partitions
based on other characterizations of the Tutte polynomial [Tutt 54, Gess 79]. Indeed, a
partition of the set of subgraphs was defined for the notion of ordering-activity introduced by
Tutte in [Tutt 54] as well as for the notion of external DFS-activities introduced by Gessel
and Wang in [Gess 79] (these two notions were recalled in Section 5.3 of Chapter 5). These
partitions have been used extensively to extract informations about the Tutte polynomial
[Bari 79, Crap 69, Gess 95, Gess 96, Gess 79, Gord 90].

In Chapter 5 (Section 5.5) we defined a mapping ® between spanning trees and orienta-
tions. This mapping was just a reformulation of the bijection between spanning trees and
tree-orientations defined in Chapter 3. Building on our partition of the set of subgraphs we
will extend the mapping ® into a general bijection between subgraphs and orientations. We

shall see in the next chapter that the mapping ® has a lot of interesting specializations.

The outline of this chapter is as follows. In Section 6.2, we define a partition of the set
of subgraphs indexed by spanning trees. In Section 6.3, we exploit our partition in order
to define a general bijection between subgraphs and orientations. Lastly, in Section 6.4 we

comment on the case of planar graphs and on the computational aspects of our bijection.

6.2 A partition of the set of subgraphs indexed by spanning

trees

In this section we define a partition of the set of subgraphs for any embedded graph. Each

part of this partition is associated with a spanning tree.

Let G be an embedded graph. Given a spanning tree T', we consider the set of subgraphs
that can be obtained from 7' by removing some internal (G, T')-active edges and adding some
external (G, T)-active edges. Observe that this set is an interval in the boolean lattice of the
subgraphs of G (i.e. subsets of edges). We call t¢ree-interval and denote by [T, 7] the set of
subgraphs obtained from a spanning tree T. We represented the tree-intervals corresponding

to each of the 5 spanning trees of the embedded graph in Figure 122.
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Figure 122: The tree-intervals corresponding to each of the 5 spanning trees (first line). Active

edges are indicated by a x.

We first give some properties of the subgraphs in the tree-interval [T—, T].

Lemma 6.1 Let G be an embedded graph and let T be a spanning tree. Let e be an internal
(resp. external) (G,T)-active edge. The fundamental cocycle (resp. cycle) of e is contained
in S +e (resp. S+ e) for any subgraph S in [T~,TT].

Proof: If e is internal and (G, T')-active, no edge in its fundamental cocycle D is (G, T')-active
(since their fundamental cycle contains e). Since no edge of D —e is in T nor is (G, T')-active,
none is in S. Hence, D C S+ e. Similarly, if e is external (G, T)-active, its fundamental cycle

is contained in S + e. .

Lemma 6.2 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph
in [T, T"] having c(S) connected components. Then c¢(S) — 1, (resp. e(S) + ¢(S) —|V|) is
the number of edges in SNT (resp. SNT).

Proof: Consider any subgraph S in [T~,T"]. By Lemma 6.1, removing an internal (G, T)-
active edge from S increases ¢(S) by one and leaves e(S) 4 ¢(S) unchanged. Similarly, adding
an external (G, T)-active edge to S leaves ¢(S) unchanged and increases e(S) + ¢(S) by one.
Moreover, ¢(T) —1 = 0 and e(T") + ¢(T) — |V| = 0. Therefore, Lemma 6.2 holds for every

subgraph S in [T~,T7] by induction on the number of edges in S A T. 0

By Lemma 6.2, the connected subgraphs in [T'~,7t] are the subgraphs in [T,7T7]
(the subgraphs obtained from 7' by adding some external (G,T)-active edges). Simi-
larly, the forests in [T, 7] are the subgraphs in [T, T] (the subgraphs obtained from T
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by removing some internal (G, T)-active edges). These properties are illustrated in Figure 123.

T+

connected

T

Figure 123: The tree-interval [T, T 7], the sub-interval [T, T"] of connected subgraphs and
the sub-interval [T—, T of forests.

We are now ready to state and comment on the main result of this section.

Theorem 6.3 Let G = (V, E) be a graph and let G be an embedding of G. The tree-intervals
form a partition of the set of subgraphs of G:

2= T,

T spanning tree

where the disjoint union is over all spanning trees of GG.

The counterpart of this theorem is known for the notion of ordering-activity introduced
by Tutte in [Tutt 54] as well as for the notion of external DFS-activities introduced by Ges-
sel and Wang in [Gess 79] (these two notions were recalled in Section 5.3 of Chapter 5).
This property has been used extensively to extract informations about the Tutte polynomial
[Bari 79, Crap 69, Gess 95, Gess 96, Gess 79, Gord 90]. Theorem 6.3 constitutes the key
link between the subgraph expansions (79) and spanning tree expansions (84) of the Tutte

polynomial. Indeed, given Lemma 6.2, we get

Z (.73 . 1)0(5)—1(y . 1)8(S)+C(S)—|V| — (.T — 14+ 1)I(T) (y — 14+ 1)8(T) — xI(T)yE(T)’
Se[T—,T+]

where Z(T') (resp. &(T)) is the number of internal (resp. external) (G,T')-active edges.
Summing over all spanning trees gives the identity:

Z (.73 . 1)0(5’)—1(y N 1)€(S)+C(S)—|V| — Z :Z:I(T)yé'(T).

S subgraph T spanning tree
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Remark. As observed in [Gord 90], the partition of the set of subgraphs gives several other
expansions of the Tutte polynomial. For instance, the tree-intervals can be partitioned into
forest-intervals. The forest-interval of a forest F in [T, T%] is the set [F, F*] of subgraphs

obtained from F' by adding some external (G,T')-active edges. Since

= R
F forest in [T—,T]

the partition into tree-intervals given by Theorem 6.3 leads to a partition into forest-intervals:

2P = | [FFT).

F forest

Given Lemma 6.2, we get

Z (33‘ . 1)0(5)—1(y . 1)6(S)+C(S)—|V| _ (113‘ i 1)C(F)—1(y — 14+ 1)8(T) _ (113‘ - 1)C(F)—1y€(T)’
SE[F,FT]

for any forest in [T7,77"]. Summing up over forests, gives the forest expansion

Tolwy) = 3 (o — 1)1,
F forest
where £(F) is the number of (G,T)-active edges for the spanning tree 7 such that
F € [T~,T"]. Observe the similarity with the characterization (87) of the Tutte polynomial
based on DFS-activities.

In order to prove Theorem 6.3 we define a mapping A from subgraphs to spanning trees.

Definition 6.4 Let G be an embedded graph rooted on hg and let S be a subgraph. The
spanning tree T = A(S) is defined by the following procedure:
Initialization: Initialize the current half-edge h to be the root hg. Initialize the tree T and
the set of visited edges F' to be empty.
Core: Do:
C1: If the edge e containing h is not in F, then decide whether to add e to T according to
the following rule:
If (e is in S and is in no cycle C C SNF) or
(e is not in S and is in a cocycle D C SNF),
Then add e to T
Endif.
Endif.
Add e to F.
C2: Mowe to the next half-edge around T ':
If e is in T, then set the current half-edge h to be oa(h), else set it to be o(h).
Repeat until the current half-edge h is hg.
End: Return the tree T'.
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An execution of the procedure A is illustrated in Figure 124.

Figure 124: The mapping A and some intermediate steps. The dashed lines correspond to

the set I of unvisited edges.

There is a direct proof that the mapping A is well defined on every subgraph (that is,
the procedure terminates and returns a spanning tree). But we shall only prove an (a priory
weaker) result: the mapping A is well defined on every tree-interval and A(S) = T for any
subgraph S in [T, T"] (Proposition 6.5). This will prove that the tree-intervals are disjoint.
Moreover, the cardinality of the tree-interval [T'—, 7] is 2ZM+E(T) wwhere Z(T) and £(T) are
the number of internal and external (G, T)-active edges. Therefore, the number of subgraphs

contained in some tree-intervals is

U [T-,T]| = Z HT_, T+H = Z oL(T)+E(T)

T spanning tree T spanning tree T spanning tree

By Theorem 5.5, this sum is the specialization T¢(2,2) of the Tutte polynomial counting the
subgraphs of G (as is clear from (79)). This counting argument proves that every subgraph

belongs to a tree-interval. Thus, we only need to prove the following proposition.

Proposition 6.5 Let G be an embedded graph. Let T be a spanning tree and let S be a
subgraph in the tree-interval [T~,TT]. The procedure A is well defined on S and returns the
tree T.

Before proving Proposition 6.5, we need to recall a classical result of graph theory.

Lemma 6.6 (Elimination) The symmetric difference of two cycles (resp. cocycles) C and

C' is a union of cycles (resp. cocycles).

Lemma 6.6 is illustrated by Figure 125.

We now characterize the edges in the symmetric difference S A T.
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Figure 125: Two cycles (resp. cocycles) C' and C” (thin and thick lines) and their intersection
(dashed lines).

Lemma 6.7 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph
in the tree-interval [T—,TT].

(i) An edge e is in ST if and only if e is minimal (for the (G, T)-order) in a cycle C C S.
(ii) An edge e is in SNT if and only if e is minimal (for the (G, T)-order) in a cocycle D C S.

Proof: We give the proof of (i); the proof of (i7) is similar.

e Suppose e is in SNT. Then e is (G, T)-active, that is, e is minimal in its fundamental cycle
C. Moreover, by Lemma, 6.1, C' is contained in S.

e Suppose e is minimal in a cycle C C S. We want to prove that e is in 7. Suppose the
contrary. Then, there is an edge €’ # e in C NT (since T has no cycle). Take the least edge
¢’ in C NT and consider its fundamental cycle C’. The edge ¢’ is (G, T)-active, that is, e’ is
minimal in C’. In particular, e is not in C’. This situation is represented in Figure 126. Since
eisin C' A C" and €' is not, there is a cycle C7 C C' A C' containing e and not ¢’ (Lemma 6.6).
By Lemma 6.1, the fundamental cycle C’ of €’ is contained is S + ¢/, thus C; C C A C' C S.
Note that e is minimal in the cycle C; C S (since e is minimal in C' and e’ > e is minimal in
C"). Moreover, the least edge in C; NT (this edge exists since T has no cycle) is in CNT — ¢’
(since C" C T + ¢€’), hence is greater than ¢’. We can repeat this operation again in order to
produce an infinite sequence Cy = C,C1, Cs,. .. of cycles with e minimal in C; and C; C S for

all i > 0. But the minimal element of C; NT is strictly increasing with 4. This is impossible.
O

Proof of Proposition 6.5. We consider a subgraph S in the tree-interval [T, , Ty ]. We
denote by H the set of half-edges. We denote by ¢ the motion function associated with
spanning tree Ty and we denote by h; = t?(hg) the i*" half-edge for the (G, Tp)-order. For any
half-edge h, we denote F}, = {e = {hy, ho}/min(hy, hy) < h} and T}, = Ty N F,.

We adopt the notations h, e, F and T of the procedure A (for instance, h denotes the current
half-edge) and we compare half-edges according to the (G, Tj)-order. We want to prove that,
for all i < |H|, at the beginning of the i core step, h = h;, F = Fj, and T = Tj,. We
proceed by induction on i. The property holds for the first core step (i = 0) since h = hg and
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Figure 126: The cycle C (circle), some edges in the tree T' (indicated by thick lines) and the

edges e and ¢’.

Fy, = T}, = 0. Consider now the ith core step. Suppose first that the edge e containing the
current half-edge h is not in F. By the induction hypothesis, F' = F}, thus e is greater than
any edge in F and less than any edge in F — e. By Lemma 6.7, if e is in S, then it is in Ty
if and only if it is in a cycle C C SN F. Also, if e is in S, then it is in T} if and only if it is
in a cocycle D C SN F. Therefore, the edge e is added to T at the step C1 if and only if it
is in Tp. Suppose now that the edge e is already in F at the beginning of the i*" core step.
Then, by the induction hypothesis, e is in T' =T}, = Ty N F, = Ty N F if and only if it is in
Th. Whether the edge e is in F' or not at the beginning of the step C1, the edge e is in T at
the beginning of the step C2 if and only if it is in Tjy. Therefore, the current half-edge at the
beginning of the (i4 1) core step, is t(h) = hiy1. Thus, the property holds for all i < |H| by
induction. In particular, the procedure A stops after |H| core steps and returns the spanning

tree T' = Th\H|—1 =1Ty. 0

This concludes the proof of Theorem 6.3.

6.3 A bijection between subgraphs and orientations

In this section we define a bijection ® between subgraphs and orientations. This task might not
seem very challenging but we will prove in the next section that ® has numerous interesting
specializations. The bijection ® is an extension of the correspondence T — O between
spanning trees and orientations defined in Chapter 5 (Section 5.5). For instance, the image
by ® of the spanning tree T' and the image of a subgraph S in [T'~,T"] are shown in Figure
127.

Definition 6.8 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph
in the tree-interval [T, T*]. The orientation Og = ®(S) is defined as follows. For any edge
e = {hy,ha} with hy < hg (for the (G,T)-order), the arc Og(e) is (h1,hs) if and only if -
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either e is in T and its fundamental cocycle contains no edge in the symmetric difference
S AT -orifeisnotinT and its fundamental cycle contains some edges in S A T; the arc
Os(e) is (ha, h1) otherwise.

Recall that a subgraph S is in the tree-interval [T~,T7"] if and only if every edge in the
symmetric difference S A T is (G, T)-active. Let S be a subgraph in [T, 7] and let e be
any edge of G. We say that the arc Og(e) is reverse if Og(e) # Or(e). Observe that the
arc Og(e) is reverse if and only if the fundamental cycle or cocycle of e (with respect to the
spanning tree T') contains an edge of S A T (compare for instance the orientations Og and
Or in Figure 127). In particular, Definition 6.8 of the mapping ® extends the definition (94)

given for spanning trees in in Chapter 5.

ho ho

Figure 127: The orientations Op and Og associated with a spanning tree 7" and a subgraph
S in [T~,T*]. The edges in the symmetric difference S A T are indicated by a A.

The main result of this section is that the mapping ® is a bijection between subgraphs
and orientations. For instance, we have represented in Figure 128 the image by ® of the

subgraphs represented in Figure 122.

Theorem 6.9 Let G be an embedded graph. The mapping ® establishes a bijection between
the subgraphs and the orientations of G.

A A
JAN A

>0 0
>0 0
>0

Figure 128: The image by ® of the subgraphs in Figure 122.
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In order to prove Theorem 6.9, we define a mapping ¥ from orientations to subgraphs.
We shall prove that ¥ is the inverse of ®.

Definition 6.10 Let G be an embedded graph and let O be an orientation. We define the
subgraph S = U(O) by the procedure described below. The procedure ¥ wvisits the half-edges in
sequential order. The set of visited edges is denoted by F'. If C is a set of edges that intersects
the set F' of visited edges, we denote by efirst(C) and hgrt(C) the first visited edge and half-
edge of C respectively (efirst(C) contains hgrs(C)). In this case, C is said to be tail-first if
hfirst(C) is a tail and head-first otherwise.

Initialization: Initialize the current half-edge h to be the root hgy. Initialize the subgraph S,
the tree T and the set of visited edges F' to be empty.

Core: Do:

C1: If the edge e containing h is not in F', then decide whether to add e to S and T':

e If h is a tail, then
(a) If e is in a directed cycle C C F, then add e to S but not to T.
(b) If e is in a head-first directed cocycle D ¢ F such that for all directed cocycle D'
with efrsi(D') = efirst(D) either e € D' or (D A D" ¢ F and efirst(D & D') € D), then
do not add e to S nor toT.
(¢) Else, add e to S and to T.

e If h is a head, then
(a') If e is in a directed cocycle D C F, then add e to T but not to S.
(V) If e is in a tail-first directed cycle C ¢ F such that for all directed cycle C' with
efirst(C") = efipst(C) either e € C" or (C 0 C" ¢ F and efirst(C & C') € C7), then add e
toS and toT.
(') Else, do not add e to S nor toT.

Add e to F.
C2: Mowve to the next half-edge around T ':
If e is in T, then set the current half-edge h to be oa(h), else set it to be o(h).
Repeat until the current half-edge h is hg.
End: Return the subgraph S.

In the procedure ¥ the conditions (a) and (b) (resp. (a’) and (b)) are incompatible.
Indeed the following lemma is a classical result of graph theory [Mint 66].

Lemma 6.11 [Mint 66] Every arc (of an oriented graph) is either in a directed cycle or a
directed cocycle but not both.

Proof: (Hint) is the origin of the arc reachable from its end?
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We are now going to prove that ® and ¥ are inverse mappings.

Proposition 6.12 Let G be an embedded graph and let S be a subgraph. The mapping ¥ is
well defined on the orientation ®(S) (the procedure terminates) and W o ®(S5) = S.

Proposition 6.12 implies that the mapping ® is injective. Since there are as many
subgraphs and orientations (2‘E ‘), it implies that ® is bijective and that ¥ and ® are reverse
mappings. The rest of this section is devoted to the proof of proposition 6.12. Observe that
U is a variation on the procedure Construct-tree presented in Chapter 5 (Section 5.5). The
differences lie in the extra Conditions (a), (b), (a’), (b') which are now needed in order to
cope with reverse edges. In Lemmas 6.13 to 6.17 we express some properties characterizing

reverse edges.

We first need some definitions. Let G be an embedded graph and O be an orientation.
Suppose that the edges and half-edges of G are linearly ordered. For any set of edges C,
we denote by emin(C) and hpin(C) the minimal edge and half-edge of C' respectively. We
say that C is tail-min if hyin(C) is a tail and head-min otherwise. A directed cycle (resp.
cocycle) is tight if any directed cycle (resp. cocycle) C’ # C with enin(C') = enmin(C) satisfies
emin(C A C'") € C'. For instance, if the edges of the graph in Figure 129 are ordered by
a<b<c<d<e<f<yg,the directed cycles (a,h,g, f,e,c) and (b, g, f,e,c) are tight

whereas (a, h, g,d, c) is not.

Figure 129: The directed cycles (a, h, g, f,e,c) and (b, g, f, e, c) are tight whereas (a, h, g, d, ¢)

is not.

In Lemmas 6.13 to 6.17 we consider an embedded graph G, a spanning tree T and a
subgraph S in the tree-interval [T, T%]. We consider the orientation Og = ®(S) and
compare edges and half-edges according to the (G, T)-order.

Lemma 6.13 The fundamental cycle (resp. cocycle) of any edge in S NT (resp. SNT) is
Og-directed and tail-min (resp. head-min).

Proof: If e isin SNT (resp. SNT), then every edge e in its fundamental cycle (resp.
cocycle) C' is reverse (Og(e’) # Or(e’)). By Lemma 5.12, the cycle (resp. cocycle) C is
Orp-directed, hence it is Og-directed. Since e is (G, T)-active, the minimal edge emniy(C) is e.
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Hence, hpmin(C) is the least half-edge of e. By definition of Og, the least half-edge of Og(e) is

a tail (resp. head). Hence, C' is tail-min (resp. head-min). 0

Lemma 6.14 Let e be a reverse edge (Og(e) # Or(e)). Then, e is in S if an only if it is in

a directed cycle (otherwise it is in a directed cocycle by Lemma 6.11).

Proof:

e Suppose that e is in S. We want to prove that e is in a directed cycle. If e is in SN T, its
fundamental cycle is directed by Lemma 6.13. If e is in S N T there is an edge ¢’ € SNT
in its fundamental cocycle (since e is reverse). Therefore, e is in the fundamental cycle of e’
which is directed by Lemma 6.13.

e A similar argument proves that if e is in S, then it is in a directed cocycle. In this case, e

is not in a directed cycle by Lemma 6.11. 0

We now need to recall a classical result of graph theory (which is closely related to the

axioms of oriented matroid theory [Bjor 93]).

Lemma 6.15 (Orthogonality) Let D be a cocycle and let Vi and Vs, be the connected com-
ponents after deletion of D. If a directed cycle C' contains an arc oriented from Vi to Vo then

it also contains an arc oriented from Vo to V.

Lemma 6.15 is illustrated by Figure 130.
Vs
D C

Vi

Figure 130: A directed cycle crossing a cocycle.

Lemma 6.16 An edge e is in SNT (resp. SNT) if and only if it is minimal in a tail-min
(resp. head-min) directed cycle (resp. cocycle).

Proof: We only prove that if an edge is minimal in a tail-min directed cycle then it is in
€ SNT. The reverse implication is given by Lemma 6.13. The proof of the dual equivalence
(e is minimal in a tail-min directed cycle if and only if e is in SN T) is similar.

Let e = {hy, ha} with hy < hs be a minimal edge in a tail-min directed cycle C. We want to
prove that e is in SN T. Observe first that Og(e) = (hy, hs) (since hpin(C) = hy and C is
tail-min). We now prove successively the following points.

- The edge e is not in SNT. Otherwise, the edge e would be both in a directed cycle C' and
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in a directed cocycle by Lemma 6.13.

- The edge e is not in SNT. Suppose the contrary. Since e is in T, the arc Og(e) = (h1,hs) =
Or(e) is not reverse. Let D be the fundamental cocycle of e. Let v1 and vy be the endpoints
of h1 and ho respectively and let Vo be set of descendants of vy. Recall that v is the father
of vg in T' (Lemma 5.6) and that D is the cocycle defined by V5. Since the cycle C' is directed
and the arc Og(e) in C' N D is directed toward V3, there is an edge ¢’ in C' N D with Og(e’)
directed away from V5 by Lemma 6.15. This situation is represented in Figure 131. Since e
is minimal in the cycle C, we have e < ¢’. Therefore, the arc Op(€’) is directed toward Vs
by Lemma 5.7. Thus, €’ is reverse. The edge €’ is reverse and contained in a directed cycle,
therefore it is in S by Lemma 6.14. We have shown that e’ is in S N7T. But this is impossible
since e < €’ is in the fundamental cycle of €.

- The edge e is in S NT. We know from the preceding points that e is in 7. Hence,
Or(e) = (ha,h1) # Og(e). Thus, e is reverse in a directed cycle. Therefore, e is in S by

Lemma 6.14. 0

Figure 131: The directed cycle C, the fundamental cocycle D and the edges e and e’.

Lemma 6.17 The fundamental cycle (resp. cocycle) of any edge in SNT (resp. SNT) is
tight.

Proof: We prove that the fundamental cycle of an edge in S N T is tight. The proof of
the dual property (concerning edges in S N T) is similar. Let e* be in S NT. Recall that
e* = enin(C). By Lemma 6.13, the fundamental cycle C' of e* is directed. We want to prove
that C' is tight. Suppose not and consider a directed cycle C’ with epin(C’) = emin(C) = €*
and e = ein(C A C') € C. The edge e is in the fundamental cycle C' of e*, hence e* is in
fundamental cocycle D of e. This situation is represented in Figure 132. Let v; and vy be
the endpoints of e with v father of vy in T'. Let V5 be the set of descendants of ve. Recall
that D is the cocycle defined by V5. The edge e is in the fundamental cycle of e* which is
(G,T) active, hence e* < e. Therefore, the arc Or(e*) is directed away from V5 by Lemma
5.7. Since e* is in SN T, the arc Og(e*) is reverse, hence is directed toward V3. Since the
cycle €’ is directed and the arc O(e*) in C' N D is directed toward Vs, there is an arc Og(e’)
in C' N D oriented away from V5 by Lemma 6.15. Observe that €’ is not in the fundamental
cycle C since C C T +e* and D C T+e. Thus, € isin C A C’ and €’ > e. Hence, by Lemma
5.7, the arc Op(e') in the fundamental cocycle D of e is directed toward V5. Thus, the arc
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Og(e') # Or(€') is reverse. Since €’ is reverse and contained in a directed cycle, it is in S
by Lemma 6.14. We have shown that e’ is in S N'7T. But this is impossible. Indeed e’ is not

(G, T)-active since its fundamental cycle contains e which is less than e’. -

Figure 132: The directed cycles C' and C’ and the cocycle D.

Proof of Proposition 6.12. We consider a subgraph S in the tree-interval [T, , T;7] and the
orientation Og, = ®(Sp). We want to prove that the procedure ¥ returns the subgraph Sy.
We compare edges and half-edges according to the (G, Tj)-order denoted by <: we say that
an edge or half-edge is greater or less than another. We also compare edges and half-edges
according to their order of visit during the algorithm: we say that an edge or half-edge is
before or after another. We denote by ¢ the motion function associated with Tj. We denote
by h; = t'(ho) the i*" half-edge for the (G, Ty)-order. Also, for every half-edge h, we denote
Fy, = {e = {h1, ho} such that min(hy, hy) < h}, T, = Ty N F}, and Sy, = Sy N F},.

We want to prove that at the beginning of the i core step, h = h;, F = Fy,, T =T}, S = Sh,
where h is the current half-edge. We proceed by induction on the number of core steps.
The property holds for the first (i = 0) core step since h = hg and Fp, = T}, = Sp, = 0.
Suppose the property holds for all i < k. By the induction hypothesis, the (G, T)-order and
the order of visit coincide on the edges and half-edges of F'. In particular, if C is any set
not contained in F, then hpin(C) = At (C) and emin(C) = eqrst (C). Suppose the edge e
containing the current half-edge h is not in F' = F}. In this case, the current half-edge h
(resp. edge e) is less than any other half-edge (resp. edge) in F. We consider the different

cases (a), (b), (¢), (a’), ('), (). We will prove successively the following properties.

e Condition (a) is equivalent to e € So N Tp.
- Suppose Condition (a) holds: h is a tail and e is in a directed cycle C C F. Since,
C C F, the current half-edge h is minimal in C. Since h is a tail, the directed cycle C
is tail-min. Thus, e is in Sy N Ty by Lemma 6.16.
- Conversely, if e is in SyNTp, then e is minimal in a tail-min directed cycle C' by Lemma,
6.16. Therefore, h is a tail and C C F.

e Condition (a') is equivalent to e € So N Ty.
The proof is the similar to the proof of the preceding point.
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e Condition (b) is equivalent to e € So N Ty and Og,(e) is reverse.

- Suppose Condition (b) holds: h is a tail and e is in a head-first directed cocycle
D ¢ F such that for all directed cocycle D' with egs(D’) = egyst(D) either e € D’
or D A D ¢ F and ege(D A D') € D'. Since the (G, Tp)-order and the order of
visit coincide on F' we have hpyin(D) = hgst(D). Since the cocycle D is head-first, it
is tail-min. The edge e* := epi, (D) is minimal in a head-min directed cocycle, hence
e* is in Sy N Ty by Lemma 6.16. Let D* be the fundamental cocycle of e*. Recall that
emin(D*) = €* = emin(D) We want to prove that e is in D*. Suppose e is not in D*. By
Condition (b), we have D A D* ¢ F and egt(D A D*) € D*. But this is impossible
since emin (D A D*) = egirst(D A D*) and D* is tight by Lemma 6.17. Thus, e is indeed
in the fundamental cocycle D* of e*. Since e* is in Sy N Tp, the edge e is in Ty and also
in Sy by Lemma 6.1. Moreover the arc Og, (e) is reverse.

- Conversely, suppose that e is in SyNTp and that the arc Og, (e) is reverse. The current
half-edge h is the least half-edge of e. Since e is external, h is the head of the arc O, (e)
and the tail of the reverse arc Og,(e). Since Og, (e) is reverse, the external edge e is in the
fundamental cocycle D of an edge e* € SyNTy. The cocycle D is head-min, directed and
tight by Lemmas 6.13 and 6.17. Since e* = epin (D), the edge e* is less than e. Therefore
e* is before e and D ¢ F. The cocycle D is head-first since hfst(D) = hmin(D).
Consider any directed cocycle D’ such that egst(D') = eqt(D) = €* and e ¢ D’. We
want to prove that D A D' ¢ F and egs(D & D') € D'. Since D is tight, the edge
€ = emin(D A D')isin D’. Since e is in D A D', the edge € is less than e, hence it is
in F. Therefore, D A D' ¢ F and egyst(D A D') = epin(D A D') = €' isin D'.

e Condition (V') is equivalent to e € Sy N'Ty and Og,(e) is reverse.
The proof is the similar to the proof of the preceding point.

o Condition (c) is equivalent to e € So NIy and is not reverse.

- Suppose Condition (c) holds. In this case, Conditions (a), (a’), (b), (b') do not hold.
Hence (by the preceding points), the edge e is not in Sy A Tp and the arc Og, (e) is not
reverse. Since Og,(e) is not reverse and the half-edge i (which is the least half-edge of
e) is a tail, the edge e is in Ty. Since e is not in Sy A Tp, it is in Sy.

- Conversely, suppose that e is in SoNTp and that Og, (e) is not reverse. By the preceding
points, none of the conditions (a), (a’), (b), (b') holds. Moreover, the half-edge h (which
is the least half-edge of e) is a tail.

e Condition (c') is equivalent to e € So NTy and is not reverse.

The proof is the similar to the proof of the preceding point.

By the preceding points, e is added to S (resp. T') in the procedure W if and only if e is in S
(resp. Tp). Hence, the next half-edge will be t(h) = oa(h) if h is in Ty and o(h) otherwise.

Thus, all the properties are satisfied at the beginning of the (k + 1)* core step. 0
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This concludes the proof of Theorem 6.9. We have also proved the following property that

will be useful in the next chapter.

Lemma 6.18 During the execution of the procedure ¥ on an orientation O, the half-edges

are visited in (G, T)-order, where T is the spanning tree A o W(O).

6.4 Concluding remarks

6.4.1 The planar case and duality

In this subsection we restrict our attention to planar graphs. Our goal is to highlight
some nice properties of our bijections with respect to duality. Therefore we will handle
simultaneously a planar embedding and its dual. In order to avoid confusion we shall indicate
the implicit embedding G for the tree-intervals and the mapping ® by writing [T'~, T"]g and

Let G = (V,E) be a planar graph. The graph G can be drawn properly on the
sphere, that is, in such a way the edges only intersect at their endpoints. If the graph
G is properly drawn on the sphere, the dual graph G* is obtained by putting a vertex in
each face of G and an edge across each edge of G. A drawing of a graph on the oriented
sphere defines an embedding G = (H,o0,«) where the permutation o corresponds to the
counterclockwise order around each vertex. Proper drawings on the sphere correspond
to planar embedding, that is, embeddings having FEuler characteristic 0, where the Euler
characteristic is the number of vertices (cycles of o) plus the number of faces (cycles
of oa) minus the number of edges (cycles of ) minus 2. If G = (H,o0,«a, hg) is a planar
embedding of G, then G* = (H, oo, a, hg) is a planar embedding of G* (observe that G** = G).

Consider a planar embedding G. Observe that the edges, subgraphs and orientations of G
can also be considered as edges, subgraphs and orientations of G*. Given a subgraph S of G
we denote by S” the co-subgraph, that is, the complement of S considered as a subgraph of
G*. Given an orientation O of G we denote by @ the co-orientation, that is, the orientation
obtained from O by reversing all arcs considered as an orientation of G*. Observe that for
any subgraph S and any orientation O, we have ?* = S5 and ﬁ* = O. From the Jordan
Lemma, a subgraph S is connected if and only if the co-subgraph 5" is acyclic. This implies
the well known property (see [Mull 67]) that a subgraph T is a spanning tree of G if and only
if the co-subgraph T~ is a spanning tree of G*. It follows that the fundamental cycle (resp.
cocycle) of an internal (resp. external) edge e with respect to G and T is the fundamental
cocycle (resp. cycle) of e with respect to G* and T". Moreover, it follows directly from the

definitions that the motion function of the spanning tree T' of G and the motion function of
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the spanning tree T~ of G* are equal. In particular, the (G,T)-order and the (G*,T" )-order
are the same. Hence, an edge is (G, T)-active if and only if it is (G*,T" )-active. Thus, the
mapping S — S induces a bijection between the tree-intervals [T~,T%]g and [T*_,T*Jr]g*.
It follows directly from this property and the definitions that the mappings ®g and ®g« are
related by the relation

for any subgraph S of G, (I)g(S)* =P (57).

6.4.2 An alternative algorithmic description of the mappings ¢ and V in
the planar case.

In this subsection, we give an alternative algorithmic description of the bijections ® and
U between subgraphs and orientations in the case of planar embeddings. More precisely,

we give two algorithms ¢ and v performing the bijection ® and ¥ respectively in a linear time.

During the algorithms ¢ and v it is necessary to keep track of the number of times each
half-edge has been visited. This is done by initializing a function f (an array) to be 0 on

every half-edge h and increment the value f(h) each time the half-edge h is visited.

Definition 6.19 Let G = (H,o,a,hg) be an embedded graph. Given a subgraph S the
procedure p returns the orientation O defined by the following procedure.
Initialization: Initialize the current half-edge h to be the root hg. Initialize the function f
to be 0 on every half-edge. Initialize the subgraph T to be S.
Core: Do:
C1: Let e be the edge containing the current half-edge h.
e Increment f(h).
e If f(h) =1 and f(a(h)) = 0, then orient the edge e:
If e isin S, then set O(e) = (h,a(h)) else set O(e) = (a(h),h).
o If f(h) =2 and f(a(h)) =0 then
If e is in T then remove it from T else add it to T'.
C2: Mowve to the next half-edge:
e If f(h) =1 and e isin S A T then set h to be a(h).
e Ife isin T, then set the current half-edge h to be ca(h), else set it to be o(h).
Repeat until h = hy and f(ho) = 2.

End: Return the orientation O.

Definition 6.20 Let G = (H,o0,, hg) be an embedded graph. Given an orientation O the
procedure 1 returns the subgraph S defined by the following procedure.
Initialization: Initialize the current half-edge h to be the root hg. Initialize the function f

to be 0 on every half-edge. Initialize the subgraphs S and T to be empty.
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Core: Do:
C1: Let e be the edge containing the current half-edge h.
e Increment f(h).
o If f(h) =1 and f(a(h)) =0, then
If h is a tail, then add it to S and T.
o If f(h) =2 and f(a(h)) =0 then
If e is in T then remove it from T else add it to T.
C2: Mowve to the next half-edge:
e If f(h)=1and e isin S A T then set h to be a(h).
e Ifeisin T, then set the current half-edge h to be oa(h), else set it to be o(h).
Repeat until h = hy and f(ho) = 2.
End: Return the subgraph S.

An execution of the procedure ¢ (resp. 1) is represented in Figure 133 (resp. 134).

y

ho

|

Figure 133: The mapping ¢ and some intermediate steps.

Theorem 6.21 Let G = (H,o0,,hg) be an embedded graph and S be a subgraph. If G is
planar or S is a forest, then the procedure ¢ terminates and returns the orientation ®(S). In
these cases, the number of core steps of the procedure ¢ is 2|H|, hence this procedure performs

i a time linear in the number of edges of G.

Theorem 6.22 Let G = (H,o,a,hg) be an embedded graph and O be an orientation. If G is
planar or ¥(O) is a forest, then the procedure ¢ terminates and returns the subgraph V(O). In
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Figure 134: The mapping ¢ and some intermediate steps.

these cases, the number of core steps of the procedure v is 2|H|, hence this procedure performs

i a time linear in the number of edges of G.

We do not give the proofs of Theorems 6.21 and 6.22.
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Chapter 7

Specializations of the bijection

between subgraphs and orientations

Abstract: We study several restrictions of the bijection ® between subgraphs and
orientations. For instance, we prove that the restriction of & to connected subgraphs
induces a bijection between connected subgraphs and root-connected orientations. Since the
connected subgraphs are counted by the evaluation 7¢(1,2) of the Tutte polynomial, we
obtain an interpretation of this evaluation in terms of orientations. We will, in fact, give
an interpretation for each of the evaluations T (i,7),0 < i,7 < 2 of the Tutte polynomial
in terms of orientations. The strength of our approach is to derive all our results from the
same bijection ® specialized in various ways. Some of the results are expressed in term
of outdegree sequences. For instance, we obtain a bijection between forests (counted by
T(2,1)) and outdegree sequences, and also a bijection between spanning trees (counted by

T (1,1)) and root-connected outdegree sequences.

Résumé : Nous étudions plusieurs restrictions de la bijection ® entre les sous-graphes et les
orientations. Par exemple, nous montrons que la restriction de ® aux sous-graphes connexes
induit une bijection entre les sous-graphes connexes et les orientations racine-accessibles.
Puisque les sous-graphes connexes sont comptés par 'évaluation T;(1,2) du polynéme de
Tutte, nous obtenons une interprétation de cette évaluation en termes d’orientations. Nous
allons, en fait, donner une interprétation pour chacune des évaluations T (7,7),0 < i,j < 2
du polynoéme de Tutte en termes d’orientations. La force de notre approche est de déduire
tous nos résultats d’une unique bijection que nous spécialisons de diverses manieres. Certains
résultats sont exprimés en termes de suites de degrés. Par exemple, nous obtenons une
bijection entre les forets (comptées par T(2,1)) et les suites de degrés et aussi une bijection

entre les arbres couvrants (comptés par T (1,1)) et les suites de degrés racine-accessibles.

187
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7.1 Introduction

The Tutte polynomial of a connected graph G = (V,E) can be defined by its subgraph
expansion

Ta(x,y) = > (& — 1)Ly — 1)eSHISI=IV]
S spanning subgraph

where the sum is over all subgraphs S (equivalently, subsets of edges), ¢(S) denotes
the number of connected components of S and |.| denotes cardinality. From this defini-
tion, it is easy to see that Tg(1,1) (resp. T¢(2,1), Te(1,2)) counts the spanning trees
(resp. forests, connected subgraphs) of G. A somewhat less interesting specialization
is Tg(2,2) = 2El counting the subgraphs of G. Note that this is also the number of
orientations of G. As a matter of fact, all the specializations T(i,7),0 < 4,5 < 2
as well as some of their refinements have nice interpretations in terms of orientations
[Bryl 91, Gess 96, Gioa 06, Gree 83, Lass 01, Stan 73, Wind 66, Las 84b]. This makes it
appealing to look for bijections between subgraphs and orientations that would allow us to

prove these interpretations bijectively.

There is number of papers devoted to combinatorial proofs of the interpretations of the
Tutte polynomial [Gebh 00, Gess 96, Gioa 06, Gioa 05, Lass 01]. In this chapter, we give new
purely bijective proofs of the interpretations of T (7,7),0 < 4,5 < 2 in terms of orientations.
The strength of our approach is to derive all these interpretations from a single bijection ®
(defined in Chapter 6) between subgraphs and orientations that we specialize in various ways.
For instance, we derive a bijection between connected subgraphs (counted by T'¢(1,2)) and
root-connected orientations. We also derive a bijection between forests (counted by T'¢(2,1))
and outdegree sequences (this answers a question of Stanley [Stan 80a]). In particular, we
derive a bijection between spanning trees (counted by T¢(1,1)) and root-connected outdegree
sequences. These sequences first enumerated in [Gioa 06] are in bijection with equivalence

classes of orientations up to cycle and cocycle flips.

The outline of this chapter is as follows. In Section 7.2, we define several classes of
subgraphs and prove that they are counted by evaluations of the Tutte polynomial. This
counting properties are easily proved thanks to the characterization of the Tutte polynomial
by embedding-activities established in Chapter 5. In Section 7.3, we study the restriction of ®
to connected and to external subgraphs. In Section 7.4, we study the restriction of ® to forest
and to internal subgraphs. The forest are seen to be in bijection with a class of orientation
called minimal. In Section 7.5, the minimal orientations are proved to be in bijection with
outdegree sequences. In Section 7.6, we summarize our results and explore some refinements.
We conclude in Section 7.7 by some remarks about the cycle/cocycle reversing systems and

some algorithmic applications.
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7.2 Enumerative results for several classes of subgraphs

In this section we define several classes of subgraphs and obtain counting results for these

classes by using the characterization (84) of the Tutte polynomial established in Chapter 5.

Let G be an embedded graph and let T be a spanning tree. Recall that the spanning
tree T' of G is said to be internal (resp. external) if it has no external (resp. internal)
(G, T)-active edge. In Figure 122, the first and second spanning trees (from left to right)
are internal while the fourth and fifth are external. We say that a subgraph S in [T~,T7]
is internal or external if the spanning tree T is. The notion of internal subgraph is close to
Whitney’s notion of subgraphs without broken circuit [Whit 32b]. Observe that by Lemma
6.2 any internal subgraph is a forest and any external subgraph is connected (the converse
is, of course, false). In Figure 135 we represented the subgraphs of figure 122 in each of the

categories defined by the four criteria forest, internal, connected, external.

Proposition 7.1 Let G be an embedded graph. The number of subgraphs in each category
defined by the criteria forest, internal, connected, external is given by the following special-

ization of the Tutte polynomial:

General Connected Ezxternal

General | Tg(2,2) = 2IF1 | Tg(1,2) Tc(0,2)

Forest Ta(2,1) Ta(1,1) T¢(0,1)
Internal T(2,0) Ta(1,0) | T¢(0,0) =0

Proof: Let T be a spanning tree with Z(T') internal and £(T') external (G, T)-active edges.
By Lemma 6.2, the connected subgraphs in [T, 7] are obtained by adding some external
(G, T)-active edges to T'. Hence, there are 1ZM2E(T) connected subgraphs in [T, T"]. Thus,
given the partition of the set of subgraphs into tree-intervals given by Theorem 6.3, the graph
g has

Z 1Z(T)9&(T)

T spanning tree
connected subgraphs. This sum is equal to T(1,2) by the characterization (84) of the Tutte
polynomial (that we established in Chapter 5). Observe that there are 0Z(T)28(T) external
(connected) subgraphs in the interval [T, T+]1. Hence there are T¢(0,2) external subgraphs

of G. Every other category admits a similar treatment. .

We will now study the restriction of the bijection ® to each category of subgraphs.

Here, as everywhere in this chapter, the convention is that 0° = 1.
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General Connected External
AN AN &8
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£

General Root-connected |Strongly connected
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Figure 135: Subgraphs in each category defined by the four criteria forest, internal, connected,
erternal and the corresponding orientations. The categories goes from the most general to
the most constrained from left to right and from up to down. The non-connected subgraphs
(resp. non-external connected subgraphs, external subgraphs) are in column 1 (resp. 2, 3).

The subgraphs that are not forests (resp. the forests that are not internal, the internal forests)

are in line 1 (resp. 2, 3).
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7.3 Connected subgraphs and external subgraphs
In this section we study the restriction of ® to connected and to external subgraphs.

Proposition 7.2 Let G be an embedded graph and let vy be the root-vertex. The orientation
Og is vg-connected if and only if the subgraph S is connected.

Lemma 7.3 Let G be an embedded graph and let T be a spanning tree. Let D be a cut and let
Go be the connected component of G containing the root-vertex vy after D is removed. Then,
the half-edge hpyin(D) is incident to Gy. Moreover, every half-edge not in Gy is greater than
or equal to hyin(D).

Proof: Let t be the motion function of T'. If a half-edge h is incident to Gy and is not in D
then t(h) is incident to Gy. Since the root hg is incident to Gy, the half-edge hmin(D) is also
incident to Gy and is less than any half-edge not in Gy. [

Lemma 7.4 An orientation is vg-connected if and only if it has no head-min directed cocycle.

Proof:

e If there is a head-min directed cocycle, this cocycle is directed toward the component
containing vy by Lemma 7.3. Therefore, the vertices in the other components are not reachable
from vy and the orientation is not vg-connected.

e If the orientation is not vg-connected we consider the cut D defined by the set Vj of vertices
reachable from vy. The cut D is directed toward V[, hence is head-min by Lemma 7.3. Let
v1 be the endpoint of the edge e = ey (D) that is not in V{. Let V3 be the set of vertices in
the connected component containing v after the cut D is deleted. The set of edges D1 with
one endpoint in V; and one endpoint in V; is a cocycle contained in D. Since every edge in
D; is directed away from V{ the cocycle Dy directed. Since hyin(D1) = hmin(D) is a head,

the cocycle D1 is head-min. -

Proof of Proposition 7.2. Let S be a subgraph in [T7,7"]. The orientation Og is vg-
connected if and only if there is no head-min directed cocycle by Lemma 7.4. An edge is in
SNT if and only if it is minimal in a head-min directed cocycle by Lemma 6.16. Thus, Og is
vo-connected if and only if SNT = 0. And SNT = 0 if and only if S is connected by Lemma

6.2.
g

We now study the restriction of the bijection ® to external subgraphs.

Proposition 7.5 Let G be an embedded graph and let S be a subgraph. The orientation Og

is strongly connected if and only if S is external.
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Lemma 7.6 Let T be a spanning tree and let e be an edge of T'. Let u and v be the endpoints
of e with the convention that u is the father of v. For any connected subgraph S in [T, T7],

the vertex v is Og-reachable from its father u.

Proof: For any connected subgraph S in [T~, 7], the set SN T is empty by Lemma 6.2. If
the fundamental cocycle of the edge e contains no edge of SN T, then the arc Og(e) is not
reverse. In this case, the arc Og(e) = Or(e) is directed from u to v by Lemma 5.6. Suppose
now that the fundamental cocycle of e contains an edge e* of SN T. In this case, e is in the
fundamental cycle C* of e¢* which is Og-directed by Lemma 6.13. Therefore, the vertex v is

Os-reachable from u (and vice-versa). -

Lemma 7.7 Let G be an embedded graph. Let T be a spanning tree and let S be a connected
subgraph in [T~ ,TT]. An edge e is minimal in an Og-directed cocycle if and only if e is an

internal (G, T)-active edge.

Proof: Since the subgraph S is connected, the subset SN T is empty by Lemma 6.2 and the
orientation Qg is vg-connected by Lemma 7.2.

e Suppose that the edge e is an internal (G, T')-active edge. The edge e is minimal in its
fundamental cocycle D. We want to prove that D is Og-directed. Note first that e is not
in S AT (since e is in T and SNT = @). No other edge of D is in S A T since none is
(G, T)-active. Hence, Og(e) = Or(e). Let € # e be an edge in the fundamental cocycle D of
e. The fundamental cycle of ¢/ does not contain any edge of S N7 since this edge is empty.
Hence, Og(e¢’) = Or(€’). Thus, the orientations Og and O coincide on the cocycle D. By
Lemma 5.12, the cocycle D is Op-directed, hence it is Og-directed.

e Suppose that e = {hy, ho} with hy < hg is minimal in an Og-directed cocycle D. We want to
prove that e is an internal (G, T')-active edge. We prove successively the following properties:
- The half-edge hy is a tail. Otherwise, the cocycle D is head-min. (This is impossible by
Lemma 7.4 since Og is is vg-connected.) - The edge e is in T. If e is not in T', then the arc
Ogs(e) = (h1, h2) is reverse. Thus, the fundamental cycle C' of e contains an edge of S A T'.
Since C € T+ e and SNT = (), the edge e is in S N T. Thus, the cycle C is Og-directed
by Lemma 6.13. This is impossible since e cannot be both is a directed cycle and a directed
cocycle.

- The edge e is (G, T)-active. Since the edge e is in T, the arc Og(e) = (h1, h2) = Or(e) is not
reverse. Let vy and vy be the endpoints of hy and hs respectively. Let Gy be the connected
component of G containing vy once the cocycle D is removed. The arc Og(e) is directed
toward wve, thus the cocycle D is directed toward Go. By Lemma 7.6, all the descendants of vg
are reachable from vo, hence they are all in Gy. Let ¢/ be an edge in the fundamental cocycle
D’ of e. Since one of the endpoints of €’ is a descendant of vs, the edge €’ is either in D or in

Gs. Since the minimal half-edge h1 of D is not incident to Go, every edge in D U Gy is greater
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than or equal to e by Lemma 7.3. Thus, €’ is greater than e. The edge e is minimal in its

fundamental cocycle D, that is, e is (G, T)-active. 0

Proof of Proposition 7.5. Let S be a subgraph in [T, T].

e Suppose that the subgraph S is external. The subgraph S is connected and there is no (G, T)-
active edge, hence there is no Og-directed cocycle by Lemma 7.7. Thus, the orientation Og
is strongly connected.

e Suppose that the orientation Og is strongly connected. The subgraph S is connected (since
Og is vp-connected) and there is no Og-directed cocycle, hence there is no (G, T')-active edge

by Lemma 7.7. Thus, the subgraph §' is external. 0

7.4 Forests and internal forests

In this section we study the restriction of the bijection @ to forests and to internal subgraphs.

Let G be an embedded graph and let O be an orientation. We compare half-edges according
to the (G, T)-order, where T'= A o U(O). We say that the orientation O is minimal if there
is no tail-min O-directed cycle. We shall see (Lemma 7.11) that for any out degree sequence

0 there is a unique minimal §-orientation.
Proposition 7.8 The orientation Og is minimal if and only if the subgraph S is a forest.

Proof: Let T = A(S). By Lemma 6.16, an edge is in S N T if and only if it is minimal in a
tail-min directed cycle. Thus, the orientation Qg is minimal if and only if SNT = (). And

SNT = ( if and only if S is a forest by Lemma 6.2. 0

Proposition 7.9 The orientation Og is acyclic if and only if the subgraph S is internal.

In order to prove Proposition 7.9 we need to define a linear order, the postfiz order, on the
vertex set. For any vertex v # vy we denote by h, the half-edge incident to v and contained
in the edge linking v to its father in 7". The postfiz order, denoted by <st, is defined by
v <post Vg for v # vg and v <ot v if hy < hy for v,v" # vg. The postfix order is illustrated
in Figure 136.

Lemma 7.10 Let T be a spanning tree and let e be an edge. The arc Or(e) is directed toward

its greatest endpoint (for the postfix order) if and only if the edge e is external (G,T)-active.

Lemma 7.10 is illustrated by Figure 136.
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Proof: Recall from Lemma 5.7 that a half-edge A is incident to a descendant of v if and only
if hl, < h < hy, where hl = a(h,) is the other half of the edge containing h,,.

e Consider an internal edge e. Let u and v be the endpoints of e with u father of v. By Lemma
5.6, the arc Or(e) is directed toward v. We want to prove that v <pest u. If u = vg, the
inequality holds. Else, the half-edges h, and h, exist. Moreover, the half-edge h, is incident
to a descendant of u, hence h, < h, and v <post .

e Consider an external edge e. We write e = {hy, ho} with h; < he and denote by u and v
the endpoints of h; and hg respectively. By definition, the arc Or(e) is directed toward w.
We want to prove that v <po u if and only if e is (G, T')-active.

- Suppose the edge e is (G, T)-active. Then, the vertex v is a descendant of v by Lemma 5.8.
The half-edge h, is incident to a descendant of u, hence h, < h, and v <5t u.

- Suppose that v <,o¢ u. If u = vg, the vertex v is a descendant of u and the edge e is
(G, T)-active by Lemma 5.8. Else, the half-edges h, and h, exist and h, < h,. In this case,
a(hy) < hy < hg < hy < hy (indeed, ho < h, since hs is incident to v and a(h,,) < hy since hq
is incident to u), hence v is a descendant of u by Lemma 5.7. Thus, the edge e is (G, T)-active

by Lemma 5.8. 0

Figure 136: A spanning tree T', the postfix order, the orientation Or and the external active

edges (indicated by a *).

Proof of Proposition 7.9. Let S be a subgraph in the tree-interval [T, T"]. We compare
half-edges according to the (G,T')-order.

e Suppose that the subgraph S is internal (i.e. the tree T is internal). Recall that SNT = (.
We want to prove that the orientation Qg is acyclic. Observe first that the orientation O is
acyclic since the vertices are strictly decreasing (for the postfix order) along any Op-directed
path by Lemma 7.10. Suppose now that there is an Og-directed cycle C'. The Og-directed
cycle C contains a reverse arc O(e) or C' would be Op-directed. Since SNT = (), the reverse
edges are in the fundamental cocycle of an edge of SNT. Thus, the edge e is in the fundamental
cocycle D of an edge of SNT. The cocycle D is directed by Lemma 6.13. This is impossible
since e cannot be both in a directed cycle and in a directed cocycle.

e Suppose that the orientation Qg is acyclic. We want to prove that the subgraph S is internal
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(i.e. the tree T is internal). Suppose there is an external (G, T)-active edge e. Let C be the
fundamental cycle of e. Since Og is minimal, we know (by Proposition 7.8) that SN T is
empty. Therefore, the reverse edges are in the fundamental cocycle of an edge of SNT. Since
e is active, it is not in the fundamental cocycle of an edge of SN T. Since the other edges
of C' are not active (they are less than e) they are not in S N7T. Moreover, since they are
in T, they are not in the fundamental cocycle of an edge of S N T. Thus, the orientations
Og and Or coincide on the cycle C. By Lemma 5.12, the cycle C' is Op-directed, hence it is

Og-directed. This is impossible since Og is acyclic. O

7.5 Minimal orientations and out-degree sequences

In the previous section we proved that the bijection ® induces a bijection between forests and
minimal orientations (Proposition 7.8). We are now going to link minimal orientations and

out-degree sequences.

Proposition 7.11 Let G be an embedded graph. For any outdegree sequence § there exists a

unique minimal d-orientation.

The rest of this section is devoted to the proof of Proposition 7.11. We first recall the

link between outdegree sequences and the cycle-flips.

Consider an orientation O and an O-directed cycle (resp. cocycle) C. Flipping the O-
directed cycle (resp. cocycle) C' means reversing every arc in C. We shall talk about cycle-
flips and cocycle-flips. Observe that flipping a directed cycle does not change the outdegree
sequence. Therefore, any orientation O’ obtained from O by a sequence of cycle-flips has the

same outdegree sequence as O. It was proved in [Fels 04] that the converse is also true.

Lemma 7.12 [Fels 04] Two orientations O and O’ have the same outdegree sequence if and
only if they can be obtained from one another by a sequence of cycle-flips. Moreover, the
flipped cycles can be chosen to be contained in the set {e/O(e) # O'(e)}.

Lemma 7.12 is a direct consequence of the following result proved in [Fels 04].

Lemma 7.13 [Fels 04] Let G be a graph and let O and O’ be two orientations having the
same outdegree sequence. For any edge e in the set K = {e'/O(e) # O'(e)}, there is an
O-directed cycle C C K containing e.

Proof: (Hint) Start from the end v of O(e) and look for an edge e; in K directed away from
v. This edge exists except if v is also the origin of e (since the number of edges directed away

from v is the same in O and O’). Repeat the process until arriving to the origin of e.
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Recall that any very arc of an oriented graph is either in a directed cycle or a directed
cocycle but not both (Lemma 6.11). We say that an arc a is cyclic or acyclic depending on
a being in a directed cycle or in a directed cocycle. We call cyclic part (resp. acyclic part)

of an orientation the set of cyclic (resp. acyclic) edges.

It is well known that the cyclic and acyclic parts are unchanged by a cycle-flip or a cocycle
flip [Fels 04, Gioa 06, Prop 93]. Indeed, it is easily seen that the cyclic part of an orientation
can only grow when a directed cocycle D is flipped (since no directed cycle intersects with
D). Since we return to the original orientation by flipping D twice, we conclude that the
cyclic and acyclic parts are unchanged by a cocycle-flip. Similarly, the cyclic and acyclic

parts are unchanged by a cycle-flip.

We will also need the following classical result (closely related to an axioms of oriented
matroids theory [Bjor 93]).

Lemma 7.14 (Elimination) Let O be an orientation and let C and C" be two O-directed
cycles (resp. cocycles). Let O be the orientation obtained from O by flipping C'. Then,
the symmetric difference of C and C' is a union of O'-directed cycles (resp. cocycles). In
particular, any edge in the O-directed cycle (resp. cocycle) C' is in an O'-directed cycle (resp.
cocycle) C" C CUC'.

Lemma 7.14 is illustrated by Figure 137.

Figure 137: The O-directed cycles (resp. cocycles) C and C’ (thin and thick lines) and their

intersection (dashed lines).

We are now ready to prove Proposition 7.11. A false proof of the uniqueness of the
minimal d-orientation in this proposition is as follows. If there are two different d-orientations
O and (O’, then these orientations differ on a directed cycle C. Hence, the cycle C is
tail-min in either O or O'. A false proof of the existence (of a minimal d-orientation)
is as follows. Take any J-orientation and starts flipping cycles until no more tail-min
directed cycle remains. Of course, both the uniqueness and existence proofs are false in

this version since flipping a cycle changes the associated subgraph, hence the spanning tree
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and the order on the half-edges. However being a bit careful, one can make both proofs correct.

We consider the procedure ¥ on orientations (see Definition 6.10). For an orientation O
we denote by ¥[O] the execution of ¥ on O. Recall (from Lemma 6.18) that the half-edges
are visited in (G, T')-order during U[O], where T is the spanning tree A o U(QO). Therefore,
the orientation O is minimal if and only if Condition (a) never holds during the execution
v[O].

Lemma 7.15 Let O be an orientation. Consider the current half-edge h, the edge e and the
sets F', S and T at the beginning of a given core step of the execution W[O]. Let Cy C F+e
be an O-directed cycle and let O’ be the orientation obtained from O by flipping Cy. We
want to prove that Condition (a) (resp. (b), (¢), (a’), (b'), (¢)) holds for the orientation O if
and only if it holds for the orientation O'. (Let us insist that when evaluating the Conditions
(a),--- ,(c") for the orientation O', the symbols F', S, T, hfpst and efps; continue to refer to
the execution of ¥[O].)

Proof: Note first that the orientations @ and O’ coincide on the current half-edge h since
e ¢ C¢. We now study separately the different conditions.

e Recall that O and O’ coincide on their acyclic part: the directed cocycles of @ and O’ are
the same. Therefore, Condition (b) (resp. (a’)) holds for O if and only if it holds for O’.

e Suppose now that Condition (a) holds for O: the current half-edge h is a tail and the edge
e is in an O-directed cycle C C F. By Lemma 7.14, the edge e is also in an O’-directed
cycle ¢/ C CUCy C F. Thus, Condition (a) holds for ©’. The same argument proves that
if Condition (a) holds for O, then it holds for O (O is obtained from O’ by flipping the
O'-directed cycle Cf).

e Suppose now that Condition (b) holds for O: the current half-edge h is a head and the
edge e is in a tail-first O-directed cycle C & F such that for all O-directed cycle C’ with
efirst (C') = efist(C) either e € C' or (C A C' ¢ F and eg,t(C A C') € ). By Lemma 7.14,
the edge €* = eqst(C) is in an O’'-directed cycle C; C C' U Cy. Note that egs (C1) = e*. We
want to prove that Condition (b') holds for O’ by considering the O'-directed cycle C;. We

prove successively the following properties.

e The edge e is in Cf.
The edge e* is in the O'-directed cycle C; and not in Cy. By Lemma 7.14, there is an
O-directed cycle Co C Cy U C containing e* (since O is obtained from O’ by flipping
Cy). Note that efi(C2) = €*. Suppose that e is not in Cy. By Condition (b') on C,
we have C' A Cy ¢ F and eqt(C A C) € Cy. This is impossible since C N Cy C Cy
(since Co C C; UCy C CUCY) and the edge e in C N Cy is visited before any edge in
Cy. Thus e € C. Since e € C2 € C71 U Cy and e is not in Cy, it is in Cf.



198 CHAPTER 7. SPECIALIZATIONS

e For all O'-directed cycle C with efyst(C1) = efirst(C1) either e € Cf or (C1 A Cy € F
and efirst(C1 & C1) € C7). (This proves that Condition (b') is satisfied for O).
Let C be an O’-directed cycle not containing e and such that egst(C]) = efirst (C1) = €.
We want to prove that C; A C] C F and egt(C1 & C) € Cf. The edge e* is in the
O'-directed cycle C] but not in Cy. By Lemma 7.14, there exists an O-directed cycle
C' C 1 Uy containing e*. Note that efi(C’) = e and that e ¢ C’ (since e is not
in Cf nor in C] by hypothesis). By Condition (b') on C, we have C A C' ¢ F and
e = eqst(C A C') € C'. We now prove the following properties.
- The edge e® is in Cy N CY.
The edge e is in Cf since e® ¢ Cy and e® € ¢’ C C] U Cy. Moreover, e is not in C}
since e® ¢ C, e® ¢ Cy and C; C C U Cy. Thus, e is in C; N CY.
- Any edge in C1 N CY is visited after e® during the execution ¥[O).
Let ¢ be an edge in C; N CY. If € is in Oy, it is visited after e®. Else, ¢’ is in C since
¢ eCy, e ¢ Cpand C; C CUC. Moreover, € is not in C’ since €’ ¢ C}, ¢ ¢ Cy and
C" C C1UCy. Since ¢’ € C A (', the edge €’ is visited after e® = efst (C' A C') during
the execution ¥[O)].
Since e? is in C1 N C] and any edge in C ﬂ?{ is visited after e®, the edge egst(C1 A Cf)
is in C]. Thus, Condition (") holds for O'.

We have proved that if Condition (') holds for O, then it holds for O@’. The same argument
proves that if Condition (") holds for @', then it holds for O.

e Condition (c¢) holds for O if h is a tail and Conditions (a) and (b) do not hold for O By
the preceding points this is true if and only if & is a tail and Conditions (a) and (b) do not
hold for @’. Therefore, Condition (¢) holds for O if and only if it holds for O’. Similarly,

Condition (¢') holds for O if and only if it holds for O’. .

Lemma 7.16 Consider two orientations O and O’ having the same outdegree sequence. We
consider the executions W[O] and ¥[O']. For all 0 < i < |H|, we denote by h;, F;, T; and
S; the current half-edge and the sets F, T and S at the beginning of the i'" core step of the
execution W[O] (see Definition 6.10). We define b, F!, T and S} similarly for the orientation
O'. We want to prove that if the orientations O and O’ coincide on h; for all i < k (that is,
O(e;) = O'(e;) where ¢; is the edge containing h;), then the k first core steps of the executions
U[O] and V[O'] are the same. In particular, h; = b}, F; = F!, S; = S}, and T; = T} for all
1 <k.

Proof: We proceed by induction on k. Recall from Lemma 7.12 that the orientation @’ can
be obtained from O by a sequence of cycle-flips such that the flipped cycles are contained
in the set K = {e/O(e) # O'(e)}. For k = 0 the property obviously holds. Now suppose
that the property holds for k& and suppose that @ and O’ coincide on h;,7 < k + 1. By the
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induction hypothesis the current half-edge hj = h) and the sets F' = Fy, = F}, S = S, = S},
and T = T}, = T}, are the same at the beginning of the (k + 1)®" core step of the procedures
U[O] and ¥[O’]. Moreover, the set K = {e//O(e") # O'(¢’)} of reverse edges is contained in
F +e. Since (' is obtained from O by a sequence of flips of cycles contained in F + e, we
know by induction on Lemma 7.15 that Condition (a) (resp. (b), (¢), (a’), (t'), (¢')) holds for
the orientation O if and only if it holds for the orientation ©’. Therefore, the (k + 1) core
step is the same for the two executions ¥[0] and W[O’]. In particular, the sets F, S, and T
are modified in the same way in both executions and hj41 = hj, 4+1- Thus, the property holds

by induction. 0

Proof of Proposition 7.11. Recall that an orientation O is minimal if and only if Condition
(a) never holds during the execution W[O]. Thus, we need to prove that for any outdegree
sequence J there exists a unique d-orientation O such that Condition (a) never holds during
the execution ¥[O].

e Uniqueness: Let O and O’ be two (distinct) orientations having the same outdegree
sequence. We take the same notations h;, F;, T;, S;, b, F!, T!, S! as in Lemma 7.16. Let k
be the first index such that O and O’ differ on hy. By Lemma 7.16, we have h, = hj and
Fy, = F|, T, =T}, S = S;,. We can suppose without loss of generality that Ay, is a tail in O
and a head in O@’. We now prove that Condition (a) holds for O. By hypothesis, the edge e
containing h is such that O(e) # O’(e). Hence, by Lemma 7.13, the edge e is contained in an
O-directed cycle C C K = {e¢/O(e) # O'(e)}. Since O and O’ coincide on h; for i < k, the
set K is contained in Fj. Since C' C F; is O-directed, Condition (a) holds for O.

e Existence: Let § be an outdegree sequence. We want to find a J-orientation O such that
Condition (a) never holds during the execution ¥V[O]. Let Op be any d-orientation. We are
going to define a set of d-orientations Og, O1, ..., 0|y such that Condition (a) is not satisfied
during the i first core steps of the execution ¥[O;]. We prove that Oy exists by induction
on k. Suppose the d-orientation Op_; exists. We consider the current half-edge h, the edge
e and the sets F, S and T at the beginning of the k" core step of W[0},_1]. If either e € F
or Condition (a) does not hold, we define O = Oy_;. Else, the current half-edge hy is a
tail (for the orientation Of_1) and there is an Og-directed cycle C' C F containing e. In this
case, we define Oy, to be the orientation obtained from Oy by flipping the cycle C'. Observe
that O}, is a d-orientation in which hy, is a head. Moreover, since C' C F the two orientations
Or_1 and Oy coincide on the half-edges h; for i < k, where h; is the current half-edge at
the beginning of the i*" core step of the execution W[O}_;]. Thus, by Lemma 7.16, the k
first core steps of the executions W[O_;] and U[O;] are the same. Moreover, the current
half-edge h = hy, at the beginning of the k" core step of U[Oy] is a head (for the orientation
Op). Hence, Condition (a) does not hold at this core step. Thus, Oy, is a J-orientation such
that Condition (a) does not hold during the k™ first core steps of the execution W[Oy]. The

orientations Op, Oy, ..., Oy exist by induction. In particular, the d-orientation O|p is such
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that Condition (a) never holds during the execution W[O),g]. 0

From Proposition 7.8 and 7.11 one obtains the following bijection between outdegree

sequences and forests. This answers a question raised by Stanley in [Stan 80a].

Proposition 7.17 Let G be an embedded graph. The mapping I' which associates with any
subgraph S the outdegree sequence of the orientation Og establishes a bijection between the

forests and the outdegree sequences of G.

7.6 Summary of the specializations and further refinements

From Propositions 7.2, 7.5, 7.8 and 7.9 we can characterize the orientations associated with
each class of subgraphs defined by the criteria forest, internal, connected, external. Each class
of subgraphs is counted by a specialization of the Tutte polynomial given in Proposition 7.1.

Our results are summarized in the following theorem.
Theorem 7.18 Let G be an embedded graph and let vy be the root-verter.

1. The vg-connected orientations are in bijection with the connected subgraphs counted by
Ta(1,2).

2. The strongly connected orientations are in bijection with the external subgraphs counted
by T:(0,2).

3. The outdegree sequences are in bijection with minimal orientations, which are in bijec-
tion with forests, counted by T(2,1).

4. The acyclic orientations are in bijection with internal forests counted by T (2,0).

5. The vg-connected outdegree sequences are in bijection with vg-connected minimal orien-

tations which are in bijection with spanning trees counted by T (1,1).

6. The strongly connected outdegree sequences are in bijection with strongly connected min-

imal orientations which are in bijection with external spanning trees counted by T (0,1).

7. The wvg-connected acyclic orientations are in bijection with internal spanning trees
counted by T(1,0).

Theorem 7.18 is illustrated by Figure 135. The enumeration of acyclic orientations by
T(2,0) was first established by Winder in 1966 [Wind 66] and rediscovered by Stanley 1973
[Stan 73]. The result of Winder was stated as an enumeration formula for the number of
faces of hyperplanes arrangements and was independently extended to reel arrangements by
Zaslavsky [Zasl 75| and to orientable matroids by Las Vergnas [Las 75]. The enumeration of
vo-connected acyclic orientations by T¢(1,0) was found by Greene and Zaslavsky [Gree 83].
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In [Gess 96], Gessel and Sagan gave a bijective proof of both results. In [Gebh 00], Gebhard
and Sagan gave three other proofs of Greene and Zaslavsky’s result. The enumeration
of strongly connected orientations by T¢(0,2) is a direct consequence of Las Vergnas’
characterization of the Tutte poynomial [Las 84b]. The enumeration of outdegree sequences
by T¢:(2,1) was discovered by Stanley [Bryl 91, Stan 80a]. The enumeration of vy-connected
orientations by T (1,2), the enumeration of vg-connected outdegree sequences by T (1,1)
and the enumeration of strongly connected outdegree sequences by T(0,1) were proved by
Gioan [Gioa 06].

Refinements. It is possible to refine the results of Theorem 7.18. For instance, we have
proved that the acyclic orientations of a graph G are counted by T¢(2,0). This is the sum
of the coefficients of the polynomial T (1 + x,0) (which is closely related to the chromatic
polynomial of ). Let us generically denote by [2]P(x) the coefficient of x* in a polynomial
P(z). The identities

Z[xi]Tg(l +2,0) = T¢(2,0) = [{acyclic orientations}|,
i€EN
and
Z[xi]Tg(x,O) = T¢(1,0) = [{vo-connected acyclic orientations}|,
1€EN
make it appealing to look for a partition of the acyclic orientations (resp. root-connected
acyclic orientations) in parts of size [z']Tg(1 + z,0), i > 0 (resp. [2']Tg(x,0)). Such
partitions were defined by Lass in [Lass 01] using set functions algebra. More generally,
one can try to interpret the coefficients of T (x,1), Tg(1 + z,1), Tg(z,2), Ta(l + z,2)
etc. in terms of orientations in order to interpolate between the different specializations
Tc(i,7),0 <1i,5 < 2. Observe that the coefficients of each of these polynomials can be given
an interpretation in terms of subgraphs. For instance, [2¢]T (1 + z,0) counts internal forests
with 4 + 1 trees (by Theorem 6.3 and Lemma 6.2) and [2‘]T(x,0) counts internal spanning

trees with ¢ internal embedding-active edges (by Theorem 5.5).

We will give an interpretation of the coefficients [2]Tg(1+x,j) fori > 0 and j = 0,1,2 in
terms of orientations. Let O be an orientation. We define the partition of the vertex set V into
root-components V = 4y, Vi as follows. The first root-component Vj is the set of vertices
reachable from the root—;elzcex vo. If Wi, = Up<i<kVi €V, we consider the minimal edge ey,
with one vertex in W, and one vertex vy in Wj (the edges are compared according to the
(G, T)-order, where T = A(¥(0))). Then, the (k + 1) root-component is the set of vertices
in W}, that are reachable from vy. For instance, the root-components have been indicated for
the orientation in Figure 138 (left). It is clear that vg-connected orientations have only one
root-component. Given a vg-connected orientation O, we define the partition of the vertex set

V into root-strong-components V = &Jogigk U; as follows. The first root-strong-component
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Uy is the set of vertices that can reach the root-vertex vo. If Wy, = Up<i<rU; C V', we consider
the minimal edge ej with one vertex in W}, and one vertex vy in Wy. Then, the (k + 1)
root-strong-component is the set of vertices in W, that can reach v;. For instance, the root-

strong-components have been indicated for the vg-connected orientation in Figure 138 (right).

Vi cs J!

€9 N
p V2 U2C €1
" 78 B
hO €1 Vl €9 hO UO

Figure 138: Left: root-components of an orientation. Right: root-strong-components of a
vo-connected orientation. The thick edges correspond to the subgraph associated with the

orientation by the bijection U.

Theorem 7.19 Let G be an embedded graph and let vy be the root-vertex. The coefficient
[2Ta(1 + z,2) (resp. [2)|Tg(1 + x,1), [#%)Tg(1 4+ x,0)) counts orientations (resp. minimal
orientations, acyclic orientations) with i + 1 (non-empty) root-components. The coefficient
[T (z,2) (resp. [2%)Tg(x,1), [2']TG(z,0)) counts vo-connected orientations (resp. minimal
vo-connected orientations, acyclic vg-connected orientations) with i + 1 (non-empty) root-

strong-components.

As mentioned above, the coefficients [2]Tg(1 + ,0) and [2"]Tg(x,0) had already been
interpreted by Lass in [Lass 01]. We now prove Theorem 7.19.

Lemma 7.20 Let G be an embedded graph and let O be an orientation. We consider the
spanning tree T = A(V(O)) and compare the half-edges and edges according to the (G,T)-
order. Let Vy, ...,V be the root-components and let W; = Ug<;<; V. Let D; fori=1...k be
the cut defined by W;_1 and let e; be the minimal edge in D;. Then, an edge is minimal in a

head-min directed cocycle if and only if it is in the set {eq,...,ex}.

Proof:

e We first prove that for all 1 <i < k the edge ey, is minimal in a head-min directed cocycle.
Clearly, every edge in the set D; is directed toward the vertices in W;_;. Let v; be the
endpoint of e; = epin(D) which is not in W;_;. Let X; be the set of vertices contained in the
connected component containing v; once the cut D is removed. The set D of edges with one

endpoint in W;_; and one endpoint in X; is a directed cocycle contained in D;. Thus, the
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edge e; is minimal in the directed cocycle D directed toward W;_q. Since the cocycle D is
directed toward the component containing the root-vertex, it is head-min by Lemma 7.3.

e Consider an edge e minimal in a head-min directed cocycle D. We want to prove that e is
in {e1,...,ex}. Let Go and Gy be the connected components after the cocycle D is removed
with the convention that Gy contains the root-vertex vy. The directed cocycle D is head-min,
hence it is directed toward Gy by Lemma 7.3. Let ¢ be the first index such that the root-
component V; contains a vertex v of G1. The cocycle D is directed toward Gy, hence no edge
of Gy is reachable from vy and the index 7 is positive. Let u; and v; be the endpoints of e;
in W;_, and W,;_; respectively. By definition, the endpoint u; is in Go. Moreover, the vertex
v € Gq is reachable from v;, hence the endpoint v; is in G;. Thus, the edge e; is in D and
e; > e = epin(D). We will now prove that e; < e. The subset of vertices W;_; contains the
root-vertex and the subset of edges D; separate W;_; and W,_1, hence every edge with one
endpoint in W;_; is greater than e; = emin(D;) by Lemma 7.3. The edge e has one endpoint

in G1 € W;_1, hence e; < e. Thus, e = ¢;. 0

Here is a counterpart of Lemma 7.20 for root-strong-components.

Lemma 7.21 Let G be an embedded graph and let O be a vg-connected orientation. We
consider the spanning tree T = A(V(O)) and compare the half-edges and edges according to
the (G,T)-order. Let Uy, ...,Uy be the root-strong-components and let W; = Up<;<;U;. Let
D; fori=1...k be the cut defined by W;_1 and let e; be the minimal edge in D;. Then, an

edge is minimal in a directed cocycle if and only if it is in the set {eq,...,ex}.

Proof: The proof of Lemma 7.21 very similar to the proof of Lemma 7.20 and is left to the

reader.
O

Proof of Theorem 7.19.

e We first prove that the coefficient [2|Tg(1+ x,2) (resp. [2']T(1 + z,1), [2']Te(1 + 2,0))
counts orientations (resp. minimal orientations, acyclic orientations) with i + 1 root-
components. Let T be a spanning tree with Z(7") internal and £(T") external (G, T)-active
edges. By Lemma 6.2, the coefficient [27](1 + 2)Z(T)28(T) counts the subgraphs S in the tree-
interval [T, T"] having i edges in SNT. Given that the tree-intervals form a partition of the
set of subgraphs, the coefficient [27] >, spanning tree (1 2)HT28(T) counts the subgraphs S
having i edges in S N A(S). Moreover, by the characterization (84) of the Tutte polynomial,
the sum 3" (1 + ) 21257 is equal to T (1+2,2). Similarly, the coefficient [27)T(1+,1)
(resp. [2%]Tg(1+x,0)) counts the forests (resp. internal forests) S having i edges in SNA(S).
By Theorem 7.18 and Lemma 6.16, the coefficient [z|Tg(1 + z,2) (resp. [2|Tg(1 + z,1),
[z]Te(1 + 2,0)) counts the orientations (resp. minimal orientations, acyclic orientations)

having exactly ¢ edges which are minimal in some head-min directed cocycle. Moreover, by
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Lemma 7.20, an orientation has ¢ edges which are minimal in some head-min directed cocycle
if and only if it has ¢ + 1 root-components.

e We now prove that the coefficient [x'|Tg(x,2) (resp. [%|Tg(z,1), [2']Te(x,0)) counts vo-
connected orientations (resp. minimal vo-connected orientations, acyclic vo-connected ori-
entations) with © + 1 root-strong-components. Let T be a spanning tree with Z(7') internal
(G, T)-active edges and E(T') external (G,T)-active edges. By Lemma 6.2, the coefficient
[21]2Z(T)28(T) is the number of connected subgraphs in the tree-interval [1'—, 7] if Z(T) = i
and 0 otherwise. Given that the tree-intervals form a partition of the set of subgraphs,
the coefficient [z°] > 1 spanning tree zTM28(T) counts the connected subgraphs S such that the
tree T' = A(S) has i internal (G, T)-active edges. Moreover, by the characterization (84) of
the Tutte polynomial, the sum ). 2ZM2E(T) ig equal to Te(x,2). Similarly, the coefficient
[Te(x,1) (vesp. [2%)Tg(w,0)) counts the spanning trees (resp. internal spanning trees)
T having i internal (G,T)-active edges. By Theorem 7.18 and Lemma 7.7, the coefficient
[T (z,2) (vesp. [2Y]Tg(z,1), [¢']Tg(x,0)) counts the vg-connected orientations (resp. min-
imal vp-connected orientations, acyclic vo-connected orientations) having exactly ¢ edges which
are minimal in some directed cocycle. Moreover, by Lemma 7.20, an orientation has ¢ edges

which are minimal in some directed cocycle if and only if it has ¢ + 1 root-strong-components.

0

One specialization of this result is of special interest: the coefficient [2!]T¢(x,0) counts
bipolar orientations. Given two vertices u and v, a (u,v)-bipolar orientation is an acyclic
orientation such that u is the unique source and v is the unique sink. The bipolar orientations
are of crucial importance for many graph algorithms [Mend 94]. Moreover, a bijection be-
tween spanning trees of ordering-activities (1,0) and bipolar orientation is the building block
used in [Gioa 05] in order to define a general activity preserving correspondence between

spanning trees and orientations.

Proposition 7.22 Let G be an embedded graph, let vy be the root-vertex and let v, be the other
endpoint of the root-edge. The mapping ® establishes a bijection between the spanning trees
having embedding-activities (Z(T),E(T)) = (1,0) (counted by [z']Tg(x,0)) and the (vo,v1)-

bipolar orientations.

Proposition 7.22 is illustrated by Figure 139.

Proof: Observe first that an acyclic orientation O is (vg, v1)-bipolar if and only if any vertex
is reachable from vy and can reach v;. By Theorem 7.19 the coefficient [21]Tg(x,0) counts
acyclic vg-connected orientation having 2 root-strong-components. No vertex v # v can reach
vp in an acyclic vg-connected orientation (there would be a directed path from vy to v and

back). Hence the first root-component Uy of an acyclic vg-connected orientation is reduced
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Vo U1

Figure 139: A bipolar orientation and the corresponding spanning tree (indicated by thick

lines).

to {vo}. The minimal edge with one endpoint in Uy = {vg} and one endpoint outside U
is the root-edge. Hence an acyclic vg-connected orientation has 2 root-strong-components if
and only if every vertex can reach v1. Thus, the coefficient [2!]T¢(x,0) counts (vg,v1)-bipolar

orientations.

0

7.7 Concluding remarks

7.7.1 The cycle and cocycle reversing systems

Let us consider the cycle reversing system and the cocycle reversing system. A transition
in the cycle (resp. cocycle) reversing system consists in flipping a directed cycle (resp.
cocycle). The cycle and cocycle reversing systems appear implicitly in many works (e.g.
[Fels 04, Fray 01, Prop 93, Boni 05]). The cycle-cocycle reversing system in which a transition
consists in flipping either a directed cycle or a directed cocycle was introduced in [Gioa 06].
It was observed in this paper that the cycle and cocycle flips are really independant since
they act on the cyclic part and acyclic part respectively and do not modify the other part.
It is known from [Prop 93] that there is a unique wvp-connected orientation (equivalently,
orientation without head-min directed cocycle by Lemma 7.4) in each equivalence class of
the cocycle reversing system. The counterpart of this property for the cycle reversing system
is given by Proposition 7.11. Indeed, it is clear from Lemma 7.12 that the equivalence classes
of the cycle reversing system are in one-to-one correspondence with outdegree sequences.
Thus, Proposition 7.11 proves that there is a unique minimal orientation (that is, orientation
without tail-min directed cycle) in each equivalence class of the cycle reversing system. Since
the cycle and cocycle flips are really independant, there is a unique vg-connected minimal
orientation in each equivalence class of the cycle-cocycle reversing system.

As observed in [Gioa 06], the enumerative results of Theorem 7.18 can be expressed in
terms of cycle/cocycle reversing systems. For instance, the equivalence classes of the cocycle
reversing system (in bijection with minimal orientations) are counted by T¢(1,2), the

equivalence classes of the cocycle reversing system reduced to one element (equivalently, the
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stongly connected orientations) are counted by T(0,2) etc.

7.7.2 Algorithmic applications

The bijections exhibited in this chapter have interesting applications in the framework of
random sampling. Indeed, the bijection ® allows us to turn a random sampling algorithm for
a class of subgraphs (e.g. spanning trees, forests, internal subgraphs) into a random sampling
algorithm for the corresponding class of orientations (see Theorem 7.18). The bijection ¥
allows us to perform the converse operation.

We have seen in the previous chapter (Subsection 6.4.2) that in certain cases the mappings
® and ¥ could be performed in linear time. Hence, in these cases there is no increase of
complexity in the transfer between subgraphs and orientations. In particular, in the planar
case any random sampling algorithm for a class of subgraphs gives a random sampling algo-
rithm with the same complexity for the corresponding class of orientations and conversely.
Moreover, the mapping ® restricted to forest can always be performed in linear time. Hence,
any algorithm for the random generation of forests (resp. spanning tree [Wils 96]) gives an
algorithm for the random generation of outdegree sequences (resp. wvg-connected outdegree

sequences) with the same complexity.



Chapter 8

A bijection between spanning trees
and recurrent sandpile

configurations

Abstract: We define a bijection between spanning trees and recurrent configurations of the
sandpile model. The image of any spanning tree having k external embedding-active edges
is a recurrent configuration at level k. This gives a new bijective proof that the coefficient of
y* in the specialization T (1,y) of the Tutte polynomial counts the recurrent configurations
at level k. (This result of Merino [Meri 97] was already proved bijectively by Cori and Le
Borgne [Cori 03].) In the previous chapter, we established a bijection between spanning
trees and root-connected outdegree sequences. Combining our results, we obtain a bijection
between recurrent configurations and root-connected outdegree sequences which leaves the

configurations at level 0 unchanged. This answers a question raised by Gioan [Gioa 06].

Résumé : Nous définissons une bijection entre les arbres couvrants et les configurations
récurrentes du modele du tas de sable. L’image d’un arbre couvrant ayant k arétes externes
actives par plongement est une configuration récurrente au niveau k. Cela constitue une
nouvelle preuve bijective du fait que le coefficient de y* dans la spécialisation Tg(1,y) du
polynéme de Tutte compte les configurations récurrentes au niveau k. (Ce résultat du a
Merino [Meri 97] avait déja été prouvé bijectivement par Cori et Le Borgne [Cori 03]). Dans
le chapitre précédent, nous avons établi une bijection entre les arbres couvrants et les suites
de degrés racine-accessibles. En combinant nos résultats nous obtenons une bijection entre
les configurations récurrentes et les suites de degrés racine-accessibles qui laisse inchangées

les configurations au niveau 0. Nous répondons ainsi & une question posée par Gioan [Gioa 06].

207
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8.1 Introduction

In this chapter we deal with the sandpile model (a short introduction to this model is
given in Subsection 4.1.4). The sandpile model was originally defined in statistical physics
[Bak 87, Dhar 90]. It appeared independently in combinatorics as the chip firing game
[Bjor 91]. In this model, a configuration is an attribution of a non-negative integer to
each vertex of the graph: the number of sand grains on this vertex. A vertex having a
number of sand grains not less than its degree can topple and send a grain through each
of the incident edges. The sandpile model is appreciated in physics because it provides an
analytically tractable model of self-organized criticality. The sandpile model is also studied in
combinatorics for its algebraic properties. Indeed, the formal sum of configurations (that is,
the vertex by vertex sum of the number of sand grains) induces a group structure displaying
interesting properties [Cori 00]. Recurrent configurations play an important role in the sand-
pile model. From the physical point of view, the recurrent configurations are the one that can
be observed after a long period of time. Moreover, from the algebraic perspective, each el-

ement of the group defined by the sandpile model is associated with a recurrent configuration.

It is known that the recurrent configurations of the sandpile model on G are counted
by T:(1,1) [Dhar 92]. Observe that this is the number of spanning trees. The following
refinement is also true: the coefficient of y* in Tg(1,y) is the number of recurrent config-
urations at level k [Meri 97]. A bijective proof of this result was given in [Cori 03]. We
give an alternative bijective proof based on the characterization of the Tutte polynomial
via embedding-activities. We also answer a question of Gioan [Gioa 06] by establishing
a bijection between recurrent configurations of the sandpile model and root-connected

outdegree sequences that leaves the configurations at level 0 unchanged.

In Section 8.2, we define a mapping A from spanning trees to configurations of the sandpile
model. We prove that the image of any spanning tree is a recurrent configuration. In Section
8.3, we define a mapping T from recurrent configurations to spanning trees. The mapping T
is reminiscent of the burning algorithm introduced by Dhar in order to distinguish between
recurrent and non-recurrent configurations [Dhar 90]. We proceed to prove that A and Y are

inverse bijections between spanning trees and recurrent sandpile configurations.

8.2 A bijection between spanning trees and recurrent config-
urations
In chapter 5 (Section 5.5), we defined a mapping A : 7' +— Sy from spanning trees to config-

urations of the sandpile model. Recall from Definition 5.11 that the number of grains S7(v)

on the vertex v in the configuration Sy = A(T) is the number of tails plus the number of
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external (G, T)-active heads incident to v in the orientation O = ®(T). In this chapter, we
prove that the mapping A is a bijection between spanning trees and recurrent configurations
of the sandpile model. From now on, the recurrent configurations of the sandpile model are

simply called recurrent configurations .

Theorem 8.1 Let G be an embedded graph. The mapping A : T — St is a bijection between

the spanning trees and the recurrent configurations of G.

Let G = (V,E) be the graph underlying the embedding G. Observe that the level of
the configuration St , that is, > .y Sr(v) — |E|, is the number of external (G,T)-active
edges. Indeed, every edge of G has contribution 1 to the sum ), Sr(v) except the external

(G, T)-active edges which have contribution 2.

Corollary 8.2 Let G be an embedded graph. The number of recurrent configurations at level

i is the number [y*|Ta(1,y) of spanning trees having i external (G, T)-active edges.

As mentioned above, Corollary 8.2 is not new. It was first proved recursively in [Meri 97]
and then bijectively in [Cori 03] (by using the order-activities of Tutte [Tutt 54]). The
Theorem 8.1 and Corollary 8.2 are illustrated by Figure 140.

0 1 0 1 1
3é1 3&0 3%2 361 3@2
ho

Figure 140: The spanning trees (thick lines) and the corresponding recurrent configurations.

The external active edges are indicated by a .

We first prove that the image of any spanning tree is a recurrent configuration.

Proposition 8.3 Let G be an embedded graph. For any spanning tree T, the configuration

St = A(T) is a recurrent configuration.

Proof: Let vy be the root-vertex. We consider the orientation O7 and prove successively the
following properties.

e The configuration St is stable. Let v be any vertex distinct from vg. We want to prove that
Sr(v) < deg(v). Observe that any half-edge incident to v has contribution at most one to
St (v). Moreover, the half-edge h,, incident to v and contained in the edge of T" linking v to its
father is a head by Lemma 5.6. Thus, h, has no contribution to St(v), and Sr(v) < deg(v)—1.
o S7(vo) = deg(vg). We must prove that every half-edge incident to vy has contribution 1 to
Sr(vp). By Lemma 5.6, the internal edges are oriented from father to son in Op. Therefore
any internal half-edge incident to v is a tail, hence has contribution 1 to S7(vg). Let h be an

external half-edge incident to vg. By definition, if the half-edge h is greater than the half-edge
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h' = a(h), then h is a tail. Else, the edge e = {h,h'} is (G, T)-active by Lemma 5.8 (since the
endpoint vg of h is an ancestor of the endpoint of ). Thus, any external half-edge incident
to vy has contribution 1 to Sy (vg).

e The configuration St is recurrent. We want to prove that there is a labeling of the vertices
o, V1, - - -, Vjy|—1 such that the sequence of topplings St SEY ”‘Y_':lSF}V‘ is valid. Ob-
serve that in this case the configuration St is recurrent. Indeed, the final configuration S|TV|
is equal to St since every vertex v has been toppled once, hence has sent and received exactly
deg(v, *) grains during the sequence of topplings (recall that deg(v,*) is the number of non-
loop edges incident to v). In Chapter 7, we defined a linear order, the postfiz order, on the
vertex set V' (see Lemma 7.10). The root-vertex v is the maximal element for this order. We
want to prove that taking the unique labeling such that vg > vy > -+ > v}y for the postfix
order, the sequence of topplings Sy *° S+ 1 - ”‘Y_':lSF}V‘ is valid. From the preceding point,
the toppling of vy is valid. Suppose that the sequence Sy *° S} ”% -+ "=} St is valid. After
these topplings, the number of grains on the vertex v; is Sh(v;) = Sp(v;) + ZKZ- deg(vi, v;)
(recall that deg(v;,v;) is the number of edges linking v; and v;). We want to prove that v; can
be toppled, that is, S&(v;) > deg(v;). By Lemma 7.10, any arc Op(e) is directed toward its
least endpoint (for the postfix order) unless e is external (G, T')-active. Let h be an half-edge
in an edge linking v; to a vertex vj, j > 4. The vertex v; is less than or equal to v; for the
postfix order, hence h is either a tail or an external (G, T')-active half-edge. In both cases, the

half-edge h has contribution 1 to S (v;). Hence,

ST(’UZ') > Z deg(vi, Uj).

j>i
Thus,

Si(vi) = Sp(vy) + Y _ deg(vi,v;) > Y _ deg(v;, v;) = deg(v;)
Jj=>i Jj=0
and v; can be toppled. By induction, the sequence of topplings Sy *° S+ "% --- ”‘Y_':lSF}V‘ is

valid. -

It remains to prove that A : T — Sp is a bijection between the spanning trees and
the recurrent configurations. This will be done in the next section by defining the inverse

mapping Y.

8.3 The inverse bijection

In this section we define a mapping T that we shall prove to be the inverse of A. This
mapping Y is a variant of the burning algorithm introduced by Dhar in order to distinguish
between recurrent and non-recurrent configurations [Dhar 90]. The spanning tree returned

by the algorithm can be seen as the path through which the fire (the sequence of topplings)
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propagates. The intuitive principle of the algorithm is to decompose each toppling and
consider its effect grain after grain. When a grain makes another vertex topple, we add the
edge by which the grain has traveled into the tree. Different variants of this algorithm have
been proposed [Cori 03, Cheb 05]. These variants differ by the rule used for choosing the
next grain to be sent, and also differ from the procedure T given below. Let us insist that

these variants are really unequivalent.

If v is a vertex and F' C E be a subgraph, we denote by degp(v) the degree of v in the
subgraph F'.

Definition 8.4 Let G = (H,o0,a, hg) be an embedded graph. The mapping T associates with
a recurrent configuration S of the sandpile model the spanning tree defined by the following
procedure.
Initialization: Initialize the current half-edge h to be hl, = o~ '(hg). Initialize the tree T
and the set of visited edges F' to be empty.
Core: Do:
C1: Let e be the edge containing h, let u be the vertex incident to h and let v be the other
endpoint of e.
If e is not in F, then
- Add e to F.
- If u is not connected to v by T and S(v) + degp(v) > deg(v) then
Adde toT.
C2: Mowe to the next half-edge clockwise around T :
If e is in T, then set the current half-edge h to be o~ 'a(h), else set it to be =1 (h).
Repeat until the current half-edge h is hy.
End: Return the tree T'.

Observe that during the procedure T our motion (step C2) around the spanning tree is
reverse (compared to our previous algorithms). This way of visiting the half-edges would be

the usual tour of the spanning tree in the embedded graph G’ = (H,o™ 1, a, hy).
We represented the intermediate steps of the procedure T in Figure 141.

We will now prove that T and A are inverse bijections. We first prove that the mapping
T is well defined on recurrent configurations and returns a spanning tree (Proposition 8.5).

Then we prove that T and A are inverse mappings (Propositions 8.12 and 8.13).

Proposition 8.5 The procedure Y is well defined on recurrent configurations and returns a

spanning tree.
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Figure 141: The mapping Y. Some intermediate steps of the procedure are represented in the
middle line. The set F' of unvisited edges is indicated by dashed lines. The number associated
to each vertex v is equal to S(v) 4+ degr(v). In the bottom line are represented the burning

algorithm representation of each of the intermediate steps.

Lemma 8.6 Let S be a recurrent configuration. Then, at any time of the execution of the

procedure T on S, the endpoint u of the current half-edge h is connected to vg by T.

Proof: The property holds at the beginning of the execution. Clearly, it remains true each

time a step C2 is performed. 0

Proof of Proposition 8.5. Let S be a recurrent configuration. We denote by Y[S] the
execution of the procedure YT on §. We prove successively the following properties on the
execution Y[S].

o At any time of the execution, the subgraph T is a tree incident to vg. The property holds
at the beginning of the execution. Suppose that it holds at the beginning of a given core step
and consider the edge e with endpoints v and v containing the current half-edge. If the edge
e is added to T', the subgraph T remains acyclic since u is not connected to v by T'. Moreover
the subgraph T remains connected and incident to vg since (by Lemma 8.6) the vertex u is
connected to vg by T

e No half-edge is visited twice, hence the execution terminates. Suppose that a half-edge h is
visited twice during the execution. We consider the first time this situation happens. First
note that h # h(, or the execution would have stopped just before the second visit to h. Let
hy1 and ho be respectively the current half-edge just before the first and second visit to h..
Let T7 and 15 be the trees constructed by the procedure T at the time of the first and second
visit to h. Let e be the edge containing o~ 1(h). For i = 1,2 we have h = o~ la(h;) if e is in
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T; and h = o~ !(h;) otherwise. Since hi # hy and T} C T5, the edge e is in Ty but not in T3.
This is impossible since after the visit of h; the edge e is in F' and cannot be added to the
tree T' anymore.

We denote by Ty the tree returned by the execution Y[S] and by Fj the set of visited edges
at the end of this execution.

o Ife={hy,ha} is an edge in Ty = Y(S) and the endpoint of hy is the father of the endpoint
of ha, then hy is visited during the execution Y[S]. Consider the core step at which the edge
e is added to the tree T'. Let h be the current half-edge, let u be the vertex incident to A and
let v be the other endpoint of e. By Lemma 8.6, the vertex u is connected to vg by T' C Ty —e,
hence u is the father of v. Hence hy = h is visited during the execution Y.

o At the end of the execution, any edge adjacent to Ty is in Fy. We want to show that any
half-edge incident to T is visited during the execution Y[S]. First observe that no edge can be
added to T after its first visit. Therefore, when a step C2 is performed, the edge e containing
the current half-edge is in T if and only if it is in Tj. Let h be a half-edge incident to T which
has not been visited during the execution Y. If the half-edge o ~!(h) is not in Tp then it has
not been visited (or A would have been the next half-edge visited during the execution). Thus
by applying 0! repeatedly we find an unvisited half-edge h such that o ~!(h) is in Ty. Then,
the half-edge ao~!(h) has not been visited during the execution Y (or h would have been the
next half-edge visited during the execution). Thus (by the preceding point) the endpoint of
ao~t(h) is the son of the endpoint of c~1(h). We have proved that if there is an unvisited
half-edge h incident to Ty, then there is an unvisited half-edge incident to one of its sons in
To. We reach an impossibility.

e The tree Ty = Y(S) is spanning. Let vy, vy, ... ,Vjv|—1 be a labeling of the vertices such that
the sequence S ™ S' " ... WI=1 8Vl ig valid. In the configuration S;, the number of sand
grains on the vertex v; is S¢(v;) = S(v;) + > j<ideg(vj,v;) and is more than the degree of v;.
Suppose now that the tree T is not spanning and consider the least index ¢ such that v; is
not connected to vy by T. Each vertex v; for j < ¢ is incident to 7', hence (by the preceding
point) every edge joining v; and v; is in Fy. Moreover v; is adjacent to at least one of the
vertices vj,j < i since S(v;) is less than its degree and S%(v;) is not. Consider the last edge
e (in order of visit) joining v; to a vertex vj,j < i. When the edge e is visited, we have
degp(vi) > >, deg(vi,v;). Therefore, the condition S(v;) + degp(vi) > deg(v;) holds and

the edge e should have been added to the tree T. We reach a contradiction. .

We proceed to prove that A and T are inverse mappings.

Lemma 8.7 Consider a given core step of the procedure Y. Let e be the edge containing the
current half-edge h and let v be the endpoint of a(h). If the edge e is added to T, then the
inequality S(v) 4+ degp(v) > deg(v) (tested in the procedure Y ) is an equality.

Proof: Observe first that the vertex v is distinct from vg, otherwise adding e to the tree T
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would create a cycle by Lemma 8.6. While v is not connected to vy by 7', it is not the endpoint
of the current half-edge h (Lemma 8.6). Thus, each time the quantity deg(v) increases, that
is, each time an edge incident to v is added to F, the condition S(v) + degp(v) > deg(v) is

tested and the edge is added to T if the condition holds.
O

Lemma 8.8 Let G = (H,o0,a,hg) be an embedded graph and let T be a spanning tree. We
consider the (G,T)-order on half-edges. Let v be a vertex distinct from vy and let h, be the
half-edge incident to v in the edge of T linking v to its father. Any half-edge h incident to v
and such that a(h) > h,, is external. Moreover, there are deg(v) — St(v) — 1 such half-edges.

Proof: We consider the orientation Op. Recall from Lemma 5.6 that «(h,) < h, and that
the half-edges h incident to a descendant of v are characterized by a(h,) < h < h,. In
particular, the inequalities «(h,) < h < h, hold for the half-edges incident to v. We now
prove successively the following properties.

e Any half-edge h incident to v and such that a(h) > h, is external. Suppose that the half-
edge h is internal and consider the edge e containing h. If e links v to its father, then h = h,
and a(h) = a(hy) < hy. If e links v to one of its sons, then a(h) is incident to a descendant
of v and a(h) < h,. In either cases, the hypothesis a(h) > h, does not hold.

e An external half-edge h incident to v is a non-active head if and only if a(h) > h,. The
three following properties are sufficient to prove the equivalence:

- If h is a tail then a(h) < h,. Indeed, we have a(h) < h since h is a tail and h < h,, since h
is incident to v.

- If h is a head and a(h) < hy, then h is (G,T)-active. Since h is a head, we have h < a(h)
hence, a(h,) < h < a(h) < hy. Thus, a(h) is incident to a descendant of v and the edge
e ={h,a(h)} is (G, T)-active by Lemma 5.8.

- If h is a head and a(h) > h, then h is not (G,T)-active. Since h is a head we have
h < a(h). Since a(h) > h,, the half-edge a(h) is not incident to a descendant of v and the
edge e = {h,a(h)} is not (G, T)-active by Lemma 5.8.

e There are deg(v) — Sp(v) — 1 half-edges h incident to v and such that «(h) > h,. By
definition, St (v) is the number of tails plus the number of external (G, T')-active heads incident
to v. Hence, deg(v) —St(v) is the number of heads incident to v which are not external (G, T')-
active. By Lemma 5.6, internal edges are oriented from father to son. Hence, the vertex v
is incident to exactly one internal head. Thus deg(v) — St(v) — 1 is the number of external
non-active heads. By the preceding point, these half-edges are characterized by the condition

a(h) > hy.
U

We now define the clockwise-tour of a tree. Let G = (H, 0, a, hg) be an embedded graph.



8.3. THE INVERSE BIJECTION 215

Given a spanning tree T', we define the clockwise-motion function T on half-edges by
7(h) = o a(h) if h is internal and 7(h) = o' (h) otherwise.

As observed above, the clockwise-motion function 7 is the usual motion function for the
embedded graph G—! = (H,07 !, a,071(hg)). This defines the (G~!,T)-order on the half-
edge set H for which hjy = 0~ !(hg) is the least element. The (G, T)-order denoted by < and
the (G~1, T)-order denoted by <! are closely related.

Lemma 8.9 Let G be an embedded graph and let T be a spanning tree. The (G,T)-order and
(G, T)-order are related by h < h' if and only if B(h') <! B(h), where B is the involution
defined by B(h) = h if h is external and $(h) = a(h) otherwise.

Proof: Let ¢ be the usual motion function and let 7 be the clockwise-motion func-
tion. Observe that t3 = o and 78 = o~ '. Thus, 7 = Bt~ !3. Let us write t =
(ho,h1, ..., hygj—1) in cyclic notation. Then t—1 = (hf|=15- -+ h1,ho) and T = Bt—13 =
(B(hm|-1),-- -, B(h1), B(ho)). Moreover, of(hjp—1) = t(hju—1) = ho, hence B(hjy—1) =

b = 0 Y(ho). Therefore, h; < h; if and only if i < j if and only if B(h;) <~ B(h;). 0

Lemma 8.10 Let S be a recurrent configuration and let Ty = Y(S) be the spanning tree
returned by the procedure Y. The half-edges of G are visited in (G~1,Ty)-order during the

procedure Y.

Proof: During the procedure T, no edge can be added to the tree T after its first visit.
Therefore, when a step C2 is applied, the edge e containing the current half-edge is in T
if and only if it is in Ty. Hence, a step C2 corresponds to an application of the clockwise-
motion function 7 of the spanning tree Ty. Since the first visited half-edge is hy = o1 (ho),

the half-edges are visited in (G, Tp)-order. 0

Lemma 8.11 Let G be an embedded graph and let T be a spanning tree. Let v be a vertex
distinct from vy and let e, be the edge of T linking v to its father. There are deg(v)—Sr(v)—1

edges incident to v and less than e, for the (G—1,T)-order.

Proof: Let h, be the half-edge of e, incident to v. Let h # h, be a half-edge incident to v
and let e be the edge containing h. We prove successively the following properties.

e The edge e is less than e, if and only if a(h) <~ ! a(h,). Moreover, in this case e is not a
loop. By Lemma 5.6 applied to the embedded graph G~!, the half-edges h incident to v are
such that a(h,) <=1 h <! h,. Hence, the edge containing h is less than e, for the (G~ T)-
order if and only if a(h) <~! a(hy). In this case, a(h) is not incident to v by Lemma 5.6,

that is, e is not a loop.
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e The conditions a(h) <=t a(hy) and a(h) > h, are equivalent. Moreover, there are deg(v) —
Sr(v) — 1 half-edges satisfying this condition. Suppose a(h) <~! a(h,). In this case, h
external. Indeed, h is not in e, and is not incident to a son of v by Lemma 5.6 applied to the
embedded graph G~!. Hence, by Lemma 8.9, we get a(h) > h,. Conversely, if a(h) > h,, the
edge e is external by Lemma 8.8, hence a(h) <! a(h,) by Lemma 8.9. Moreover, there are

deg(v) — Sr(v) — 1 half-edges satisfying this condition by Lemma 8.8. 0

Proposition 8.12 The mapping A oY is the identity on recurrent configurations.

Proof: Let S be a recurrent configuration and let 7' = Y(S). We want to prove that the
recurrent configuration Sp = A(T) is equal to S. We already know that Sp(vg) = deg(vg) =
S(vg) since Sy and S are recurrent configurations. Let v be a vertex distinct from vy and
let e, be the edge of T linking v to its father. Let F' be the set of visited edges when e, is
added to T' during the execution T[S]. We know that S(v) = deg(v) — degp(v) by Lemma
8.7. It remains to prove that Sy(v) = deg(v) — degp(v). By Lemma 8.10, the half-edges
are visited in (G, T)-order during the execution Y[S]. Therefore, the value deg(v) is the
number of edges incident to v which are less or equal to e, for the (G, T)-order. There
are deg(v) — Sp(v) such edges by Lemma 8.11. We obtain degp(v) = deg(v) — Sr(v), or

equivalently, Sp(v) = deg(v) — degp(v). Thus, Sp(v) = S(v). .

Proposition 8.13 The mapping Y o A is the identity on spanning trees.

Proof: Let Tj be a spanning tree. We denote by 77 = Y(Sz,) the image of Ty by T o A and
want to prove that 77 = Tp. Recall that every edge of G is visited during the execution Y[S,].
Hence, it is sufficient to prove that at the beginning of any core step of the execution Y[St,],
the tree T constructed by the procedure Y is To N F, where F' denotes the set of visited edges.
We proceed by induction on the number of core steps. The property holds at the beginning
of the first core step. Suppose that it holds at the beginning of the k' core step. If the edge
e containing the current half-edge is already in the set F' of visited edges, then the set F' and
the tree T' are unchanged during this core step and the property holds at the beginning of
the k + 1*" core step. Suppose now that the edge e is not in F' at the beginning of the k"
core step. By the induction hypothesis, the tree T' constructed by the procedure T is Ty N F.
Moreover, no edge is added to the tree T after its first visit, hence T = T7 N F. In other
words, the spanning trees Ty and 77 coincide on F'. By Lemma 8.10, the half-edges are visited
in (G, Ty)-order during the execution Y[Sr,], hence the edges visited before e during the
execution Y[Sr,] have been visited in (G~1,Tp)-order. Thus, the edges visited before e during
the execution Y[S7,] are the edges which are less than e for the (G, Ty)-order. Suppose now
that the edge e is in the tree Ty. In this case the endpoints v and v of e are not connected

by T' C Ty — e. Moreover, the value degp,.(v) which corresponds to the number of edges
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incident to v and visited before e during the execution Y[St,], that is, the edge which are less
or equal to e for the (G, Tp)-order, is deg(v) — S7;,(v) by Lemma 8.11. Thus, the condition
St,(v) + degp .(v) > deg(v) (tested by the procedure T) holds and the edge e is added to
the tree T'. Suppose now that e is not in Ty. In this case, the edge e, linking v to its father
in Tp is greater than e for the (G~',Tp)-order. Hence, the value degp.,.(v) is less or equal
to the number of edges incident to v which are less than e, for the (G~!,Ty)-order. Thus,
degp,.(v) < deg(v) — St (v) —1 by Lemma 8.11. The condition Sz, (v) +degp, (v) > deg(v)
(tested by the procedure T) does not hold, hence the edge e is not added to the tree T'. In

1th

any case, the property holds at the beginning of the k + core step.

O

This concludes our proof of Theorem 8.1.



218 CHAPTER 8. SPANNING TREES AND RECURRENT SANDPILE CONFIGURATIONS



Chapter 9
Perspectives

La combinatoire des cartes est un sujet riche et en plein renouvellement. Nous avons établi
des résultats énumératifs pour plusieurs familles de triangulations et jeté un pont entre le
polynome de Tutte et les cartes. Nous avons aussi exhibé des bijections qui résolvent de
vénérables énigmes combinatoires concernant les chemins de Kreweras, les cartes boisées et

I'interprétation en termes d’orientations de nombreuses évaluations du polynome de Tutte.

Certains résultats établis durant cette these appellent manifestement des développe-
ments ultérieurs. En premier lieu, le comptage récursif des triangulations effectué au
chapitre 1 a permis de montrer ’algébricité des séries génératrices de plusieurs familles
de triangulations. Les familles en considération sont doublements contraintes, c’est-a-dire
sont définies par des contraintes de degrés portant a la fois sur les sommets et sur les
faces. Les familles de cartes doublement contraintes sont souvent difficiles a énumérer et
I'on dispose d’assez peu d’information sur ces familles. Il serait pourtant intéressant de
préciser la frontiere de I’algébricité des cartes, c’est-a-dire de déterminer quelles contraintes

portant sur le degré des sommets et des faces donnent lieu & des séries génératrices algébriques.

Les bijections présentées au chapitre 2 permettent le comptage des triangulations et celui
des chemins de Kreweras arrivant en (0,0). Une évidente perspective consiste a chercher une
généralisation qui permette le comptage des triangulations d’un polygone a i + 2 cotés ou

des chemins de Kreweras arrivant en (7, 0).

Au chapitre 3, nous avons défini une bijection entre les cartes boisées (cartes dont un arbre
couvrant est distingué) et les couples formés d’un arbre et d’une partition non-croisée. Cette
bijection pourrait apporter un cadre unifié pour le comptage bijectif des cartes planaires.
Rappelons que, bien souvent, la premiere étape pour le comptage bijectif d’une famille de
cartes consiste a définir un arbre couvrant canonique pour chaque carte de cette famille. Nous

avons établi une bijection générale entre les arbres couvrants et les orientations minimales
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des cartes. Cette bijection a ensuite été étendue aux cartes de genre quelconque au chapitre
7. 1l devient donc possible de définir des arbres couvrants en termes d’orientations minimales
ou, de maniere équivalente, de suites de degrés sortants. Considérons, par exemple, la classe
des cartes planaires eulériennes (i.e. dont les sommets sont de degré pair). On peut définir
I’arbre eulérien d’une carte eulérienne comme 'arbre couvrant en bijection avec 'unique
orientation minimale telle que le degré sortant de chaque sommet soit égal a la moitié de son
degré total. Il est montré dans [Fusy 03] que Parbre eulérien est précisément ’arbre couvrant
utilisé dans [Scha 97] pour réaliser le comptage bijectif des cartes eulériennes par conjugaison
d’arbres. D’autre part, nous avons établi une bijection entre les cartes planaires munies
d’une orientation minimale et les couples formés d’un arbre et d’une partition non-croisée.
On peut espérer appliquer cette bijection a des familles de cartes particulieres en vue de
leur comptage bijectif. Par exemple, le comptage bijectif des cartes eulériennes pourrait étre
réalisé en caractérisant puis en comptant les couples (formés d’un arbre et d’une partition

non-croisée) associés aux cartes eulériennes munies de arbre couvrant eulérien.

Dans la troisieme partie de cette theése (chapitres 5 & 8) nous avons plongé le polynome
de Tutte au coeur de la combinatoire des cartes. Le projet naturel qui en découle est

I’énumération du polynome de Tutte des cartes, c’est-a-dire I’évaluation de la somme

SH(N7V): Z TC(N7V)7

CceC,

ou C,, est 'ensemble des cartes de taille n et T (i, v) est le polyndéme de Tutte de la carte
C'. Nous avons mentionné dans I'introduction de cette these (section 0.3) que le polynoéme de
Tutte est équivalent (a changement de variables pres) a la fonction de partition du modele
de Potts. La somme S, (u,v) est donc équivalente a la fonction de partition du modele de

Potts sur le réseau aléatoire de taille n.

Au chapitre 5, nous avons montré que le polynome de Tutte est égal a la série génératrice
des arbres couvrants comptés selon leurs activités de plongement. Ainsi la somme S,, peut
aussi s’écrire :

Sh (/L? V) = Z xI(CA)yg(CA)a

C'4 carte boisée

ou la somme porte sur l'ensemble des cartes boisées de taille n et Z(C4) (resp. £(Ca))
est l'activité de plongement interne (resp. externe) de la carte boisée C'4. Nous savons
que les cartes boisées sont en bijection avec les mélanges de deux mots de parenthéses
[Mull 67, Lehm 72]. Nous avons aussi prouvé au chapitre 3 que les cartes boisées sont en
bijection avec les couples formés d’un arbre et d’une partition non-croisée. Il est tentant

d’essayer d’évaluer la somme S, (11, V) en se basant sur I'une ou l'autre de ces bijections.



221

Nous venons de proposer une approche bijective pour I’énumération du polynéme de Tutte
des cartes. Alternativement, on peut aborder ce probleme avec une approche récursive. On

considere alors la série génératrice des cartes pondérées par leur polynome de Tutte

F(z,y) = F(z,y,z,mv) = > ol Oy @O0 (u,v),
CceC
ou |C|, f(C) et s(C) sont respectivement la taille, le degré de la face externe et le degré du
sommet racine de la carte C. Les propriétés de récurrence de polynome de Tutte permettent

[Tutt 71] de caractériser la série génératrice F'(x,y) par I’équation fonctionnelle

F(z,y) = 1+4+ayz(zp—1)F(z,y)F(x,1) + zyz xF(:U,Z)__lp(l,y)>
tayz(yy — ) F(z,y)F(1,y) + 2yz (yF(x, ;;)_—117(3:, 1)> |

Cette équation fait intervenir deux variables catalytiques x et y et est quadratique en les
séries inconnues F(z,y), F(z,1) et F(1,y). A ce jour, il n’existe pas de méthode pour la
résolution des équations non-linéaires a deux variables catalytiques. La littérature ne fournit
qu'un seul exemple d’équation non-linéaire a deux variables catalytiques ayant été résolue.
Cet exploit technique revient a Tutte (encore lui!) quiy consacra une série de 8 articles entre
1973 et 1982 [Tutt 73a, Tutt 73b, Tutt 73c, Tutt 73d, Tutt 74, Tutt 78, Tutt 82a, Tutt 82b].

L’équation résolue par Tutte concerne la série génératrice

P,
G(z,y) = G(z,y,2,0) = Y ol @y (@IC] C)E)\)’
ceqQ

de la classe Q des quasi-triangulations coloriées (pondérées par leur polynéme chromatique).
La résolution de Tutte qui est retracée dans l'article de synthese [Tutt 95] permet de passer

de I’équation fonctionnelle

G(z,y) = yz(A—1)+z2y2G(x,y)G(x,1) (95)
<G(%’7y) - G(07y)> 2 2 <G(l’7y) - G(=, 1)) ’

+yz —xyY“z
T y—1

a I’équation différentielle
H"(2)(Az +10H (2) — 6H'(2)) — 2232 + 2022 + A(4 — \)(20H (2) — 182H'(2) + 92°H" (2)) = 0,

Jo] s . s s . . .2 P,
caractérisant la série génératrice univariée H(z) = > TZ‘CV 3 C( ) de la classe T des

triangulations coloriées.

L’obtention d’équations fonctionnelles du type de (95) pour une famille de cartes coloriées
ne constitue pas un obstacle majeur. Nous avons établi des équations fonctionnelles pour de

nombreuses familles de cartes coloriées. Ces équations sont présentées dans ’annexe 9.1. Par
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contre, la résolution des équations fonctionnelles est pour le moins problématique. La méth-
ode de Tutte pour résoudre I’équation (95) des triangulations coloriées est assez alambiquée.
Nous allons tenter de donner un apergu de cette méthode sur d’autres objets qui nous sont
chers : les chemins de Kreweras. Nous ne prétendons pas, par cet exemple, démonter tous
les mécanismes de la méthode de Tutte mais simplement faire ressortir I'un des rouages clefs,
a savoir, I’élimination d’une des deux variables catalytiques par la méthode des invariants.

L’équation que nous nous proposons de résoudre s’écrit

<K@W%Jﬂﬁw>

X

K(z,y) =1+ zyzK(z,y,2) + 2

+Z<K@w)

— K(z,0)
y >’ (56)

et caractérise la série génératrice de la classe K de chemins de Kreweras

K(o,y) = Kla,g,2) = Y 00050,
reK
ou i(k), j(k), |k| sont respectivement l’abcisse et l'ordonnée du point d’arrivée et la
longueur du chemin k. L’équation (96) (qui s’obtient par une décomposition récursive
des chemins) est le point de départ du résultat énumératif de Kreweras [Krew 65] que
nous démontrons bijectivement au chapitre 2. Cette équation est linéaire (par rapport aux
séries K(z,y), K(0,y) et K(z,0)) et peut étre résolue par la méthode du noyau obstinée
[Bous 05a, Bous 02, Bous 03a]. Nous présentons ci-dessous la méthode des invariants inspirée

de [Tutt 95] qui constitue une méthode de résolution alternative.

La premiere étape de la méthode des invariants est similaire a celle de la méthode du
noyau (applicable pour les équations linéaires & une variable catalytique). On met en facteur

la série inconnue principale K (z,y) et on obtient
N(z,y) - K(z,y) = E(z,y), (97)
ou
N(z,y) = z(z +y + 2%y?) — a2y et E(z,y) = 22G(z,0) + yzG(0,y) — zy.

On cherche ensuite les séries S(x,z) dont la substitution & y annule le noyau N(x,y). Le
noyau étant quadratique, on trouve deux racines (exprimables par radicaux) qui sont des
séries de Laurent en la variable z :

Si(x,z) =z + o(z) et So(z,2) = % —1—0(%).

La méthode des invariants nécessite 'obtention de deux racines du noyau qui soient substi-
tuables dans I’équation (96) (contrairement & la méthode du noyau pour laquelle une seule
racine subtituable suffisait). Malheureusement, la série Sa(z,z) n’est pas substituable & y

dans la série K(z,y). Cette difficulté est contournée en imposant le changement de variable
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(brutal) consistant & remplacer x par la série S1(u,z).! Aprés cette substitution, le noyau

N(S1(u, z),y) est toujours quadratique en la variable y et admet deux racines

1 1
1(u,2) =u e 2(u, 2) 2(u, 2) - +O(z)’
substituables & y dans I’équation (97).
A ce stade, nous disposons de deux équations
N(S1,Y1)=0 et N(S1,Ys2) =0, (98)

liant les séries S1 = S1(u, 2), Y1 = Yi(u, z) et Yo = Ya(u, 2). En reportant ces équations dans

(97) on obtient deux équations supplémentaires
E(S1,Y1)=0 et E(S1,Ys) =0. (99)

Notons que les équations (98) et (99) ne font pas intervenir la série trivariée principale
K (z,y,z) mais seulement ses spécialisations K(0,y,z) et K(x,0,z). On peut également se
débarrasser de la série S7 en remarquant que le produit Y7Ys des racines du polynéme quadra-
tique N (S7,y) est égal a Si En utilisant cette égalité, I'expression du noyau et du second

1

membre deviennent )

zY z
N(S = —— — -
et
E(S1,y) = 2yK (0,9, 2) + ——K(——,0,2) — -2
1,Y) =2y 'Y, YiYVQ }/'1}/'27 ) Y1Y2.

Nous arrivons maintenant au coeur de la méthode des invariants de Tutte. Nous allons
convertir les équations (98) et (99) en une unique équation caractérisant la série K(0,y, 2) et

ne faisant intervenir qu’une seule variable catalytique .

Considérons une série I(u,y,z) en la variable z dont les coefficients sont des fractions
rationnelles en u et y. La série I(u,y, z) est un invariant si elle vérifie la relation I(u, Y7, 2) =
I(u,Ys,z). Un invariant I (u,y, z) est pur si il ne fait pas intervenir la variable u. Par exemple,
la série ﬁ + % est un invariant impur de méme que les séries N(S1,y) et E(S2,y). Notons
que les séries ne faisant pas intervenir la variable y sont des invariants et que la somme et le
produit d’invariants sont des invariants. Ces propriétés de cloture permettent de construire

des invariants purs a partir d’invariants impurs. Ainsi, en ajoutant l'invariant

zy?2 z Y 1 z

- —_I_ -,
Y2Y? P YWYa y WY,

1Ce changement de variable nous est apparu en tracant le diagramme des racines qui sert de point de départ

a la méthode du noyau obstinée [Bous 05a].
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a N(S1,y) on obtient I'invariant pur

z 1
I(y,2) == — 2y — —.
(v, 2) ) ;
De méme, en ajoutant I'invariant
z 1 Y 1
———K(—,0,2) + +=
1Y, (Yle ) iva y

a E(S1,y) on obtient I'invariant pur
1
J(y7 Z) = ZyK(Ov Y, Z) + &

Une technique pour la construction d’invariants purs a partir d’invariants impurs a été étudié
dans [Bern 03]. Précisons néanmoins que ce travail s’avere nettement plus complexe dans le

cas des équations fonctionnelles concernant les cartes coloriées.

La méthode des invariants s’appuie sur une propriété structurelle forte de ’espace des

invariants purs.

Lemme 9.1 (Invariants) Soit L(y,z) = Y, fu(y)2™ un invariant pur et soit k un entier
tel que pour tout n € N, f(y) =y—o0 O(yik) Alors, il existe des séries co(z),...,ck(z) telles
que L(y,z) = Zigk ci(2)J(y,2)".

Nous ne donnerons pas la démonstration du lemme des invariants qui n’éclairerait guere

notre propos. Ce lemme assure 'existence de trois séries formelles a(z), b(z), c(z) telles que
I(y,2) = a(2)J(y,2)" +b(2)J(y,2) + c(2). (100)

En comparant le développement des deux membres de cette équation pour y tendant vers 0,
on obtient
a(z) = z, b(z) =—1 et c(z) = —222G(0,y, 2).

En reportant ces identités dans (100), on montre que la série L(y) = G(0,y, z) vérifie ’équation

L(y) =1+ y22L(y)* + ZzM.

Cette équation a une variable catalytique peut étre résolue par la méthode générale présentée

dans I'introduction de cette these (sous-section 0.2.3). On obtient alors ’équation algébrique
6425K3 + 1623 K2 4 (1 — 722%)K + 542° — 1 =0,

caractérisant la série K = K (0,0, z) des chemins de Kreweras retournant en (0, 0).

Le lemme des invariants constitue la clef de voute de la méthode de Tutte pour la

résolution des équations a deux variables catalytiques. La méthode consiste a produire deux
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invariants purs indépendants puis a les relier grace au lemme des invariants. On obtient alors

une équation fonctionnelle & une variable catalytique? que I'on sait résoudre [Bous 05b].

Nous avons présenté la méthode des invariants sur I’exemple des chemins de Kreweras.
Notre projet est maintenant d’appliquer cette méthode aux équations fonctionnelles des cartes
coloriées présentées dans 'annexe 9.1. Au dela des cartes coloriés, nous aimerions énumérer
les cartes pondérées par leur polynome de Tutte. Ce projet a de multiples facettes et des
applications importantes. Lorsque Tutte entreprit le comptage des cartes coloriées, il avait
en téte de prouver le théoreme de quatre couleurs par une approche quantitative. Depuis
lors, les motivations se sont déplacées du coté de la physique, autour du modele de Potts sur
réseau aléatoire. Ce modele suscite beaucoup d’intérét en physique statistique. D’autre part,
le type d’équation auquel conduit ’approche récursive des cartes coloriées constitue le point
d’achoppement de nombreuses questions sur les cartes. Une meilleure compréhension des
techniques pouvant s’appliquer a ces équations, en particulier de la méthode des invariants de

Tutte, aurait des applications dans de nombreux domaines de la combinatoire énumérative.

2Contrairement au cas des chemins de Kreweras, ’équation fontionnelle obtenue par Tutte dans le cas des

triangulations coloriées n’est pas totalement explicite.
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9.1 Annexe : Equations fonctionnelles des cartes coloriées

Nous avons établi des équations fontionnelles pour douze familles de cartes coloriées. Les
familles en considération sont définies par différents critéres : non-séparables, sans aréte
double, sans digones (faces de degré 2) etc. Nous obtenons un panel de douze équations pour
les douze familles de cartes définies par la figure 142. Certaines de ces équations apparaissaient

déja dans la littérature et nous avons indiqué la référence de I’article correspondant.

o

non-séparables H les faces sont de degré 2 ou 3

. sans digone
cartes planaires

sans aréte double

Figure 142: Quelques familles de cartes planaires. Nous avons indiqué pour chaque famille le

numéro de ’équation fonctionnelle correspondante.

Cartes générales.

e Cartes générales [Tutt 71] :

G(z,y) = 1+yz(z*(\—1)+2)G(x,y)G(z,1) + zyz <a:

—2y2G(z,y)G(L,y) — 2y2 <yG(w,g;)_—1G(x, 1)> .

r—1

e Cartes sans digone :

G(z,y) = 1+2%yz(A—1)G(z,y)G(z,1) (102)
vy (ZEEDZEOD) 60 )GlL9) - (G o,) - 1)

oy (2021) = Gl

o > 4 22, y)Glx, 1) — ay?2> <G($’ )~ Gl 1)> '

y—1



9.1. ANNEXE : EQUATIONS FONCTIONNELLES DES CARTES COLORIEES 227

e Cartes sans aréte double :

G(z,y) = 1+2%yz(A—1)G(z,y)G(z,1) (103)
r—1 A—1
<G("E7y)_?( )) (1 + G(lvy) )
y—
—ajyzl . (G(Ly)—yG(l,l) N 1) + 2yzG(z,y)(G(x,1) — 1).
z2(A—1) y—1

Cartes non-séparables (sans boucle ni sommet séparateur).

e Cartes non-séparables [Liu 90] :

(G(w,y)—mG(l,y)) <G((E,y)—yG(.’E,l))
Glz,y) = z’yz(\—1)+2yz o —zyz v (104)
Y y Y 1 (G(z,l)—xG(l,l)) Y 1 (G(Ly)—yG(l,l)) )
A U I\ oy
e Cartes non-séparables sans digone :
<G("E7y)_le(17y))
— 2 _ T _
G(.I‘, y) = T yZ(A 1) + ‘Tyzl B (G(:cﬂ)—xG(l,l)) yZG($7 y) (105)
z—1
(G(w,y) yG(z,1) Y ,G@y)— (33 1))
y—1 y—
—xyz .
a 1,1 1,9)-G(1
1_(( )yl( )+yz(y;1( ))
e Cartes non-séparables sans aréte double :
G(.’E,y _xG(lvy))
< z—1 G(I’,y) (1,:1/) (:E7y)
G(z,y) =z7yz(A—1) + a:yzl - (G(Ll _IG(M)) O—1) oYz HLy) , (106)
z—1
ol
| (Qemgen) (14 s an,y)
H(Qj‘, y) - 1 . G(Ly) yG(l 1) G(ZIS‘, 1)
(A-1)(y-1)
Triangulations.
e Cartes dont toute face est de degré 2 ou 3 :
G(z,y) = 1+2°2(A = 1)G(z,9)G(z,1) + yz(G(z,y) - 1)
z G(z,y) — G(x,1
+2(60) — 1= PGl )16 o) - oz (CEDZIEDY

e Triangulations (toute face est de degré 3) :

G(z,y) = 1+2%yz(A—1G(z,y)G(x,1) + %(G(w,y) —1—2°G(z,y)[2*]G(z,y))

g2 <G(w7y$)/ - f(wv 1)> ‘ (108)
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e Triangulations sans aréte double :

G(z,y) = 1+ x2yz()\ - 1)G(z,y)G(z,1) + ;Z(G(a;,y) —-1- nyZ()\ — 1)G(z,y))109)

z

Z()\ _ 1) (G(x7y) - 1)[$3]G(Jj,y) — xy222

Triangulations non séparables.

e Cartes non-séparables dont toute face est de degré 2 ou 3 :

Gz,y) = yz(A—1)++yzG(z,y) + 2y2G(z,y)G(z,1) (110)
+yz <G($7y) - G(an)> _ :L’y2Z2 <G($7y) - G(l‘, 1)> )
T y—1
e Triangulations non-séparables [Tutt 73a] :
G(z,y) = yz(A—1)+ayzG(z,y)G(z,1) (111)
+yz <G($7y) — G(an)> _ :L’y2Z2 <G($7y) — G(l‘, 1)> )
T y—1
e Triangulations non-séparables sans aréte double :
— -1
G(z,y) = yz(A—=1)+2z2yzG(z,y)G(z,1) +yz <G(;v,y) xyz()\ )> (112)
(G(:c,y)—G(x,l))
y—1

_z()\z— 1) G(x,y)[x')|G(x,y) — zy®2>

G(z,y)—yG(z,1)\
— (] ( ((Ag)l)(yy_(l) ))
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RESUME :

Combinatoire des cartes et polynome de Tutte

Les cartes sont les plongements, sans intersection d’arétes, des graphes dans des sur-
faces. Les cartes constituent une discrétisation naturelle des surfaces et apparaissent aussi
bien en informatique (codage d’informations visuelles) qu’en physique (surfaces aléatoires
de la physique statistique et quantique). Nous établissons des résultats énumératifs pour
de nouvelles familles de cartes. En outre, nous définissons des bijections entre les cartes et
des classes combinatoires plus simples (chemins planaires, couples d’arbres). Ces bijections
révelent des propriétés structurelles importantes des cartes et permettent leur comptage,
leur codage et leur génération aléatoire. Enfin, nous caractérisons un invariant fondamental
de la théorie des graphes, le polynome de Tutte, en nous appuyant sur les cartes. Cette
caractérisation permet d’établir des bijections entre plusieurs structures (arbres cou-
vrants, suites de degrés, configurations du tas de sable) comptées par le polynome de Tutte.

Mots-clés : cartes planaire, graphe, triangulation, énumération, bijection, polynome de
Tutte, arbres couvrant.

Combinatorics of maps and the Tutte polynomial

A map is a graph together with a particular (proper) embedding in a surface. Maps are
a natural way of representing discrete surfaces and as such they appear both in computer
science (encoding of visual data) and in physics (random lattices of statistical physics and
quantum gravity). We establish enumerative results for new classes of maps. Moreover,
we define several bijections between maps and simpler combinatorial classes (planar
walks, pairs of trees). These bijections highlight some important structural properties and
allows one to count, sample randomly and encode maps efficiently. Lastly, we give a new
characterization of an important graph invariant, the Tutte polynomial, by making use of
maps. This characterization allows us to establish bijections between several structures
(spanning trees, sandpile configurations, outdegree sequences) counted by the Tutte
polynomial.

Keywords : planar map, graph, triangulation, counting, bijection, Tutte polynomial,
spanning tree.





